| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ml3le | Unicode version | ||
| Description: Form of modular law that swaps two terms. |
| Ref | Expression |
|---|---|
| ml3le |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lear 161 |
. . . . 5
| |
| 2 | 1 | lelor 166 |
. . . 4
|
| 3 | or12 80 |
. . . . 5
| |
| 4 | oridm 110 |
. . . . . 6
| |
| 5 | 4 | lor 70 |
. . . . 5
|
| 6 | orcom 73 |
. . . . 5
| |
| 7 | 3, 5, 6 | 3tr 65 |
. . . 4
|
| 8 | 2, 7 | lbtr 139 |
. . 3
|
| 9 | leor 159 |
. . . 4
| |
| 10 | leao1 162 |
. . . 4
| |
| 11 | 9, 10 | lel2or 170 |
. . 3
|
| 12 | 8, 11 | ler2an 173 |
. 2
|
| 13 | 9 | mlduali 1126 |
. 2
|
| 14 | 12, 13 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: ml3 1128 dp15leme 1156 xdp15 1197 xxdp15 1200 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
| Copyright terms: Public domain | W3C validator |