Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aarp.c
Go to the documentation of this file.
1 /*
2  * AARP: An implementation of the AppleTalk AARP protocol for
3  * Ethernet 'ELAP'.
4  *
5  * Alan Cox <[email protected]>
6  *
7  * This doesn't fit cleanly with the IP arp. Potentially we can use
8  * the generic neighbour discovery code to clean this up.
9  *
10  * FIXME:
11  * We ought to handle the retransmits with a single list and a
12  * separate fast timer for when it is needed.
13  * Use neighbour discovery code.
14  * Token Ring Support.
15  *
16  * This program is free software; you can redistribute it and/or
17  * modify it under the terms of the GNU General Public License
18  * as published by the Free Software Foundation; either version
19  * 2 of the License, or (at your option) any later version.
20  *
21  *
22  * References:
23  * Inside AppleTalk (2nd Ed).
24  * Fixes:
25  * Jaume Grau - flush caches on AARP_PROBE
26  * Rob Newberry - Added proxy AARP and AARP proc fs,
27  * moved probing from DDP module.
28  * Arnaldo C. Melo - don't mangle rx packets
29  *
30  */
31 
32 #include <linux/if_arp.h>
33 #include <linux/slab.h>
34 #include <net/sock.h>
35 #include <net/datalink.h>
36 #include <net/psnap.h>
37 #include <linux/atalk.h>
38 #include <linux/delay.h>
39 #include <linux/init.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/export.h>
43 
48 
49 /* Lists of aarp entries */
62 struct aarp_entry {
63  /* These first two are only used for unresolved entries */
64  unsigned long last_sent;
66  int status;
67  unsigned long expires_at;
69  struct net_device *dev;
70  char hwaddr[6];
71  unsigned short xmit_count;
72  struct aarp_entry *next;
73 };
74 
75 /* Hashed list of resolved, unresolved and proxy entries */
76 static struct aarp_entry *resolved[AARP_HASH_SIZE];
77 static struct aarp_entry *unresolved[AARP_HASH_SIZE];
78 static struct aarp_entry *proxies[AARP_HASH_SIZE];
79 static int unresolved_count;
80 
81 /* One lock protects it all. */
82 static DEFINE_RWLOCK(aarp_lock);
83 
84 /* Used to walk the list and purge/kick entries. */
85 static struct timer_list aarp_timer;
86 
87 /*
88  * Delete an aarp queue
89  *
90  * Must run under aarp_lock.
91  */
92 static void __aarp_expire(struct aarp_entry *a)
93 {
95  kfree(a);
96 }
97 
98 /*
99  * Send an aarp queue entry request
100  *
101  * Must run under aarp_lock.
102  */
103 static void __aarp_send_query(struct aarp_entry *a)
104 {
105  static unsigned char aarp_eth_multicast[ETH_ALEN] =
106  { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
107  struct net_device *dev = a->dev;
108  struct elapaarp *eah;
109  int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
110  struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
111  struct atalk_addr *sat = atalk_find_dev_addr(dev);
112 
113  if (!skb)
114  return;
115 
116  if (!sat) {
117  kfree_skb(skb);
118  return;
119  }
120 
121  /* Set up the buffer */
122  skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
123  skb_reset_network_header(skb);
124  skb_reset_transport_header(skb);
125  skb_put(skb, sizeof(*eah));
126  skb->protocol = htons(ETH_P_ATALK);
127  skb->dev = dev;
128  eah = aarp_hdr(skb);
129 
130  /* Set up the ARP */
132  eah->pa_type = htons(ETH_P_ATALK);
133  eah->hw_len = ETH_ALEN;
134  eah->pa_len = AARP_PA_ALEN;
135  eah->function = htons(AARP_REQUEST);
136 
137  memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
138 
139  eah->pa_src_zero = 0;
140  eah->pa_src_net = sat->s_net;
141  eah->pa_src_node = sat->s_node;
142 
143  memset(eah->hw_dst, '\0', ETH_ALEN);
144 
145  eah->pa_dst_zero = 0;
146  eah->pa_dst_net = a->target_addr.s_net;
147  eah->pa_dst_node = a->target_addr.s_node;
148 
149  /* Send it */
150  aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
151  /* Update the sending count */
152  a->xmit_count++;
153  a->last_sent = jiffies;
154 }
155 
156 /* This runs under aarp_lock and in softint context, so only atomic memory
157  * allocations can be used. */
158 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
159  struct atalk_addr *them, unsigned char *sha)
160 {
161  struct elapaarp *eah;
162  int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
163  struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
164 
165  if (!skb)
166  return;
167 
168  /* Set up the buffer */
169  skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
170  skb_reset_network_header(skb);
171  skb_reset_transport_header(skb);
172  skb_put(skb, sizeof(*eah));
173  skb->protocol = htons(ETH_P_ATALK);
174  skb->dev = dev;
175  eah = aarp_hdr(skb);
176 
177  /* Set up the ARP */
179  eah->pa_type = htons(ETH_P_ATALK);
180  eah->hw_len = ETH_ALEN;
181  eah->pa_len = AARP_PA_ALEN;
182  eah->function = htons(AARP_REPLY);
183 
184  memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
185 
186  eah->pa_src_zero = 0;
187  eah->pa_src_net = us->s_net;
188  eah->pa_src_node = us->s_node;
189 
190  if (!sha)
191  memset(eah->hw_dst, '\0', ETH_ALEN);
192  else
193  memcpy(eah->hw_dst, sha, ETH_ALEN);
194 
195  eah->pa_dst_zero = 0;
196  eah->pa_dst_net = them->s_net;
197  eah->pa_dst_node = them->s_node;
198 
199  /* Send it */
200  aarp_dl->request(aarp_dl, skb, sha);
201 }
202 
203 /*
204  * Send probe frames. Called from aarp_probe_network and
205  * aarp_proxy_probe_network.
206  */
207 
208 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
209 {
210  struct elapaarp *eah;
211  int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
212  struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
213  static unsigned char aarp_eth_multicast[ETH_ALEN] =
214  { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
215 
216  if (!skb)
217  return;
218 
219  /* Set up the buffer */
220  skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
221  skb_reset_network_header(skb);
222  skb_reset_transport_header(skb);
223  skb_put(skb, sizeof(*eah));
224  skb->protocol = htons(ETH_P_ATALK);
225  skb->dev = dev;
226  eah = aarp_hdr(skb);
227 
228  /* Set up the ARP */
230  eah->pa_type = htons(ETH_P_ATALK);
231  eah->hw_len = ETH_ALEN;
232  eah->pa_len = AARP_PA_ALEN;
233  eah->function = htons(AARP_PROBE);
234 
235  memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
236 
237  eah->pa_src_zero = 0;
238  eah->pa_src_net = us->s_net;
239  eah->pa_src_node = us->s_node;
240 
241  memset(eah->hw_dst, '\0', ETH_ALEN);
242 
243  eah->pa_dst_zero = 0;
244  eah->pa_dst_net = us->s_net;
245  eah->pa_dst_node = us->s_node;
246 
247  /* Send it */
248  aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
249 }
250 
251 /*
252  * Handle an aarp timer expire
253  *
254  * Must run under the aarp_lock.
255  */
256 
257 static void __aarp_expire_timer(struct aarp_entry **n)
258 {
259  struct aarp_entry *t;
260 
261  while (*n)
262  /* Expired ? */
263  if (time_after(jiffies, (*n)->expires_at)) {
264  t = *n;
265  *n = (*n)->next;
266  __aarp_expire(t);
267  } else
268  n = &((*n)->next);
269 }
270 
271 /*
272  * Kick all pending requests 5 times a second.
273  *
274  * Must run under the aarp_lock.
275  */
276 static void __aarp_kick(struct aarp_entry **n)
277 {
278  struct aarp_entry *t;
279 
280  while (*n)
281  /* Expired: if this will be the 11th tx, we delete instead. */
282  if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
283  t = *n;
284  *n = (*n)->next;
285  __aarp_expire(t);
286  } else {
287  __aarp_send_query(*n);
288  n = &((*n)->next);
289  }
290 }
291 
292 /*
293  * A device has gone down. Take all entries referring to the device
294  * and remove them.
295  *
296  * Must run under the aarp_lock.
297  */
298 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
299 {
300  struct aarp_entry *t;
301 
302  while (*n)
303  if ((*n)->dev == dev) {
304  t = *n;
305  *n = (*n)->next;
306  __aarp_expire(t);
307  } else
308  n = &((*n)->next);
309 }
310 
311 /* Handle the timer event */
312 static void aarp_expire_timeout(unsigned long unused)
313 {
314  int ct;
315 
316  write_lock_bh(&aarp_lock);
317 
318  for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
319  __aarp_expire_timer(&resolved[ct]);
320  __aarp_kick(&unresolved[ct]);
321  __aarp_expire_timer(&unresolved[ct]);
322  __aarp_expire_timer(&proxies[ct]);
323  }
324 
325  write_unlock_bh(&aarp_lock);
326  mod_timer(&aarp_timer, jiffies +
327  (unresolved_count ? sysctl_aarp_tick_time :
329 }
330 
331 /* Network device notifier chain handler. */
332 static int aarp_device_event(struct notifier_block *this, unsigned long event,
333  void *ptr)
334 {
335  struct net_device *dev = ptr;
336  int ct;
337 
338  if (!net_eq(dev_net(dev), &init_net))
339  return NOTIFY_DONE;
340 
341  if (event == NETDEV_DOWN) {
342  write_lock_bh(&aarp_lock);
343 
344  for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
345  __aarp_expire_device(&resolved[ct], dev);
346  __aarp_expire_device(&unresolved[ct], dev);
347  __aarp_expire_device(&proxies[ct], dev);
348  }
349 
350  write_unlock_bh(&aarp_lock);
351  }
352  return NOTIFY_DONE;
353 }
354 
355 /* Expire all entries in a hash chain */
356 static void __aarp_expire_all(struct aarp_entry **n)
357 {
358  struct aarp_entry *t;
359 
360  while (*n) {
361  t = *n;
362  *n = (*n)->next;
363  __aarp_expire(t);
364  }
365 }
366 
367 /* Cleanup all hash chains -- module unloading */
368 static void aarp_purge(void)
369 {
370  int ct;
371 
372  write_lock_bh(&aarp_lock);
373  for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
374  __aarp_expire_all(&resolved[ct]);
375  __aarp_expire_all(&unresolved[ct]);
376  __aarp_expire_all(&proxies[ct]);
377  }
378  write_unlock_bh(&aarp_lock);
379 }
380 
381 /*
382  * Create a new aarp entry. This must use GFP_ATOMIC because it
383  * runs while holding spinlocks.
384  */
385 static struct aarp_entry *aarp_alloc(void)
386 {
387  struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
388 
389  if (a)
390  skb_queue_head_init(&a->packet_queue);
391  return a;
392 }
393 
394 /*
395  * Find an entry. We might return an expired but not yet purged entry. We
396  * don't care as it will do no harm.
397  *
398  * This must run under the aarp_lock.
399  */
400 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
401  struct net_device *dev,
402  struct atalk_addr *sat)
403 {
404  while (list) {
405  if (list->target_addr.s_net == sat->s_net &&
406  list->target_addr.s_node == sat->s_node &&
407  list->dev == dev)
408  break;
409  list = list->next;
410  }
411 
412  return list;
413 }
414 
415 /* Called from the DDP code, and thus must be exported. */
416 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
417 {
418  int hash = sa->s_node % (AARP_HASH_SIZE - 1);
419  struct aarp_entry *a;
420 
421  write_lock_bh(&aarp_lock);
422 
423  a = __aarp_find_entry(proxies[hash], dev, sa);
424  if (a)
425  a->expires_at = jiffies - 1;
426 
427  write_unlock_bh(&aarp_lock);
428 }
429 
430 /* This must run under aarp_lock. */
431 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
432  struct atalk_addr *sa)
433 {
434  int hash = sa->s_node % (AARP_HASH_SIZE - 1);
435  struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
436 
437  return a ? sa : NULL;
438 }
439 
440 /*
441  * Probe a Phase 1 device or a device that requires its Net:Node to
442  * be set via an ioctl.
443  */
444 static void aarp_send_probe_phase1(struct atalk_iface *iface)
445 {
446  struct ifreq atreq;
447  struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
448  const struct net_device_ops *ops = iface->dev->netdev_ops;
449 
450  sa->sat_addr.s_node = iface->address.s_node;
451  sa->sat_addr.s_net = ntohs(iface->address.s_net);
452 
453  /* We pass the Net:Node to the drivers/cards by a Device ioctl. */
454  if (!(ops->ndo_do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
455  ops->ndo_do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
456  if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
457  iface->address.s_node != sa->sat_addr.s_node)
458  iface->status |= ATIF_PROBE_FAIL;
459 
460  iface->address.s_net = htons(sa->sat_addr.s_net);
461  iface->address.s_node = sa->sat_addr.s_node;
462  }
463 }
464 
465 
466 void aarp_probe_network(struct atalk_iface *atif)
467 {
468  if (atif->dev->type == ARPHRD_LOCALTLK ||
469  atif->dev->type == ARPHRD_PPP)
470  aarp_send_probe_phase1(atif);
471  else {
472  unsigned int count;
473 
474  for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
475  aarp_send_probe(atif->dev, &atif->address);
476 
477  /* Defer 1/10th */
478  msleep(100);
479 
480  if (atif->status & ATIF_PROBE_FAIL)
481  break;
482  }
483  }
484 }
485 
486 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
487 {
488  int hash, retval = -EPROTONOSUPPORT;
489  struct aarp_entry *entry;
490  unsigned int count;
491 
492  /*
493  * we don't currently support LocalTalk or PPP for proxy AARP;
494  * if someone wants to try and add it, have fun
495  */
496  if (atif->dev->type == ARPHRD_LOCALTLK ||
497  atif->dev->type == ARPHRD_PPP)
498  goto out;
499 
500  /*
501  * create a new AARP entry with the flags set to be published --
502  * we need this one to hang around even if it's in use
503  */
504  entry = aarp_alloc();
505  retval = -ENOMEM;
506  if (!entry)
507  goto out;
508 
509  entry->expires_at = -1;
510  entry->status = ATIF_PROBE;
511  entry->target_addr.s_node = sa->s_node;
512  entry->target_addr.s_net = sa->s_net;
513  entry->dev = atif->dev;
514 
515  write_lock_bh(&aarp_lock);
516 
517  hash = sa->s_node % (AARP_HASH_SIZE - 1);
518  entry->next = proxies[hash];
519  proxies[hash] = entry;
520 
521  for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
522  aarp_send_probe(atif->dev, sa);
523 
524  /* Defer 1/10th */
525  write_unlock_bh(&aarp_lock);
526  msleep(100);
527  write_lock_bh(&aarp_lock);
528 
529  if (entry->status & ATIF_PROBE_FAIL)
530  break;
531  }
532 
533  if (entry->status & ATIF_PROBE_FAIL) {
534  entry->expires_at = jiffies - 1; /* free the entry */
535  retval = -EADDRINUSE; /* return network full */
536  } else { /* clear the probing flag */
537  entry->status &= ~ATIF_PROBE;
538  retval = 1;
539  }
540 
541  write_unlock_bh(&aarp_lock);
542 out:
543  return retval;
544 }
545 
546 /* Send a DDP frame */
547 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
548  struct atalk_addr *sa, void *hwaddr)
549 {
550  static char ddp_eth_multicast[ETH_ALEN] =
551  { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
552  int hash;
553  struct aarp_entry *a;
554 
555  skb_reset_network_header(skb);
556 
557  /* Check for LocalTalk first */
558  if (dev->type == ARPHRD_LOCALTLK) {
559  struct atalk_addr *at = atalk_find_dev_addr(dev);
560  struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
561  int ft = 2;
562 
563  /*
564  * Compressible ?
565  *
566  * IFF: src_net == dest_net == device_net
567  * (zero matches anything)
568  */
569 
570  if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
571  (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
572  skb_pull(skb, sizeof(*ddp) - 4);
573 
574  /*
575  * The upper two remaining bytes are the port
576  * numbers we just happen to need. Now put the
577  * length in the lower two.
578  */
579  *((__be16 *)skb->data) = htons(skb->len);
580  ft = 1;
581  }
582  /*
583  * Nice and easy. No AARP type protocols occur here so we can
584  * just shovel it out with a 3 byte LLAP header
585  */
586 
587  skb_push(skb, 3);
588  skb->data[0] = sa->s_node;
589  skb->data[1] = at->s_node;
590  skb->data[2] = ft;
591  skb->dev = dev;
592  goto sendit;
593  }
594 
595  /* On a PPP link we neither compress nor aarp. */
596  if (dev->type == ARPHRD_PPP) {
597  skb->protocol = htons(ETH_P_PPPTALK);
598  skb->dev = dev;
599  goto sendit;
600  }
601 
602  /* Non ELAP we cannot do. */
603  if (dev->type != ARPHRD_ETHER)
604  goto free_it;
605 
606  skb->dev = dev;
607  skb->protocol = htons(ETH_P_ATALK);
608  hash = sa->s_node % (AARP_HASH_SIZE - 1);
609 
610  /* Do we have a resolved entry? */
611  if (sa->s_node == ATADDR_BCAST) {
612  /* Send it */
613  ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
614  goto sent;
615  }
616 
617  write_lock_bh(&aarp_lock);
618  a = __aarp_find_entry(resolved[hash], dev, sa);
619 
620  if (a) { /* Return 1 and fill in the address */
622  ddp_dl->request(ddp_dl, skb, a->hwaddr);
623  write_unlock_bh(&aarp_lock);
624  goto sent;
625  }
626 
627  /* Do we have an unresolved entry: This is the less common path */
628  a = __aarp_find_entry(unresolved[hash], dev, sa);
629  if (a) { /* Queue onto the unresolved queue */
630  skb_queue_tail(&a->packet_queue, skb);
631  goto out_unlock;
632  }
633 
634  /* Allocate a new entry */
635  a = aarp_alloc();
636  if (!a) {
637  /* Whoops slipped... good job it's an unreliable protocol 8) */
638  write_unlock_bh(&aarp_lock);
639  goto free_it;
640  }
641 
642  /* Set up the queue */
643  skb_queue_tail(&a->packet_queue, skb);
645  a->dev = dev;
646  a->next = unresolved[hash];
647  a->target_addr = *sa;
648  a->xmit_count = 0;
649  unresolved[hash] = a;
650  unresolved_count++;
651 
652  /* Send an initial request for the address */
653  __aarp_send_query(a);
654 
655  /*
656  * Switch to fast timer if needed (That is if this is the first
657  * unresolved entry to get added)
658  */
659 
660  if (unresolved_count == 1)
661  mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
662 
663  /* Now finally, it is safe to drop the lock. */
664 out_unlock:
665  write_unlock_bh(&aarp_lock);
666 
667  /* Tell the ddp layer we have taken over for this frame. */
668  goto sent;
669 
670 sendit:
671  if (skb->sk)
672  skb->priority = skb->sk->sk_priority;
673  if (dev_queue_xmit(skb))
674  goto drop;
675 sent:
676  return NET_XMIT_SUCCESS;
677 free_it:
678  kfree_skb(skb);
679 drop:
680  return NET_XMIT_DROP;
681 }
683 
684 /*
685  * An entry in the aarp unresolved queue has become resolved. Send
686  * all the frames queued under it.
687  *
688  * Must run under aarp_lock.
689  */
690 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
691  int hash)
692 {
693  struct sk_buff *skb;
694 
695  while (*list)
696  if (*list == a) {
697  unresolved_count--;
698  *list = a->next;
699 
700  /* Move into the resolved list */
701  a->next = resolved[hash];
702  resolved[hash] = a;
703 
704  /* Kick frames off */
705  while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
706  a->expires_at = jiffies +
708  ddp_dl->request(ddp_dl, skb, a->hwaddr);
709  }
710  } else
711  list = &((*list)->next);
712 }
713 
714 /*
715  * This is called by the SNAP driver whenever we see an AARP SNAP
716  * frame. We currently only support Ethernet.
717  */
718 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
719  struct packet_type *pt, struct net_device *orig_dev)
720 {
721  struct elapaarp *ea = aarp_hdr(skb);
722  int hash, ret = 0;
723  __u16 function;
724  struct aarp_entry *a;
725  struct atalk_addr sa, *ma, da;
726  struct atalk_iface *ifa;
727 
728  if (!net_eq(dev_net(dev), &init_net))
729  goto out0;
730 
731  /* We only do Ethernet SNAP AARP. */
732  if (dev->type != ARPHRD_ETHER)
733  goto out0;
734 
735  /* Frame size ok? */
736  if (!skb_pull(skb, sizeof(*ea)))
737  goto out0;
738 
739  function = ntohs(ea->function);
740 
741  /* Sanity check fields. */
742  if (function < AARP_REQUEST || function > AARP_PROBE ||
743  ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
744  ea->pa_src_zero || ea->pa_dst_zero)
745  goto out0;
746 
747  /* Looks good. */
748  hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
749 
750  /* Build an address. */
751  sa.s_node = ea->pa_src_node;
752  sa.s_net = ea->pa_src_net;
753 
754  /* Process the packet. Check for replies of me. */
755  ifa = atalk_find_dev(dev);
756  if (!ifa)
757  goto out1;
758 
759  if (ifa->status & ATIF_PROBE &&
760  ifa->address.s_node == ea->pa_dst_node &&
761  ifa->address.s_net == ea->pa_dst_net) {
762  ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
763  goto out1;
764  }
765 
766  /* Check for replies of proxy AARP entries */
767  da.s_node = ea->pa_dst_node;
768  da.s_net = ea->pa_dst_net;
769 
770  write_lock_bh(&aarp_lock);
771  a = __aarp_find_entry(proxies[hash], dev, &da);
772 
773  if (a && a->status & ATIF_PROBE) {
774  a->status |= ATIF_PROBE_FAIL;
775  /*
776  * we do not respond to probe or request packets for
777  * this address while we are probing this address
778  */
779  goto unlock;
780  }
781 
782  switch (function) {
783  case AARP_REPLY:
784  if (!unresolved_count) /* Speed up */
785  break;
786 
787  /* Find the entry. */
788  a = __aarp_find_entry(unresolved[hash], dev, &sa);
789  if (!a || dev != a->dev)
790  break;
791 
792  /* We can fill one in - this is good. */
793  memcpy(a->hwaddr, ea->hw_src, ETH_ALEN);
794  __aarp_resolved(&unresolved[hash], a, hash);
795  if (!unresolved_count)
796  mod_timer(&aarp_timer,
797  jiffies + sysctl_aarp_expiry_time);
798  break;
799 
800  case AARP_REQUEST:
801  case AARP_PROBE:
802 
803  /*
804  * If it is my address set ma to my address and reply.
805  * We can treat probe and request the same. Probe
806  * simply means we shouldn't cache the querying host,
807  * as in a probe they are proposing an address not
808  * using one.
809  *
810  * Support for proxy-AARP added. We check if the
811  * address is one of our proxies before we toss the
812  * packet out.
813  */
814 
815  sa.s_node = ea->pa_dst_node;
816  sa.s_net = ea->pa_dst_net;
817 
818  /* See if we have a matching proxy. */
819  ma = __aarp_proxy_find(dev, &sa);
820  if (!ma)
821  ma = &ifa->address;
822  else { /* We need to make a copy of the entry. */
823  da.s_node = sa.s_node;
824  da.s_net = sa.s_net;
825  ma = &da;
826  }
827 
828  if (function == AARP_PROBE) {
829  /*
830  * A probe implies someone trying to get an
831  * address. So as a precaution flush any
832  * entries we have for this address.
833  */
834  a = __aarp_find_entry(resolved[sa.s_node %
835  (AARP_HASH_SIZE - 1)],
836  skb->dev, &sa);
837 
838  /*
839  * Make it expire next tick - that avoids us
840  * getting into a probe/flush/learn/probe/
841  * flush/learn cycle during probing of a slow
842  * to respond host addr.
843  */
844  if (a) {
845  a->expires_at = jiffies - 1;
846  mod_timer(&aarp_timer, jiffies +
848  }
849  }
850 
851  if (sa.s_node != ma->s_node)
852  break;
853 
854  if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
855  break;
856 
857  sa.s_node = ea->pa_src_node;
858  sa.s_net = ea->pa_src_net;
859 
860  /* aarp_my_address has found the address to use for us.
861  */
862  aarp_send_reply(dev, ma, &sa, ea->hw_src);
863  break;
864  }
865 
866 unlock:
867  write_unlock_bh(&aarp_lock);
868 out1:
869  ret = 1;
870 out0:
871  kfree_skb(skb);
872  return ret;
873 }
874 
875 static struct notifier_block aarp_notifier = {
876  .notifier_call = aarp_device_event,
877 };
878 
879 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
880 
882 {
883  aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
884  if (!aarp_dl)
885  printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
886  setup_timer(&aarp_timer, aarp_expire_timeout, 0);
887  aarp_timer.expires = jiffies + sysctl_aarp_expiry_time;
888  add_timer(&aarp_timer);
889  register_netdevice_notifier(&aarp_notifier);
890 }
891 
892 /* Remove the AARP entries associated with a device. */
893 void aarp_device_down(struct net_device *dev)
894 {
895  int ct;
896 
897  write_lock_bh(&aarp_lock);
898 
899  for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
900  __aarp_expire_device(&resolved[ct], dev);
901  __aarp_expire_device(&unresolved[ct], dev);
902  __aarp_expire_device(&proxies[ct], dev);
903  }
904 
905  write_unlock_bh(&aarp_lock);
906 }
907 
908 #ifdef CONFIG_PROC_FS
909 struct aarp_iter_state {
910  int bucket;
911  struct aarp_entry **table;
912 };
913 
914 /*
915  * Get the aarp entry that is in the chain described
916  * by the iterator.
917  * If pos is set then skip till that index.
918  * pos = 1 is the first entry
919  */
920 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
921 {
922  int ct = iter->bucket;
923  struct aarp_entry **table = iter->table;
924  loff_t off = 0;
925  struct aarp_entry *entry;
926 
927  rescan:
928  while(ct < AARP_HASH_SIZE) {
929  for (entry = table[ct]; entry; entry = entry->next) {
930  if (!pos || ++off == *pos) {
931  iter->table = table;
932  iter->bucket = ct;
933  return entry;
934  }
935  }
936  ++ct;
937  }
938 
939  if (table == resolved) {
940  ct = 0;
941  table = unresolved;
942  goto rescan;
943  }
944  if (table == unresolved) {
945  ct = 0;
946  table = proxies;
947  goto rescan;
948  }
949  return NULL;
950 }
951 
952 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
953  __acquires(aarp_lock)
954 {
955  struct aarp_iter_state *iter = seq->private;
956 
957  read_lock_bh(&aarp_lock);
958  iter->table = resolved;
959  iter->bucket = 0;
960 
961  return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
962 }
963 
964 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
965 {
966  struct aarp_entry *entry = v;
967  struct aarp_iter_state *iter = seq->private;
968 
969  ++*pos;
970 
971  /* first line after header */
972  if (v == SEQ_START_TOKEN)
973  entry = iter_next(iter, NULL);
974 
975  /* next entry in current bucket */
976  else if (entry->next)
977  entry = entry->next;
978 
979  /* next bucket or table */
980  else {
981  ++iter->bucket;
982  entry = iter_next(iter, NULL);
983  }
984  return entry;
985 }
986 
987 static void aarp_seq_stop(struct seq_file *seq, void *v)
988  __releases(aarp_lock)
989 {
990  read_unlock_bh(&aarp_lock);
991 }
992 
993 static const char *dt2str(unsigned long ticks)
994 {
995  static char buf[32];
996 
997  sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ);
998 
999  return buf;
1000 }
1001 
1002 static int aarp_seq_show(struct seq_file *seq, void *v)
1003 {
1004  struct aarp_iter_state *iter = seq->private;
1005  struct aarp_entry *entry = v;
1006  unsigned long now = jiffies;
1007 
1008  if (v == SEQ_START_TOKEN)
1009  seq_puts(seq,
1010  "Address Interface Hardware Address"
1011  " Expires LastSend Retry Status\n");
1012  else {
1013  seq_printf(seq, "%04X:%02X %-12s",
1014  ntohs(entry->target_addr.s_net),
1015  (unsigned int) entry->target_addr.s_node,
1016  entry->dev ? entry->dev->name : "????");
1017  seq_printf(seq, "%pM", entry->hwaddr);
1018  seq_printf(seq, " %8s",
1019  dt2str((long)entry->expires_at - (long)now));
1020  if (iter->table == unresolved)
1021  seq_printf(seq, " %8s %6hu",
1022  dt2str(now - entry->last_sent),
1023  entry->xmit_count);
1024  else
1025  seq_puts(seq, " ");
1026  seq_printf(seq, " %s\n",
1027  (iter->table == resolved) ? "resolved"
1028  : (iter->table == unresolved) ? "unresolved"
1029  : (iter->table == proxies) ? "proxies"
1030  : "unknown");
1031  }
1032  return 0;
1033 }
1034 
1035 static const struct seq_operations aarp_seq_ops = {
1036  .start = aarp_seq_start,
1037  .next = aarp_seq_next,
1038  .stop = aarp_seq_stop,
1039  .show = aarp_seq_show,
1040 };
1041 
1042 static int aarp_seq_open(struct inode *inode, struct file *file)
1043 {
1044  return seq_open_private(file, &aarp_seq_ops,
1045  sizeof(struct aarp_iter_state));
1046 }
1047 
1048 const struct file_operations atalk_seq_arp_fops = {
1049  .owner = THIS_MODULE,
1050  .open = aarp_seq_open,
1051  .read = seq_read,
1052  .llseek = seq_lseek,
1053  .release = seq_release_private,
1054 };
1055 #endif
1056 
1057 /* General module cleanup. Called from cleanup_module() in ddp.c. */
1059 {
1060  del_timer_sync(&aarp_timer);
1061  unregister_netdevice_notifier(&aarp_notifier);
1063  aarp_purge();
1064 }