41 @deftypefn {Mapping Function} {} abs (@var{z})\n\
42 Compute the magnitude of @var{z}.\n\
44 The magnitude is defined as\n\
46 $|z| = \\sqrt{x^2 + y^2}$.\n\
49 |@var{z}| = @code{sqrt (x^2 + y^2)}.\n\
64 if (args.length () == 1)
65 retval = args(0).
abs ();
91 @deftypefn {Mapping Function} {} acos (@var{x})\n\
92 Compute the inverse cosine in radians for each element of @var{x}.\n\
93 @seealso{cos, acosd}\n\
97 if (args.length () == 1)
98 retval = args(0).
acos ();
140 @deftypefn {Mapping Function} {} acosh (@var{x})\n\
141 Compute the inverse hyperbolic cosine for each element of @var{x}.\n\
146 if (args.length () == 1)
147 retval = args(0).
acosh ();
180 DEFUN (angle, args, ,
182 @deftypefn {Mapping Function} {} angle (@var{z})\n\
188 if (args.length () == 1)
189 retval = args(0).
arg ();
198 @deftypefn {Mapping Function} {} arg (@var{z})\n\
199 @deftypefnx {Mapping Function} {} angle (@var{z})\n\
200 Compute the argument, i.e., angle of @var{z}.\n\
202 This is defined as,\n\
204 $\\theta = atan2 (y, x),$\n\
207 @var{theta} = @code{atan2 (@var{y}, @var{x})},\n\
223 if (args.length () == 1)
224 retval = args(0).
arg ();
256 @deftypefn {Mapping Function} {} asin (@var{x})\n\
257 Compute the inverse sine in radians for each element of @var{x}.\n\
258 @seealso{sin, asind}\n\
262 if (args.length () == 1)
263 retval = args(0).
asin ();
304 @deftypefn {Mapping Function} {} asinh (@var{x})\n\
305 Compute the inverse hyperbolic sine for each element of @var{x}.\n\
310 if (args.length () == 1)
311 retval = args(0).
asinh ();
335 @deftypefn {Mapping Function} {} atan (@var{x})\n\
336 Compute the inverse tangent in radians for each element of @var{x}.\n\
337 @seealso{tan, atand}\n\
341 if (args.length () == 1)
342 retval = args(0).
atan ();
370 @deftypefn {Mapping Function} {} atanh (@var{x})\n\
371 Compute the inverse hyperbolic tangent for each element of @var{x}.\n\
376 if (args.length () == 1)
377 retval = args(0).
atanh ();
401 @deftypefn {Mapping Function} {} cbrt (@var{x})\n\
402 Compute the real cube root of each element of @var{x}.\n\
404 Unlike @code{@var{x}^(1/3)}, the result will be negative if @var{x} is\n\
410 if (args.length () == 1)
411 retval = args(0).
cbrt ();
434 @deftypefn {Mapping Function} {} ceil (@var{x})\n\
435 Return the smallest integer not less than @var{x}.\n\
437 This is equivalent to rounding towards positive infinity.\n\
439 If @var{x} is complex, return\n\
440 @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.\n\
444 ceil ([-2.7, 2.7])\n\
448 @seealso{floor, round, fix}\n\
452 if (args.length () == 1)
453 retval = args(0).
ceil ();
479 @deftypefn {Mapping Function} {} conj (@var{z})\n\
480 Return the complex conjugate of @var{z}.\n\
482 The complex conjugate is defined as\n\
484 $\\bar{z} = x - iy$.\n\
487 @code{conj (@var{z})} = @var{x} - @var{i}@var{y}.\n\
489 @seealso{real, imag}\n\
493 if (args.length () == 1)
494 retval = args(0).
conj ();
520 @deftypefn {Mapping Function} {} cos (@var{x})\n\
521 Compute the cosine for each element of @var{x} in radians.\n\
522 @seealso{acos, cosd, cosh}\n\
526 if (args.length () == 1)
527 retval = args(0).
cos ();
557 @deftypefn {Mapping Function} {} cosh (@var{x})\n\
558 Compute the hyperbolic cosine for each element of @var{x}.\n\
559 @seealso{acosh, sinh, tanh}\n\
563 if (args.length () == 1)
564 retval = args(0).
cosh ();
588 @deftypefn {Mapping Function} {} erf (@var{z})\n\
589 Compute the error function.\n\
591 The error function is defined as\n\
594 {\\rm erf} (z) = {2 \\over \\sqrt{\\pi}}\\int_0^z e^{-t^2} dt\n\
603 erf (z) = --------- * | e^(-t^2) dt\n\
610 @seealso{erfc, erfcx, erfi, dawson, erfinv, erfcinv}\n\
614 if (args.length () == 1)
615 retval = args(0).
erf ();
660 @deftypefn {Mapping Function} {} erfinv (@var{x})\n\
661 Compute the inverse error function.\n\
663 The inverse error function is defined such that\n\
666 erf (@var{y}) == @var{x}\n\
668 @seealso{erf, erfc, erfcx, erfi, dawson, erfcinv}\n\
672 if (args.length () == 1)
673 retval = args(0).
erfinv ();
700 @deftypefn {Mapping Function} {} erfcinv (@var{x})\n\
701 Compute the inverse complementary error function.\n\
703 The inverse complementary error function is defined such that\n\
706 erfc (@var{y}) == @var{x}\n\
708 @seealso{erfc, erf, erfcx, erfi, dawson, erfinv}\n\
712 if (args.length () == 1)
740 @deftypefn {Mapping Function} {} erfc (@var{z})\n\
741 Compute the complementary error function.\n\
743 The complementary error function is defined as\n\
745 $1 - {\\rm erf} (z)$.\n\
748 @w{@code{1 - erf (@var{z})}}.\n\
750 @seealso{erfcinv, erfcx, erfi, dawson, erf, erfinv}\n\
754 if (args.length () == 1)
755 retval = args(0).
erfc ();
773 @deftypefn {Mapping Function} {} erfcx (@var{z})\n\
774 Compute the scaled complementary error function.\n\
776 The scaled complementary error function is defined as\n\
779 e^{z^2} {\\rm erfc} (z) \\equiv e^{z^2} (1 - {\\rm erf} (z))\n\
785 exp (z^2) * erfc (z)\n\
789 @seealso{erfc, erf, erfi, dawson, erfinv, erfcinv}\n\
793 if (args.length () == 1)
794 retval = args(0).
erfcx ();
818 @deftypefn {Mapping Function} {} erfi (@var{z})\n\
819 Compute the imaginary error function.\n\
821 The imaginary error function is defined as\n\
824 -i {\\rm erf} (iz)\n\
834 @seealso{erfc, erf, erfcx, dawson, erfinv, erfcinv}\n\
838 if (args.length () == 1)
839 retval = args(0).
erfi ();
858 @deftypefn {Mapping Function} {} dawson (@var{z})\n\
859 Compute the Dawson (scaled imaginary error) function.\n\
861 The Dawson function is defined as\n\
864 {\\sqrt{\\pi} \\over 2} e^{-z^2} {\\rm erfi} (z) \\equiv -i {\\sqrt{\\pi} \\over 2} e^{-z^2} {\\rm erf} (iz)\n\
870 (sqrt (pi) / 2) * exp (-z^2) * erfi (z)\n\
874 @seealso{erfc, erf, erfcx, erfi, erfinv, erfcinv}\n\
878 if (args.length () == 1)
879 retval = args(0).
dawson ();
900 @deftypefn {Mapping Function} {} exp (@var{x})\n\
908 for each element of @var{x}.\n\
910 To compute the matrix exponential, see @ref{Linear Algebra}.\n\
915 if (args.length () == 1)
916 retval = args(0).
exp ();
938 @deftypefn {Mapping Function} {} expm1 (@var{x})\n\
944 @code{exp (@var{x}) - 1}\n\
946 accurately in the neighborhood of zero.\n\
951 if (args.length () == 1)
952 retval = args(0).
expm1 ();
969 DEFUN (isfinite, args, ,
971 @deftypefn {Mapping Function} {} isfinite (@var{x})\n\
972 Return a logical array which is true where the elements of @var{x} are\n\
973 finite values and false where they are not.\n\
979 isfinite ([13, Inf, NA, NaN])\n\
980 @result{} [ 1, 0, 0, 0 ]\n\
983 @seealso{isinf, isnan, isna}\n\
987 if (args.length () == 1)
988 retval = args(0).
finite ();
1010 @deftypefn {Mapping Function} {} fix (@var{x})\n\
1011 Truncate fractional portion of @var{x} and return the integer portion.\n\
1013 This is equivalent to rounding towards zero. If @var{x} is complex, return\n\
1014 @code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.\n\
1018 fix ([-2.7, 2.7])\n\
1022 @seealso{ceil, floor, round}\n\
1026 if (args.length () == 1)
1027 retval = args(0).
fix ();
1046 @deftypefn {Mapping Function} {} floor (@var{x})\n\
1047 Return the largest integer not greater than @var{x}.\n\
1049 This is equivalent to rounding towards negative infinity. If @var{x} is\n\
1050 complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.\n\
1054 floor ([-2.7, 2.7])\n\
1058 @seealso{ceil, round, fix}\n\
1062 if (args.length () == 1)
1063 retval = args(0).
floor ();
1082 @deftypefn {Mapping Function} {} gamma (@var{z})\n\
1083 Compute the Gamma function.\n\
1085 The Gamma function is defined as\n\
1088 \\Gamma (z) = \\int_0^\\infty t^{z-1} e^{-t} dt.\n\
1097 gamma (z) = | t^(z-1) exp (-t) dt.\n\
1105 Programming Note: The gamma function can grow quite large even for small\n\
1106 input values. In many cases it may be preferable to use the natural\n\
1107 logarithm of the gamma function (@code{gammaln}) in calculations to minimize\n\
1108 loss of precision. The final result is then\n\
1109 @code{exp (@var{result_using_gammaln}).}\n\
1110 @seealso{gammainc, gammaln, factorial}\n\
1114 if (args.length () == 1)
1115 retval = args(0).
gamma ();
1154 @deftypefn {Mapping Function} {} imag (@var{z})\n\
1155 Return the imaginary part of @var{z} as a real number.\n\
1156 @seealso{real, conj}\n\
1160 if (args.length () == 1)
1161 retval = args(0).
imag ();
1185 @deftypefn {Mapping Function} {} isalnum (@var{s})\n\
1186 Return a logical array which is true where the elements of @var{s} are\n\
1187 letters or digits and false where they are not.\n\
1189 This is equivalent to (@code{isalpha (@var{s}) | isdigit (@var{s})}).\n\
1190 @seealso{isalpha, isdigit, ispunct, isspace, iscntrl}\n\
1194 if (args.length () == 1)
1217 @deftypefn {Mapping Function} {} isalpha (@var{s})\n\
1218 Return a logical array which is true where the elements of @var{s} are\n\
1219 letters and false where they are not.\n\
1221 This is equivalent to (@code{islower (@var{s}) | isupper (@var{s})}).\n\
1222 @seealso{isdigit, ispunct, isspace, iscntrl, isalnum, islower, isupper}\n\
1226 if (args.length () == 1)
1248 @deftypefn {Mapping Function} {} isascii (@var{s})\n\
1249 Return a logical array which is true where the elements of @var{s} are\n\
1250 ASCII characters (in the range 0 to 127 decimal) and false where they are\n\
1255 if (args.length () == 1)
1275 @deftypefn {Mapping Function} {} iscntrl (@var{s})\n\
1276 Return a logical array which is true where the elements of @var{s} are\n\
1277 control characters and false where they are not.\n\
1278 @seealso{ispunct, isspace, isalpha, isdigit}\n\
1282 if (args.length () == 1)
1304 @deftypefn {Mapping Function} {} isdigit (@var{s})\n\
1305 Return a logical array which is true where the elements of @var{s} are\n\
1306 decimal digits (0-9) and false where they are not.\n\
1307 @seealso{isxdigit, isalpha, isletter, ispunct, isspace, iscntrl}\n\
1311 if (args.length () == 1)
1330 DEFUN (isinf, args, ,
1332 @deftypefn {Mapping Function} {} isinf (@var{x})\n\
1333 Return a logical array which is true where the elements of @var{x} are\n\
1334 infinite and false where they are not.\n\
1340 isinf ([13, Inf, NA, NaN])\n\
1341 @result{} [ 0, 1, 0, 0 ]\n\
1344 @seealso{isfinite, isnan, isna}\n\
1348 if (args.length () == 1)
1349 retval = args(0).
isinf ();
1375 @deftypefn {Mapping Function} {} isgraph (@var{s})\n\
1376 Return a logical array which is true where the elements of @var{s} are\n\
1377 printable characters (but not the space character) and false where they are\n\
1379 @seealso{isprint}\n\
1383 if (args.length () == 1)
1404 @deftypefn {Mapping Function} {} islower (@var{s})\n\
1405 Return a logical array which is true where the elements of @var{s} are\n\
1406 lowercase letters and false where they are not.\n\
1407 @seealso{isupper, isalpha, isletter, isalnum}\n\
1411 if (args.length () == 1)
1430 DEFUN (isna, args, ,
1432 @deftypefn {Mapping Function} {} isna (@var{x})\n\
1433 Return a logical array which is true where the elements of @var{x} are\n\
1434 NA (missing) values and false where they are not.\n\
1440 isna ([13, Inf, NA, NaN])\n\
1441 @result{} [ 0, 0, 1, 0 ]\n\
1444 @seealso{isnan, isinf, isfinite}\n\
1448 if (args.length () == 1)
1449 retval = args(0).
isna ();
1473 DEFUN (isnan, args, ,
1475 @deftypefn {Mapping Function} {} isnan (@var{x})\n\
1476 Return a logical array which is true where the elements of @var{x} are\n\
1477 NaN values and false where they are not.\n\
1479 NA values are also considered NaN values. For example:\n\
1483 isnan ([13, Inf, NA, NaN])\n\
1484 @result{} [ 0, 0, 1, 1 ]\n\
1487 @seealso{isna, isinf, isfinite}\n\
1491 if (args.length () == 1)
1492 retval = args(0).
isnan ();
1518 @deftypefn {Mapping Function} {} isprint (@var{s})\n\
1519 Return a logical array which is true where the elements of @var{s} are\n\
1520 printable characters (including the space character) and false where they\n\
1522 @seealso{isgraph}\n\
1526 if (args.length () == 1)
1547 @deftypefn {Mapping Function} {} ispunct (@var{s})\n\
1548 Return a logical array which is true where the elements of @var{s} are\n\
1549 punctuation characters and false where they are not.\n\
1550 @seealso{isalpha, isdigit, isspace, iscntrl}\n\
1554 if (args.length () == 1)
1578 @deftypefn {Mapping Function} {} isspace (@var{s})\n\
1579 Return a logical array which is true where the elements of @var{s} are\n\
1580 whitespace characters (space, formfeed, newline, carriage return, tab, and\n\
1581 vertical tab) and false where they are not.\n\
1582 @seealso{iscntrl, ispunct, isalpha, isdigit}\n\
1586 if (args.length () == 1)
1607 @deftypefn {Mapping Function} {} isupper (@var{s})\n\
1608 Return a logical array which is true where the elements of @var{s} are\n\
1609 uppercase letters and false where they are not.\n\
1610 @seealso{islower, isalpha, isletter, isalnum}\n\
1614 if (args.length () == 1)
1635 @deftypefn {Mapping Function} {} isxdigit (@var{s})\n\
1636 Return a logical array which is true where the elements of @var{s} are\n\
1637 hexadecimal digits (0-9 and @nospell{a-fA-F}).\n\
1638 @seealso{isdigit}\n\
1642 if (args.length () == 1)
1663 DEFUN (lgamma, args, ,
1665 @deftypefn {Mapping Function} {} gammaln (@var{x})\n\
1666 @deftypefnx {Mapping Function} {} lgamma (@var{x})\n\
1667 Return the natural logarithm of the gamma function of @var{x}.\n\
1668 @seealso{gamma, gammainc}\n\
1672 if (args.length () == 1)
1673 retval = args(0).
lgamma ();
1711 @deftypefn {Mapping Function} {} log (@var{x})\n\
1712 Compute the natural logarithm,\n\
1717 @code{ln (@var{x})},\n\
1719 for each element of @var{x}.\n\
1721 To compute the matrix logarithm, see @ref{Linear Algebra}.\n\
1722 @seealso{exp, log1p, log2, log10, logspace}\n\
1726 if (args.length () == 1)
1727 retval = args(0).
log ();
1745 DEFUN (log10, args, ,
1747 @deftypefn {Mapping Function} {} log10 (@var{x})\n\
1748 Compute the base-10 logarithm of each element of @var{x}.\n\
1749 @seealso{log, log2, logspace, exp}\n\
1753 if (args.length () == 1)
1754 retval = args(0).
log10 ();
1771 @deftypefn {Mapping Function} {} log1p (@var{x})\n\
1777 @code{log (1 + @var{x})}\n\
1779 accurately in the neighborhood of zero.\n\
1780 @seealso{log, exp, expm1}\n\
1784 if (args.length () == 1)
1785 retval = args(0).
log1p ();
1802 @deftypefn {Mapping Function} {} real (@var{z})\n\
1803 Return the real part of @var{z}.\n\
1804 @seealso{imag, conj}\n\
1808 if (args.length () == 1)
1809 retval = args(0).
real ();
1831 DEFUN (round, args, ,
1833 @deftypefn {Mapping Function} {} round (@var{x})\n\
1834 Return the integer nearest to @var{x}.\n\
1836 If @var{x} is complex, return\n\
1837 @code{round (real (@var{x})) + round (imag (@var{x})) * I}. If there\n\
1838 are two nearest integers, return the one further away from zero.\n\
1842 round ([-2.7, 2.7])\n\
1846 @seealso{ceil, floor, fix, roundb}\n\
1850 if (args.length () == 1)
1851 retval = args(0).
round ();
1879 DEFUN (roundb, args, ,
1881 @deftypefn {Mapping Function} {} roundb (@var{x})\n\
1882 Return the integer nearest to @var{x}. If there are two nearest\n\
1883 integers, return the even one (banker's rounding).\n\
1885 If @var{x} is complex,\n\
1886 return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.\n\
1891 if (args.length () == 1)
1892 retval = args(0).
roundb ();
1922 DEFUN (sign, args, ,
1924 @deftypefn {Mapping Function} {} sign (@var{x})\n\
1925 Compute the @dfn{signum} function.\n\
1927 This is defined as\n\
1930 {\\rm sign} (@var{x}) = \\cases{1,&$x>0$;\\cr 0,&$x=0$;\\cr -1,&$x<0$.\\cr}\n\
1938 sign (x) = 0, x = 0;\n\
1945 For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.\n\
1947 Note that @code{sign (-0.0)} is 0. Although IEEE 754 floating point\n\
1948 allows zero to be signed, 0.0 and -0.0 compare equal. If you must test\n\
1949 whether zero is signed, use the @code{signbit} function.\n\
1950 @seealso{signbit}\n\
1954 if (args.length () == 1)
1955 retval = args(0).
signum ();
1979 @deftypefn {Mapping Function} {} signbit (@var{x})\n\
1980 Return logical true if the value of @var{x} has its sign bit set and false\n\
1983 This behavior is consistent with the other logical functions.\n\
1984 See @ref{Logical Values}. The behavior differs from the C language function\n\
1985 which returns nonzero if the sign bit is set.\n\
1987 This is not the same as @code{x < 0.0}, because IEEE 754 floating point\n\
1988 allows zero to be signed. The comparison @code{-0.0 < 0.0} is false,\n\
1989 but @code{signbit (-0.0)} will return a nonzero value.\n\
1994 if (args.length () == 1)
1997 retval = (retval != 0);
2022 @deftypefn {Mapping Function} {} sin (@var{x})\n\
2023 Compute the sine for each element of @var{x} in radians.\n\
2024 @seealso{asin, sind, sinh}\n\
2028 if (args.length () == 1)
2029 retval = args(0).
sin ();
2055 DEFUN (sinh, args, ,
2057 @deftypefn {Mapping Function} {} sinh (@var{x})\n\
2058 Compute the hyperbolic sine for each element of @var{x}.\n\
2059 @seealso{asinh, cosh, tanh}\n\
2063 if (args.length () == 1)
2064 retval = args(0).
sinh ();
2086 DEFUN (sqrt, args, ,
2088 @deftypefn {Mapping Function} {} sqrt (@var{x})\n\
2089 Compute the square root of each element of @var{x}.\n\
2091 If @var{x} is negative, a complex result is returned.\n\
2093 To compute the matrix square root, see @ref{Linear Algebra}.\n\
2094 @seealso{realsqrt, nthroot}\n\
2098 if (args.length () == 1)
2099 retval = args(0).
sqrt ();
2123 @deftypefn {Mapping Function} {} tan (@var{z})\n\
2124 Compute the tangent for each element of @var{x} in radians.\n\
2125 @seealso{atan, tand, tanh}\n\
2129 if (args.length () == 1)
2130 retval = args(0).
tan ();
2156 DEFUN (tanh, args, ,
2158 @deftypefn {Mapping Function} {} tanh (@var{x})\n\
2159 Compute hyperbolic tangent for each element of @var{x}.\n\
2160 @seealso{atanh, sinh, cosh}\n\
2164 if (args.length () == 1)
2165 retval = args(0).
tanh ();
2189 @deftypefn {Mapping Function} {} toascii (@var{s})\n\
2190 Return ASCII representation of @var{s} in a matrix.\n\
2196 toascii (\"ASCII\")\n\
2197 @result{} [ 65, 83, 67, 73, 73 ]\n\
2205 if (args.length () == 1)
2227 @deftypefn {Mapping Function} {} tolower (@var{s})\n\
2228 @deftypefnx {Mapping Function} {} lower (@var{s})\n\
2229 Return a copy of the string or cell string @var{s}, with each uppercase\n\
2230 character replaced by the corresponding lowercase one; non-alphabetic\n\
2231 characters are left unchanged.\n\
2237 tolower (\"MiXeD cAsE 123\")\n\
2238 @result{} \"mixed case 123\"\n\
2241 @seealso{toupper}\n\
2245 if (args.length () == 1)
2289 @deftypefn {Mapping Function} {} toupper (@var{s})\n\
2290 @deftypefnx {Mapping Function} {} upper (@var{s})\n\
2291 Return a copy of the string or cell string @var{s}, with each lowercase\n\
2292 character replaced by the corresponding uppercase one; non-alphabetic\n\
2293 characters are left unchanged.\n\
2299 toupper (\"MiXeD cAsE 123\")\n\
2300 @result{} \"MIXED CASE 123\"\n\
2303 @seealso{tolower}\n\
2307 if (args.length () == 1)
octave_value conj(void) const
OCTAVE_EXPORT octave_value_list Ftolower(const octave_value_list &args, int)
octave_value round(void) const
octave_value cbrt(void) const
OCTINTERP_API void print_usage(void)
std::complex< double > erfi(std::complex< double > z, double relerr=0)
octave_value log10(void) const
octave_value xisalpha(void) const
octave_value acos(void) const
octave_value arg(void) const
octave_value fix(void) const
OCTAVE_EXPORT octave_value_list Ftoascii(const octave_value_list &args, int)
#define DEFUN(name, args_name, nargout_name, doc)
octave_value xisprint(void) const
octave_value xtoascii(void) const
octave_value isinf(void) const
octave_value real(void) const
octave_value erf(void) const
octave_value erfcx(void) const
octave_value tanh(void) const
octave_value xisxdigit(void) const
OCTAVE_EXPORT octave_value_list Fisxdigit(const octave_value_list &args, int)
octave_value ceil(void) const
OCTAVE_EXPORT octave_value_list Fisdigit(const octave_value_list &args, int)
std::complex< double > erf(std::complex< double > z, double relerr=0)
OCTAVE_EXPORT octave_value_list Fisalpha(const octave_value_list &args, int)
octave_value erfcinv(void) const
octave_value imag(void) const
octave_value asin(void) const
octave_value signum(void) const
octave_value xispunct(void) const
octave_value roundb(void) const
OCTAVE_EXPORT octave_value_list Fisascii(const octave_value_list &args, int)
octave_value floor(void) const
#define DEFALIAS(alias, name)
ComplexColumnVector conj(const ComplexColumnVector &a)
octave_value xtolower(void) const
octave_value log(void) const
octave_value xisalnum(void) const
octave_value atanh(void) const
octave_value sinh(void) const
std::complex< T > ceil(const std::complex< T > &x)
octave_value xsignbit(void) const
octave_value atan(void) const
octave_value gamma(void) const
#define DEFUNX(name, fname, args_name, nargout_name, doc)
octave_value asinh(void) const
octave_value sin(void) const
octave_value xisupper(void) const
octave_value abs(void) const
std::complex< double > erfcx(std::complex< double > z, double relerr=0)
octave_value dawson(void) const
octave_value xisspace(void) const
OCTAVE_EXPORT octave_value_list Fisprint(const octave_value_list &args, int)
octave_value xiscntrl(void) const
octave_value expm1(void) const
octave_value erfc(void) const
OCTAVE_EXPORT octave_value_list Fisspace(const octave_value_list &args, int)
octave_value log1p(void) const
OCTAVE_EXPORT octave_value_list Fislower(const octave_value_list &args, int)
octave_value xtoupper(void) const
octave_value xisascii(void) const
octave_value exp(void) const
octave_value erfinv(void) const
OCTAVE_EXPORT octave_value_list Fiscntrl(const octave_value_list &args, int)
OCTAVE_EXPORT octave_value_list Ftoupper(const octave_value_list &args, int)
octave_value cos(void) const
OCTAVE_EXPORT octave_value_list Fsignbit(const octave_value_list &args, int)
octave_value cosh(void) const
octave_value isna(void) const
octave_value finite(void) const
OCTAVE_EXPORT octave_value_list Fispunct(const octave_value_list &args, int)
OCTAVE_EXPORT octave_value_list Fisgraph(const octave_value_list &args, int)
octave_value xisgraph(void) const
OCTAVE_EXPORT octave_value_list Fisalnum(const octave_value_list &args, int)
Complex asin(const Complex &x)
ColumnVector imag(const ComplexColumnVector &a)
octave_value erfi(void) const
std::complex< T > floor(const std::complex< T > &x)
octave_value xisdigit(void) const
Complex acos(const Complex &x)
octave_value xislower(void) const
ColumnVector real(const ComplexColumnVector &a)
octave_value isnan(void) const
octave_value sqrt(void) const
octave_value acosh(void) const
Complex atan(const Complex &x)
OCTAVE_EXPORT octave_value_list Fisupper(const octave_value_list &args, int)
octave_value tan(void) const
octave_value lgamma(void) const
std::complex< double > erfc(std::complex< double > z, double relerr=0)