| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wdf-c1 | Unicode version | ||
| Description: Show that commutator is a
'commutes' analogue for |
| Ref | Expression |
|---|---|
| wdf-c1.1 |
|
| Ref | Expression |
|---|---|
| wdf-c1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtrcom 190 |
. 2
| |
| 2 | df-cmtr 134 |
. 2
| |
| 3 | df-t 41 |
. . . . 5
| |
| 4 | 3 | bi1 118 |
. . . 4
|
| 5 | wdf-c1.1 |
. . . . . 6
| |
| 6 | 5 | wcomlem 382 |
. . . . 5
|
| 7 | ax-a1 30 |
. . . . . . . . . . 11
| |
| 8 | 7 | lan 77 |
. . . . . . . . . 10
|
| 9 | 8 | ax-r5 38 |
. . . . . . . . 9
|
| 10 | ax-a2 31 |
. . . . . . . . 9
| |
| 11 | 9, 10 | ax-r2 36 |
. . . . . . . 8
|
| 12 | 11 | bi1 118 |
. . . . . . 7
|
| 13 | 5, 12 | wr2 371 |
. . . . . 6
|
| 14 | 13 | wcomlem 382 |
. . . . 5
|
| 15 | 6, 14 | w2or 372 |
. . . 4
|
| 16 | 4, 15 | wr2 371 |
. . 3
|
| 17 | 16 | wr3 198 |
. 2
|
| 18 | 1, 2, 17 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wcom0 407 wcom1 408 wlecom 409 wbctr 410 wcbtr 411 wcomcom2 415 wcomcom5 420 wcomdr 421 wcom3i 422 wcom2or 427 |
| Copyright terms: Public domain | W3C validator |