Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
abituguru.c
Go to the documentation of this file.
1 /*
2  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <[email protected]>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 /*
19  * This driver supports the sensor part of the first and second revision of
20  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/slab.h>
30 #include <linux/jiffies.h>
31 #include <linux/mutex.h>
32 #include <linux/err.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/hwmon.h>
36 #include <linux/hwmon-sysfs.h>
37 #include <linux/dmi.h>
38 #include <linux/io.h>
39 
40 /* Banks */
41 #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
42 #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
43 #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
44 #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46 #define ABIT_UGURU_MAX_BANK1_SENSORS 16
47 /*
48  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
49  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
50  */
51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
52 #define ABIT_UGURU_MAX_BANK2_SENSORS 6
53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
54 #define ABIT_UGURU_MAX_PWMS 5
55 /* uGuru sensor bank 1 flags */ /* Alarm if: */
56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
62 /* uGuru sensor bank 2 flags */ /* Alarm if: */
63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
64 /* uGuru sensor bank common flags */
65 #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
66 #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
67 /* uGuru fan PWM (speed control) flags */
68 #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
69 /* Values used for conversion */
70 #define ABIT_UGURU_FAN_MAX 15300 /* RPM */
71 /* Bank1 sensor types */
72 #define ABIT_UGURU_IN_SENSOR 0
73 #define ABIT_UGURU_TEMP_SENSOR 1
74 #define ABIT_UGURU_NC 2
75 /*
76  * In many cases we need to wait for the uGuru to reach a certain status, most
77  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
78  * can best busy wait. This define gives the total amount of reads to try.
79  */
80 #define ABIT_UGURU_WAIT_TIMEOUT 125
81 /*
82  * However sometimes older versions of the uGuru seem to be distracted and they
83  * do not respond for a long time. To handle this we sleep before each of the
84  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
85  */
86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
87 /*
88  * Normally all expected status in abituguru_ready, are reported after the
89  * first read, but sometimes not and we need to poll.
90  */
91 #define ABIT_UGURU_READY_TIMEOUT 5
92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
93 #define ABIT_UGURU_MAX_RETRIES 3
94 #define ABIT_UGURU_RETRY_DELAY (HZ/5)
95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96 #define ABIT_UGURU_MAX_TIMEOUTS 2
97 /* utility macros */
98 #define ABIT_UGURU_NAME "abituguru"
99 #define ABIT_UGURU_DEBUG(level, format, arg...) \
100  if (level <= verbose) \
101  printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
102 /* Macros to help calculate the sysfs_names array length */
103 /*
104  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
105  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
106  */
107 #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
108 /*
109  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
110  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
111  */
112 #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
113 /*
114  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
115  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
116  */
117 #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
118 /*
119  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
120  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
121  */
122 #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
123 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
124 #define ABITUGURU_SYSFS_NAMES_LENGTH ( \
125  ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
126  ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
127  ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
128 
129 /*
130  * All the macros below are named identical to the oguru and oguru2 programs
131  * reverse engineered by Olle Sandberg, hence the names might not be 100%
132  * logical. I could come up with better names, but I prefer keeping the names
133  * identical so that this driver can be compared with his work more easily.
134  */
135 /* Two i/o-ports are used by uGuru */
136 #define ABIT_UGURU_BASE 0x00E0
137 /* Used to tell uGuru what to read and to read the actual data */
138 #define ABIT_UGURU_CMD 0x00
139 /* Mostly used to check if uGuru is busy */
140 #define ABIT_UGURU_DATA 0x04
141 #define ABIT_UGURU_REGION_LENGTH 5
142 /* uGuru status' */
143 #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
144 #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
145 #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
146 #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
147 
148 /* Constants */
149 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
150 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
151 /*
152  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
153  * correspond to 300-3000 RPM
154  */
155 static const u8 abituguru_bank2_min_threshold = 5;
156 static const u8 abituguru_bank2_max_threshold = 50;
157 /*
158  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
159  * are temperature trip points.
160  */
161 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
162 /*
163  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
164  * special case the minium allowed pwm% setting for this is 30% (77) on
165  * some MB's this special case is handled in the code!
166  */
167 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
168 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
169 
170 
171 /* Insmod parameters */
172 static bool force;
173 module_param(force, bool, 0);
174 MODULE_PARM_DESC(force, "Set to one to force detection.");
175 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
176  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
177 module_param_array(bank1_types, int, NULL, 0);
178 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
179  " -1 autodetect\n"
180  " 0 volt sensor\n"
181  " 1 temp sensor\n"
182  " 2 not connected");
183 static int fan_sensors;
184 module_param(fan_sensors, int, 0);
185 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
186  "(0 = autodetect)");
187 static int pwms;
188 module_param(pwms, int, 0);
189 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
190  "(0 = autodetect)");
191 
192 /* Default verbose is 2, since this driver is still in the testing phase */
193 static int verbose = 2;
194 module_param(verbose, int, 0644);
195 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
196  " 0 normal output\n"
197  " 1 + verbose error reporting\n"
198  " 2 + sensors type probing info\n"
199  " 3 + retryable error reporting");
200 
201 
202 /*
203  * For the Abit uGuru, we need to keep some data in memory.
204  * The structure is dynamically allocated, at the same time when a new
205  * abituguru device is allocated.
206  */
208  struct device *hwmon_dev; /* hwmon registered device */
209  struct mutex update_lock; /* protect access to data and uGuru */
210  unsigned long last_updated; /* In jiffies */
211  unsigned short addr; /* uguru base address */
212  char uguru_ready; /* is the uguru in ready state? */
213  unsigned char update_timeouts; /*
214  * number of update timeouts since last
215  * successful update
216  */
217 
218  /*
219  * The sysfs attr and their names are generated automatically, for bank1
220  * we cannot use a predefined array because we don't know beforehand
221  * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
222  * easier todo things the same way. For in sensors we have 9 (temp 7)
223  * sysfs entries per sensor, for bank2 and pwms 6.
224  */
228  /* Buffer to store the dynamically generated sysfs names */
230 
231  /* Bank 1 data */
232  /* number of and addresses of [0] in, [1] temp sensors */
236  /*
237  * This array holds 3 entries per sensor for the bank 1 sensor settings
238  * (flags, min, max for voltage / flags, warn, shutdown for temp).
239  */
241  /*
242  * Maximum value for each sensor used for scaling in mV/millidegrees
243  * Celsius.
244  */
246 
247  /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
248  u8 bank2_sensors; /* actual number of bank2 sensors found */
251 
252  /* Alarms 2 bytes for bank1, 1 byte for bank2 */
253  u8 alarms[3];
254 
255  /* Fan PWM (speed control) 5 bytes per PWM */
256  u8 pwms; /* actual number of pwms found */
258 };
259 
260 static const char *never_happen = "This should never happen.";
261 static const char *report_this =
262  "Please report this to the abituguru maintainer (see MAINTAINERS)";
263 
264 /* wait till the uguru is in the specified state */
265 static int abituguru_wait(struct abituguru_data *data, u8 state)
266 {
268 
269  while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
270  timeout--;
271  if (timeout == 0)
272  return -EBUSY;
273  /*
274  * sleep a bit before our last few tries, see the comment on
275  * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
276  */
277  if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
278  msleep(0);
279  }
280  return 0;
281 }
282 
283 /* Put the uguru in ready for input state */
284 static int abituguru_ready(struct abituguru_data *data)
285 {
287 
288  if (data->uguru_ready)
289  return 0;
290 
291  /* Reset? / Prepare for next read/write cycle */
292  outb(0x00, data->addr + ABIT_UGURU_DATA);
293 
294  /* Wait till the uguru is ready */
295  if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
297  "timeout exceeded waiting for ready state\n");
298  return -EIO;
299  }
300 
301  /* Cmd port MUST be read now and should contain 0xAC */
302  while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
303  timeout--;
304  if (timeout == 0) {
306  "CMD reg does not hold 0xAC after ready command\n");
307  return -EIO;
308  }
309  msleep(0);
310  }
311 
312  /*
313  * After this the ABIT_UGURU_DATA port should contain
314  * ABIT_UGURU_STATUS_INPUT
315  */
316  timeout = ABIT_UGURU_READY_TIMEOUT;
317  while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
318  timeout--;
319  if (timeout == 0) {
321  "state != more input after ready command\n");
322  return -EIO;
323  }
324  msleep(0);
325  }
326 
327  data->uguru_ready = 1;
328  return 0;
329 }
330 
331 /*
332  * Send the bank and then sensor address to the uGuru for the next read/write
333  * cycle. This function gets called as the first part of a read/write by
334  * abituguru_read and abituguru_write. This function should never be
335  * called by any other function.
336  */
337 static int abituguru_send_address(struct abituguru_data *data,
338  u8 bank_addr, u8 sensor_addr, int retries)
339 {
340  /*
341  * assume the caller does error handling itself if it has not requested
342  * any retries, and thus be quiet.
343  */
344  int report_errors = retries;
345 
346  for (;;) {
347  /*
348  * Make sure the uguru is ready and then send the bank address,
349  * after this the uguru is no longer "ready".
350  */
351  if (abituguru_ready(data) != 0)
352  return -EIO;
353  outb(bank_addr, data->addr + ABIT_UGURU_DATA);
354  data->uguru_ready = 0;
355 
356  /*
357  * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
358  * and send the sensor addr
359  */
360  if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
361  if (retries) {
362  ABIT_UGURU_DEBUG(3, "timeout exceeded "
363  "waiting for more input state, %d "
364  "tries remaining\n", retries);
367  retries--;
368  continue;
369  }
370  if (report_errors)
371  ABIT_UGURU_DEBUG(1, "timeout exceeded "
372  "waiting for more input state "
373  "(bank: %d)\n", (int)bank_addr);
374  return -EBUSY;
375  }
376  outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
377  return 0;
378  }
379 }
380 
381 /*
382  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
383  * result in buf, retry the send address part of the read retries times.
384  */
385 static int abituguru_read(struct abituguru_data *data,
386  u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
387 {
388  int i;
389 
390  /* Send the address */
391  i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
392  if (i)
393  return i;
394 
395  /* And read the data */
396  for (i = 0; i < count; i++) {
397  if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
398  ABIT_UGURU_DEBUG(retries ? 1 : 3,
399  "timeout exceeded waiting for "
400  "read state (bank: %d, sensor: %d)\n",
401  (int)bank_addr, (int)sensor_addr);
402  break;
403  }
404  buf[i] = inb(data->addr + ABIT_UGURU_CMD);
405  }
406 
407  /* Last put the chip back in ready state */
408  abituguru_ready(data);
409 
410  return i;
411 }
412 
413 /*
414  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
415  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
416  */
417 static int abituguru_write(struct abituguru_data *data,
418  u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
419 {
420  /*
421  * We use the ready timeout as we have to wait for 0xAC just like the
422  * ready function
423  */
424  int i, timeout = ABIT_UGURU_READY_TIMEOUT;
425 
426  /* Send the address */
427  i = abituguru_send_address(data, bank_addr, sensor_addr,
429  if (i)
430  return i;
431 
432  /* And write the data */
433  for (i = 0; i < count; i++) {
434  if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
435  ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
436  "write state (bank: %d, sensor: %d)\n",
437  (int)bank_addr, (int)sensor_addr);
438  break;
439  }
440  outb(buf[i], data->addr + ABIT_UGURU_CMD);
441  }
442 
443  /*
444  * Now we need to wait till the chip is ready to be read again,
445  * so that we can read 0xAC as confirmation that our write has
446  * succeeded.
447  */
448  if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
449  ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
450  "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
451  (int)sensor_addr);
452  return -EIO;
453  }
454 
455  /* Cmd port MUST be read now and should contain 0xAC */
456  while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
457  timeout--;
458  if (timeout == 0) {
459  ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
460  "write (bank: %d, sensor: %d)\n",
461  (int)bank_addr, (int)sensor_addr);
462  return -EIO;
463  }
464  msleep(0);
465  }
466 
467  /* Last put the chip back in ready state */
468  abituguru_ready(data);
469 
470  return i;
471 }
472 
473 /*
474  * Detect sensor type. Temp and Volt sensors are enabled with
475  * different masks and will ignore enable masks not meant for them.
476  * This enables us to test what kind of sensor we're dealing with.
477  * By setting the alarm thresholds so that we will always get an
478  * alarm for sensor type X and then enabling the sensor as sensor type
479  * X, if we then get an alarm it is a sensor of type X.
480  */
481 static int __devinit
482 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
483  u8 sensor_addr)
484 {
485  u8 val, test_flag, buf[3];
486  int i, ret = -ENODEV; /* error is the most common used retval :| */
487 
488  /* If overriden by the user return the user selected type */
489  if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
490  bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
491  ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
492  "%d because of \"bank1_types\" module param\n",
493  bank1_types[sensor_addr], (int)sensor_addr);
494  return bank1_types[sensor_addr];
495  }
496 
497  /* First read the sensor and the current settings */
498  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
499  1, ABIT_UGURU_MAX_RETRIES) != 1)
500  return -ENODEV;
501 
502  /* Test val is sane / usable for sensor type detection. */
503  if ((val < 10u) || (val > 250u)) {
504  pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
505  "unable to determine sensor type, skipping sensor\n",
506  (int)sensor_addr, (int)val);
507  /*
508  * assume no sensor is there for sensors for which we can't
509  * determine the sensor type because their reading is too close
510  * to their limits, this usually means no sensor is there.
511  */
512  return ABIT_UGURU_NC;
513  }
514 
515  ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
516  /*
517  * Volt sensor test, enable volt low alarm, set min value ridicously
518  * high, or vica versa if the reading is very high. If its a volt
519  * sensor this should always give us an alarm.
520  */
521  if (val <= 240u) {
523  buf[1] = 245;
524  buf[2] = 250;
525  test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
526  } else {
528  buf[1] = 5;
529  buf[2] = 10;
531  }
532 
533  if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
534  buf, 3) != 3)
535  goto abituguru_detect_bank1_sensor_type_exit;
536  /*
537  * Now we need 20 ms to give the uguru time to read the sensors
538  * and raise a voltage alarm
539  */
541  schedule_timeout(HZ/50);
542  /* Check for alarm and check the alarm is a volt low alarm. */
543  if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
545  goto abituguru_detect_bank1_sensor_type_exit;
546  if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
547  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
548  sensor_addr, buf, 3,
550  goto abituguru_detect_bank1_sensor_type_exit;
551  if (buf[0] & test_flag) {
552  ABIT_UGURU_DEBUG(2, " found volt sensor\n");
553  ret = ABIT_UGURU_IN_SENSOR;
554  goto abituguru_detect_bank1_sensor_type_exit;
555  } else
556  ABIT_UGURU_DEBUG(2, " alarm raised during volt "
557  "sensor test, but volt range flag not set\n");
558  } else
559  ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
560  "test\n");
561 
562  /*
563  * Temp sensor test, enable sensor as a temp sensor, set beep value
564  * ridicously low (but not too low, otherwise uguru ignores it).
565  * If its a temp sensor this should always give us an alarm.
566  */
568  buf[1] = 5;
569  buf[2] = 10;
570  if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
571  buf, 3) != 3)
572  goto abituguru_detect_bank1_sensor_type_exit;
573  /*
574  * Now we need 50 ms to give the uguru time to read the sensors
575  * and raise a temp alarm
576  */
578  schedule_timeout(HZ/20);
579  /* Check for alarm and check the alarm is a temp high alarm. */
580  if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
582  goto abituguru_detect_bank1_sensor_type_exit;
583  if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
584  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
585  sensor_addr, buf, 3,
587  goto abituguru_detect_bank1_sensor_type_exit;
588  if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
589  ABIT_UGURU_DEBUG(2, " found temp sensor\n");
591  goto abituguru_detect_bank1_sensor_type_exit;
592  } else
593  ABIT_UGURU_DEBUG(2, " alarm raised during temp "
594  "sensor test, but temp high flag not set\n");
595  } else
596  ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
597  "test\n");
598 
599  ret = ABIT_UGURU_NC;
600 abituguru_detect_bank1_sensor_type_exit:
601  /*
602  * Restore original settings, failing here is really BAD, it has been
603  * reported that some BIOS-es hang when entering the uGuru menu with
604  * invalid settings present in the uGuru, so we try this 3 times.
605  */
606  for (i = 0; i < 3; i++)
607  if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
608  sensor_addr, data->bank1_settings[sensor_addr],
609  3) == 3)
610  break;
611  if (i == 3) {
612  pr_err("Fatal error could not restore original settings. %s %s\n",
613  never_happen, report_this);
614  return -ENODEV;
615  }
616  return ret;
617 }
618 
619 /*
620  * These functions try to find out how many sensors there are in bank2 and how
621  * many pwms there are. The purpose of this is to make sure that we don't give
622  * the user the possibility to change settings for non-existent sensors / pwm.
623  * The uGuru will happily read / write whatever memory happens to be after the
624  * memory storing the PWM settings when reading/writing to a PWM which is not
625  * there. Notice even if we detect a PWM which doesn't exist we normally won't
626  * write to it, unless the user tries to change the settings.
627  *
628  * Although the uGuru allows reading (settings) from non existing bank2
629  * sensors, my version of the uGuru does seem to stop writing to them, the
630  * write function above aborts in this case with:
631  * "CMD reg does not hold 0xAC after write"
632  *
633  * Notice these 2 tests are non destructive iow read-only tests, otherwise
634  * they would defeat their purpose. Although for the bank2_sensors detection a
635  * read/write test would be feasible because of the reaction above, I've
636  * however opted to stay on the safe side.
637  */
638 static void __devinit
639 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
640 {
641  int i;
642 
643  if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
644  data->bank2_sensors = fan_sensors;
645  ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
646  "\"fan_sensors\" module param\n",
647  (int)data->bank2_sensors);
648  return;
649  }
650 
651  ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
652  for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
653  /*
654  * 0x89 are the known used bits:
655  * -0x80 enable shutdown
656  * -0x08 enable beep
657  * -0x01 enable alarm
658  * All other bits should be 0, but on some motherboards
659  * 0x40 (bit 6) is also high for some of the fans??
660  */
661  if (data->bank2_settings[i][0] & ~0xC9) {
662  ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
663  "to be a fan sensor: settings[0] = %02X\n",
664  i, (unsigned int)data->bank2_settings[i][0]);
665  break;
666  }
667 
668  /* check if the threshold is within the allowed range */
669  if (data->bank2_settings[i][1] <
670  abituguru_bank2_min_threshold) {
671  ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
672  "to be a fan sensor: the threshold (%d) is "
673  "below the minimum (%d)\n", i,
674  (int)data->bank2_settings[i][1],
675  (int)abituguru_bank2_min_threshold);
676  break;
677  }
678  if (data->bank2_settings[i][1] >
679  abituguru_bank2_max_threshold) {
680  ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
681  "to be a fan sensor: the threshold (%d) is "
682  "above the maximum (%d)\n", i,
683  (int)data->bank2_settings[i][1],
684  (int)abituguru_bank2_max_threshold);
685  break;
686  }
687  }
688 
689  data->bank2_sensors = i;
690  ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
691  (int)data->bank2_sensors);
692 }
693 
694 static void __devinit
695 abituguru_detect_no_pwms(struct abituguru_data *data)
696 {
697  int i, j;
698 
699  if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
700  data->pwms = pwms;
701  ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
702  "\"pwms\" module param\n", (int)data->pwms);
703  return;
704  }
705 
706  ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
707  for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
708  /*
709  * 0x80 is the enable bit and the low
710  * nibble is which temp sensor to use,
711  * the other bits should be 0
712  */
713  if (data->pwm_settings[i][0] & ~0x8F) {
714  ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
715  "to be a pwm channel: settings[0] = %02X\n",
716  i, (unsigned int)data->pwm_settings[i][0]);
717  break;
718  }
719 
720  /*
721  * the low nibble must correspond to one of the temp sensors
722  * we've found
723  */
724  for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
725  j++) {
726  if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
727  (data->pwm_settings[i][0] & 0x0F))
728  break;
729  }
730  if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
731  ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
732  "to be a pwm channel: %d is not a valid temp "
733  "sensor address\n", i,
734  data->pwm_settings[i][0] & 0x0F);
735  break;
736  }
737 
738  /* check if all other settings are within the allowed range */
739  for (j = 1; j < 5; j++) {
740  u8 min;
741  /* special case pwm1 min pwm% */
742  if ((i == 0) && ((j == 1) || (j == 2)))
743  min = 77;
744  else
745  min = abituguru_pwm_min[j];
746  if (data->pwm_settings[i][j] < min) {
747  ABIT_UGURU_DEBUG(2, " pwm channel %d does "
748  "not seem to be a pwm channel: "
749  "setting %d (%d) is below the minimum "
750  "value (%d)\n", i, j,
751  (int)data->pwm_settings[i][j],
752  (int)min);
753  goto abituguru_detect_no_pwms_exit;
754  }
755  if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
756  ABIT_UGURU_DEBUG(2, " pwm channel %d does "
757  "not seem to be a pwm channel: "
758  "setting %d (%d) is above the maximum "
759  "value (%d)\n", i, j,
760  (int)data->pwm_settings[i][j],
761  (int)abituguru_pwm_max[j]);
762  goto abituguru_detect_no_pwms_exit;
763  }
764  }
765 
766  /* check that min temp < max temp and min pwm < max pwm */
767  if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
768  ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
769  "to be a pwm channel: min pwm (%d) >= "
770  "max pwm (%d)\n", i,
771  (int)data->pwm_settings[i][1],
772  (int)data->pwm_settings[i][2]);
773  break;
774  }
775  if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
776  ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
777  "to be a pwm channel: min temp (%d) >= "
778  "max temp (%d)\n", i,
779  (int)data->pwm_settings[i][3],
780  (int)data->pwm_settings[i][4]);
781  break;
782  }
783  }
784 
785 abituguru_detect_no_pwms_exit:
786  data->pwms = i;
787  ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
788 }
789 
790 /*
791  * Following are the sysfs callback functions. These functions expect:
792  * sensor_device_attribute_2->index: sensor address/offset in the bank
793  * sensor_device_attribute_2->nr: register offset, bitmask or NA.
794  */
795 static struct abituguru_data *abituguru_update_device(struct device *dev);
796 
797 static ssize_t show_bank1_value(struct device *dev,
798  struct device_attribute *devattr, char *buf)
799 {
801  struct abituguru_data *data = abituguru_update_device(dev);
802  if (!data)
803  return -EIO;
804  return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
805  data->bank1_max_value[attr->index] + 128) / 255);
806 }
807 
808 static ssize_t show_bank1_setting(struct device *dev,
809  struct device_attribute *devattr, char *buf)
810 {
811  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
812  struct abituguru_data *data = dev_get_drvdata(dev);
813  return sprintf(buf, "%d\n",
814  (data->bank1_settings[attr->index][attr->nr] *
815  data->bank1_max_value[attr->index] + 128) / 255);
816 }
817 
818 static ssize_t show_bank2_value(struct device *dev,
819  struct device_attribute *devattr, char *buf)
820 {
821  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
822  struct abituguru_data *data = abituguru_update_device(dev);
823  if (!data)
824  return -EIO;
825  return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
826  ABIT_UGURU_FAN_MAX + 128) / 255);
827 }
828 
829 static ssize_t show_bank2_setting(struct device *dev,
830  struct device_attribute *devattr, char *buf)
831 {
832  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
833  struct abituguru_data *data = dev_get_drvdata(dev);
834  return sprintf(buf, "%d\n",
835  (data->bank2_settings[attr->index][attr->nr] *
836  ABIT_UGURU_FAN_MAX + 128) / 255);
837 }
838 
839 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
840  *devattr, const char *buf, size_t count)
841 {
842  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
843  struct abituguru_data *data = dev_get_drvdata(dev);
844  unsigned long val;
845  ssize_t ret;
846 
847  ret = kstrtoul(buf, 10, &val);
848  if (ret)
849  return ret;
850 
851  ret = count;
852  val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
853  data->bank1_max_value[attr->index];
854  if (val > 255)
855  return -EINVAL;
856 
857  mutex_lock(&data->update_lock);
858  if (data->bank1_settings[attr->index][attr->nr] != val) {
859  u8 orig_val = data->bank1_settings[attr->index][attr->nr];
860  data->bank1_settings[attr->index][attr->nr] = val;
861  if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
862  attr->index, data->bank1_settings[attr->index],
863  3) <= attr->nr) {
864  data->bank1_settings[attr->index][attr->nr] = orig_val;
865  ret = -EIO;
866  }
867  }
868  mutex_unlock(&data->update_lock);
869  return ret;
870 }
871 
872 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
873  *devattr, const char *buf, size_t count)
874 {
875  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
876  struct abituguru_data *data = dev_get_drvdata(dev);
877  unsigned long val;
878  ssize_t ret;
879 
880  ret = kstrtoul(buf, 10, &val);
881  if (ret)
882  return ret;
883 
884  ret = count;
885  val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
886 
887  /* this check can be done before taking the lock */
888  if (val < abituguru_bank2_min_threshold ||
889  val > abituguru_bank2_max_threshold)
890  return -EINVAL;
891 
892  mutex_lock(&data->update_lock);
893  if (data->bank2_settings[attr->index][attr->nr] != val) {
894  u8 orig_val = data->bank2_settings[attr->index][attr->nr];
895  data->bank2_settings[attr->index][attr->nr] = val;
896  if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
897  attr->index, data->bank2_settings[attr->index],
898  2) <= attr->nr) {
899  data->bank2_settings[attr->index][attr->nr] = orig_val;
900  ret = -EIO;
901  }
902  }
903  mutex_unlock(&data->update_lock);
904  return ret;
905 }
906 
907 static ssize_t show_bank1_alarm(struct device *dev,
908  struct device_attribute *devattr, char *buf)
909 {
910  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
911  struct abituguru_data *data = abituguru_update_device(dev);
912  if (!data)
913  return -EIO;
914  /*
915  * See if the alarm bit for this sensor is set, and if the
916  * alarm matches the type of alarm we're looking for (for volt
917  * it can be either low or high). The type is stored in a few
918  * readonly bits in the settings part of the relevant sensor.
919  * The bitmask of the type is passed to us in attr->nr.
920  */
921  if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
922  (data->bank1_settings[attr->index][0] & attr->nr))
923  return sprintf(buf, "1\n");
924  else
925  return sprintf(buf, "0\n");
926 }
927 
928 static ssize_t show_bank2_alarm(struct device *dev,
929  struct device_attribute *devattr, char *buf)
930 {
931  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
932  struct abituguru_data *data = abituguru_update_device(dev);
933  if (!data)
934  return -EIO;
935  if (data->alarms[2] & (0x01 << attr->index))
936  return sprintf(buf, "1\n");
937  else
938  return sprintf(buf, "0\n");
939 }
940 
941 static ssize_t show_bank1_mask(struct device *dev,
942  struct device_attribute *devattr, char *buf)
943 {
944  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
945  struct abituguru_data *data = dev_get_drvdata(dev);
946  if (data->bank1_settings[attr->index][0] & attr->nr)
947  return sprintf(buf, "1\n");
948  else
949  return sprintf(buf, "0\n");
950 }
951 
952 static ssize_t show_bank2_mask(struct device *dev,
953  struct device_attribute *devattr, char *buf)
954 {
955  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
956  struct abituguru_data *data = dev_get_drvdata(dev);
957  if (data->bank2_settings[attr->index][0] & attr->nr)
958  return sprintf(buf, "1\n");
959  else
960  return sprintf(buf, "0\n");
961 }
962 
963 static ssize_t store_bank1_mask(struct device *dev,
964  struct device_attribute *devattr, const char *buf, size_t count)
965 {
966  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
967  struct abituguru_data *data = dev_get_drvdata(dev);
968  ssize_t ret;
969  u8 orig_val;
970  unsigned long mask;
971 
972  ret = kstrtoul(buf, 10, &mask);
973  if (ret)
974  return ret;
975 
976  ret = count;
977  mutex_lock(&data->update_lock);
978  orig_val = data->bank1_settings[attr->index][0];
979 
980  if (mask)
981  data->bank1_settings[attr->index][0] |= attr->nr;
982  else
983  data->bank1_settings[attr->index][0] &= ~attr->nr;
984 
985  if ((data->bank1_settings[attr->index][0] != orig_val) &&
986  (abituguru_write(data,
987  ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
988  data->bank1_settings[attr->index], 3) < 1)) {
989  data->bank1_settings[attr->index][0] = orig_val;
990  ret = -EIO;
991  }
992  mutex_unlock(&data->update_lock);
993  return ret;
994 }
995 
996 static ssize_t store_bank2_mask(struct device *dev,
997  struct device_attribute *devattr, const char *buf, size_t count)
998 {
999  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1000  struct abituguru_data *data = dev_get_drvdata(dev);
1001  ssize_t ret;
1002  u8 orig_val;
1003  unsigned long mask;
1004 
1005  ret = kstrtoul(buf, 10, &mask);
1006  if (ret)
1007  return ret;
1008 
1009  ret = count;
1010  mutex_lock(&data->update_lock);
1011  orig_val = data->bank2_settings[attr->index][0];
1012 
1013  if (mask)
1014  data->bank2_settings[attr->index][0] |= attr->nr;
1015  else
1016  data->bank2_settings[attr->index][0] &= ~attr->nr;
1017 
1018  if ((data->bank2_settings[attr->index][0] != orig_val) &&
1019  (abituguru_write(data,
1020  ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1021  data->bank2_settings[attr->index], 2) < 1)) {
1022  data->bank2_settings[attr->index][0] = orig_val;
1023  ret = -EIO;
1024  }
1025  mutex_unlock(&data->update_lock);
1026  return ret;
1027 }
1028 
1029 /* Fan PWM (speed control) */
1030 static ssize_t show_pwm_setting(struct device *dev,
1031  struct device_attribute *devattr, char *buf)
1032 {
1033  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1034  struct abituguru_data *data = dev_get_drvdata(dev);
1035  return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1036  abituguru_pwm_settings_multiplier[attr->nr]);
1037 }
1038 
1039 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1040  *devattr, const char *buf, size_t count)
1041 {
1042  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1043  struct abituguru_data *data = dev_get_drvdata(dev);
1044  u8 min;
1045  unsigned long val;
1046  ssize_t ret;
1047 
1048  ret = kstrtoul(buf, 10, &val);
1049  if (ret)
1050  return ret;
1051 
1052  ret = count;
1053  val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1054  abituguru_pwm_settings_multiplier[attr->nr];
1055 
1056  /* special case pwm1 min pwm% */
1057  if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1058  min = 77;
1059  else
1060  min = abituguru_pwm_min[attr->nr];
1061 
1062  /* this check can be done before taking the lock */
1063  if (val < min || val > abituguru_pwm_max[attr->nr])
1064  return -EINVAL;
1065 
1066  mutex_lock(&data->update_lock);
1067  /* this check needs to be done after taking the lock */
1068  if ((attr->nr & 1) &&
1069  (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1070  ret = -EINVAL;
1071  else if (!(attr->nr & 1) &&
1072  (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1073  ret = -EINVAL;
1074  else if (data->pwm_settings[attr->index][attr->nr] != val) {
1075  u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1076  data->pwm_settings[attr->index][attr->nr] = val;
1077  if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1078  attr->index, data->pwm_settings[attr->index],
1079  5) <= attr->nr) {
1080  data->pwm_settings[attr->index][attr->nr] =
1081  orig_val;
1082  ret = -EIO;
1083  }
1084  }
1085  mutex_unlock(&data->update_lock);
1086  return ret;
1087 }
1088 
1089 static ssize_t show_pwm_sensor(struct device *dev,
1090  struct device_attribute *devattr, char *buf)
1091 {
1092  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1093  struct abituguru_data *data = dev_get_drvdata(dev);
1094  int i;
1095  /*
1096  * We need to walk to the temp sensor addresses to find what
1097  * the userspace id of the configured temp sensor is.
1098  */
1099  for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1100  if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1101  (data->pwm_settings[attr->index][0] & 0x0F))
1102  return sprintf(buf, "%d\n", i+1);
1103 
1104  return -ENXIO;
1105 }
1106 
1107 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1108  *devattr, const char *buf, size_t count)
1109 {
1110  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1111  struct abituguru_data *data = dev_get_drvdata(dev);
1112  ssize_t ret;
1113  unsigned long val;
1114  u8 orig_val;
1115  u8 address;
1116 
1117  ret = kstrtoul(buf, 10, &val);
1118  if (ret)
1119  return ret;
1120 
1121  if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1122  return -EINVAL;
1123 
1124  val -= 1;
1125  ret = count;
1126  mutex_lock(&data->update_lock);
1127  orig_val = data->pwm_settings[attr->index][0];
1128  address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1129  data->pwm_settings[attr->index][0] &= 0xF0;
1130  data->pwm_settings[attr->index][0] |= address;
1131  if (data->pwm_settings[attr->index][0] != orig_val) {
1132  if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1133  data->pwm_settings[attr->index], 5) < 1) {
1134  data->pwm_settings[attr->index][0] = orig_val;
1135  ret = -EIO;
1136  }
1137  }
1138  mutex_unlock(&data->update_lock);
1139  return ret;
1140 }
1141 
1142 static ssize_t show_pwm_enable(struct device *dev,
1143  struct device_attribute *devattr, char *buf)
1144 {
1145  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1146  struct abituguru_data *data = dev_get_drvdata(dev);
1147  int res = 0;
1148  if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1149  res = 2;
1150  return sprintf(buf, "%d\n", res);
1151 }
1152 
1153 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1154  *devattr, const char *buf, size_t count)
1155 {
1156  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1157  struct abituguru_data *data = dev_get_drvdata(dev);
1158  u8 orig_val;
1159  ssize_t ret;
1160  unsigned long user_val;
1161 
1162  ret = kstrtoul(buf, 10, &user_val);
1163  if (ret)
1164  return ret;
1165 
1166  ret = count;
1167  mutex_lock(&data->update_lock);
1168  orig_val = data->pwm_settings[attr->index][0];
1169  switch (user_val) {
1170  case 0:
1171  data->pwm_settings[attr->index][0] &=
1173  break;
1174  case 2:
1175  data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1176  break;
1177  default:
1178  ret = -EINVAL;
1179  }
1180  if ((data->pwm_settings[attr->index][0] != orig_val) &&
1181  (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1182  attr->index, data->pwm_settings[attr->index],
1183  5) < 1)) {
1184  data->pwm_settings[attr->index][0] = orig_val;
1185  ret = -EIO;
1186  }
1187  mutex_unlock(&data->update_lock);
1188  return ret;
1189 }
1190 
1191 static ssize_t show_name(struct device *dev,
1192  struct device_attribute *devattr, char *buf)
1193 {
1194  return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1195 }
1196 
1197 /* Sysfs attr templates, the real entries are generated automatically. */
1198 static const
1199 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1200  {
1201  SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1202  SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1203  store_bank1_setting, 1, 0),
1204  SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1206  SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1207  store_bank1_setting, 2, 0),
1208  SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1210  SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1211  store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1212  SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1213  store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1214  SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1215  store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1216  SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1217  store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1218  }, {
1219  SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1220  SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1222  SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1223  store_bank1_setting, 1, 0),
1224  SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1225  store_bank1_setting, 2, 0),
1226  SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1227  store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1228  SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1229  store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1230  SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1231  store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1232  }
1233 };
1234 
1235 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1236  SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1237  SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1238  SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1239  store_bank2_setting, 1, 0),
1240  SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1241  store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1242  SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1243  store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1244  SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1245  store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1246 };
1247 
1248 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1249  SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1250  store_pwm_enable, 0, 0),
1251  SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1252  store_pwm_sensor, 0, 0),
1253  SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1254  store_pwm_setting, 1, 0),
1255  SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1256  store_pwm_setting, 2, 0),
1257  SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1258  store_pwm_setting, 3, 0),
1259  SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1260  store_pwm_setting, 4, 0),
1261 };
1262 
1263 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1264  SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1265 };
1266 
1267 static int __devinit abituguru_probe(struct platform_device *pdev)
1268 {
1269  struct abituguru_data *data;
1270  int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1271  char *sysfs_filename;
1272 
1273  /*
1274  * El weirdo probe order, to keep the sysfs order identical to the
1275  * BIOS and window-appliction listing order.
1276  */
1277  const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1278  0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1279  0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1280 
1281  data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1282  GFP_KERNEL);
1283  if (!data)
1284  return -ENOMEM;
1285 
1286  data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1287  mutex_init(&data->update_lock);
1288  platform_set_drvdata(pdev, data);
1289 
1290  /* See if the uGuru is ready */
1292  data->uguru_ready = 1;
1293 
1294  /*
1295  * Completely read the uGuru this has 2 purposes:
1296  * - testread / see if one really is there.
1297  * - make an in memory copy of all the uguru settings for future use.
1298  */
1299  if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1300  data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1301  goto abituguru_probe_error;
1302 
1303  for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1304  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1305  &data->bank1_value[i], 1,
1306  ABIT_UGURU_MAX_RETRIES) != 1)
1307  goto abituguru_probe_error;
1308  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1309  data->bank1_settings[i], 3,
1310  ABIT_UGURU_MAX_RETRIES) != 3)
1311  goto abituguru_probe_error;
1312  }
1313  /*
1314  * Note: We don't know how many bank2 sensors / pwms there really are,
1315  * but in order to "detect" this we need to read the maximum amount
1316  * anyways. If we read sensors/pwms not there we'll just read crap
1317  * this can't hurt. We need the detection because we don't want
1318  * unwanted writes, which will hurt!
1319  */
1320  for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1321  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1322  &data->bank2_value[i], 1,
1323  ABIT_UGURU_MAX_RETRIES) != 1)
1324  goto abituguru_probe_error;
1325  if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1326  data->bank2_settings[i], 2,
1327  ABIT_UGURU_MAX_RETRIES) != 2)
1328  goto abituguru_probe_error;
1329  }
1330  for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1331  if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1332  data->pwm_settings[i], 5,
1333  ABIT_UGURU_MAX_RETRIES) != 5)
1334  goto abituguru_probe_error;
1335  }
1336  data->last_updated = jiffies;
1337 
1338  /* Detect sensor types and fill the sysfs attr for bank1 */
1339  sysfs_attr_i = 0;
1340  sysfs_filename = data->sysfs_names;
1341  sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1342  for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1343  res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1344  if (res < 0)
1345  goto abituguru_probe_error;
1346  if (res == ABIT_UGURU_NC)
1347  continue;
1348 
1349  /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1350  for (j = 0; j < (res ? 7 : 9); j++) {
1351  used = snprintf(sysfs_filename, sysfs_names_free,
1352  abituguru_sysfs_bank1_templ[res][j].dev_attr.
1353  attr.name, data->bank1_sensors[res] + res)
1354  + 1;
1355  data->sysfs_attr[sysfs_attr_i] =
1356  abituguru_sysfs_bank1_templ[res][j];
1357  data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1358  sysfs_filename;
1359  data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1360  sysfs_filename += used;
1361  sysfs_names_free -= used;
1362  sysfs_attr_i++;
1363  }
1364  data->bank1_max_value[probe_order[i]] =
1365  abituguru_bank1_max_value[res];
1366  data->bank1_address[res][data->bank1_sensors[res]] =
1367  probe_order[i];
1368  data->bank1_sensors[res]++;
1369  }
1370  /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1371  abituguru_detect_no_bank2_sensors(data);
1372  for (i = 0; i < data->bank2_sensors; i++) {
1373  for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1374  used = snprintf(sysfs_filename, sysfs_names_free,
1375  abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1376  i + 1) + 1;
1377  data->sysfs_attr[sysfs_attr_i] =
1378  abituguru_sysfs_fan_templ[j];
1379  data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1380  sysfs_filename;
1381  data->sysfs_attr[sysfs_attr_i].index = i;
1382  sysfs_filename += used;
1383  sysfs_names_free -= used;
1384  sysfs_attr_i++;
1385  }
1386  }
1387  /* Detect number of sensors and fill the sysfs attr for pwms */
1388  abituguru_detect_no_pwms(data);
1389  for (i = 0; i < data->pwms; i++) {
1390  for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1391  used = snprintf(sysfs_filename, sysfs_names_free,
1392  abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1393  i + 1) + 1;
1394  data->sysfs_attr[sysfs_attr_i] =
1395  abituguru_sysfs_pwm_templ[j];
1396  data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1397  sysfs_filename;
1398  data->sysfs_attr[sysfs_attr_i].index = i;
1399  sysfs_filename += used;
1400  sysfs_names_free -= used;
1401  sysfs_attr_i++;
1402  }
1403  }
1404  /* Fail safe check, this should never happen! */
1405  if (sysfs_names_free < 0) {
1406  pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1407  never_happen, report_this);
1408  res = -ENAMETOOLONG;
1409  goto abituguru_probe_error;
1410  }
1411  pr_info("found Abit uGuru\n");
1412 
1413  /* Register sysfs hooks */
1414  for (i = 0; i < sysfs_attr_i; i++)
1415  if (device_create_file(&pdev->dev,
1416  &data->sysfs_attr[i].dev_attr))
1417  goto abituguru_probe_error;
1418  for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1419  if (device_create_file(&pdev->dev,
1420  &abituguru_sysfs_attr[i].dev_attr))
1421  goto abituguru_probe_error;
1422 
1423  data->hwmon_dev = hwmon_device_register(&pdev->dev);
1424  if (!IS_ERR(data->hwmon_dev))
1425  return 0; /* success */
1426 
1427  res = PTR_ERR(data->hwmon_dev);
1428 abituguru_probe_error:
1429  for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1430  device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1431  for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1432  device_remove_file(&pdev->dev,
1433  &abituguru_sysfs_attr[i].dev_attr);
1434  return res;
1435 }
1436 
1437 static int __devexit abituguru_remove(struct platform_device *pdev)
1438 {
1439  int i;
1440  struct abituguru_data *data = platform_get_drvdata(pdev);
1441 
1443  for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1444  device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1445  for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1446  device_remove_file(&pdev->dev,
1447  &abituguru_sysfs_attr[i].dev_attr);
1448 
1449  return 0;
1450 }
1451 
1452 static struct abituguru_data *abituguru_update_device(struct device *dev)
1453 {
1454  int i, err;
1455  struct abituguru_data *data = dev_get_drvdata(dev);
1456  /* fake a complete successful read if no update necessary. */
1457  char success = 1;
1458 
1459  mutex_lock(&data->update_lock);
1460  if (time_after(jiffies, data->last_updated + HZ)) {
1461  success = 0;
1462  err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1463  data->alarms, 3, 0);
1464  if (err != 3)
1465  goto LEAVE_UPDATE;
1466  for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1467  err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1468  i, &data->bank1_value[i], 1, 0);
1469  if (err != 1)
1470  goto LEAVE_UPDATE;
1471  err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1472  i, data->bank1_settings[i], 3, 0);
1473  if (err != 3)
1474  goto LEAVE_UPDATE;
1475  }
1476  for (i = 0; i < data->bank2_sensors; i++) {
1477  err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1478  &data->bank2_value[i], 1, 0);
1479  if (err != 1)
1480  goto LEAVE_UPDATE;
1481  }
1482  /* success! */
1483  success = 1;
1484  data->update_timeouts = 0;
1485 LEAVE_UPDATE:
1486  /* handle timeout condition */
1487  if (!success && (err == -EBUSY || err >= 0)) {
1488  /* No overflow please */
1489  if (data->update_timeouts < 255u)
1490  data->update_timeouts++;
1492  ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1493  "try again next update\n");
1494  /* Just a timeout, fake a successful read */
1495  success = 1;
1496  } else
1497  ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1498  "times waiting for more input state\n",
1499  (int)data->update_timeouts);
1500  }
1501  /* On success set last_updated */
1502  if (success)
1503  data->last_updated = jiffies;
1504  }
1505  mutex_unlock(&data->update_lock);
1506 
1507  if (success)
1508  return data;
1509  else
1510  return NULL;
1511 }
1512 
1513 #ifdef CONFIG_PM_SLEEP
1514 static int abituguru_suspend(struct device *dev)
1515 {
1516  struct abituguru_data *data = dev_get_drvdata(dev);
1517  /*
1518  * make sure all communications with the uguru are done and no new
1519  * ones are started
1520  */
1521  mutex_lock(&data->update_lock);
1522  return 0;
1523 }
1524 
1525 static int abituguru_resume(struct device *dev)
1526 {
1527  struct abituguru_data *data = dev_get_drvdata(dev);
1528  /* See if the uGuru is still ready */
1530  data->uguru_ready = 0;
1531  mutex_unlock(&data->update_lock);
1532  return 0;
1533 }
1534 
1535 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1536 #define ABIT_UGURU_PM &abituguru_pm
1537 #else
1538 #define ABIT_UGURU_PM NULL
1539 #endif /* CONFIG_PM */
1540 
1541 static struct platform_driver abituguru_driver = {
1542  .driver = {
1543  .owner = THIS_MODULE,
1544  .name = ABIT_UGURU_NAME,
1545  .pm = ABIT_UGURU_PM,
1546  },
1547  .probe = abituguru_probe,
1548  .remove = __devexit_p(abituguru_remove),
1549 };
1550 
1551 static int __init abituguru_detect(void)
1552 {
1553  /*
1554  * See if there is an uguru there. After a reboot uGuru will hold 0x00
1555  * at DATA and 0xAC, when this driver has already been loaded once
1556  * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1557  * scenario but some will hold 0x00.
1558  * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1559  * after reading CMD first, so CMD must be read first!
1560  */
1561  u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1562  u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1563  if (((data_val == 0x00) || (data_val == 0x08)) &&
1564  ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1565  return ABIT_UGURU_BASE;
1566 
1567  ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1568  "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1569 
1570  if (force) {
1571  pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1572  return ABIT_UGURU_BASE;
1573  }
1574 
1575  /* No uGuru found */
1576  return -ENODEV;
1577 }
1578 
1579 static struct platform_device *abituguru_pdev;
1580 
1581 static int __init abituguru_init(void)
1582 {
1583  int address, err;
1584  struct resource res = { .flags = IORESOURCE_IO };
1585  const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1586 
1587  /* safety check, refuse to load on non Abit motherboards */
1588  if (!force && (!board_vendor ||
1589  strcmp(board_vendor, "http://www.abit.com.tw/")))
1590  return -ENODEV;
1591 
1592  address = abituguru_detect();
1593  if (address < 0)
1594  return address;
1595 
1596  err = platform_driver_register(&abituguru_driver);
1597  if (err)
1598  goto exit;
1599 
1600  abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1601  if (!abituguru_pdev) {
1602  pr_err("Device allocation failed\n");
1603  err = -ENOMEM;
1604  goto exit_driver_unregister;
1605  }
1606 
1607  res.start = address;
1608  res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1609  res.name = ABIT_UGURU_NAME;
1610 
1611  err = platform_device_add_resources(abituguru_pdev, &res, 1);
1612  if (err) {
1613  pr_err("Device resource addition failed (%d)\n", err);
1614  goto exit_device_put;
1615  }
1616 
1617  err = platform_device_add(abituguru_pdev);
1618  if (err) {
1619  pr_err("Device addition failed (%d)\n", err);
1620  goto exit_device_put;
1621  }
1622 
1623  return 0;
1624 
1625 exit_device_put:
1626  platform_device_put(abituguru_pdev);
1627 exit_driver_unregister:
1628  platform_driver_unregister(&abituguru_driver);
1629 exit:
1630  return err;
1631 }
1632 
1633 static void __exit abituguru_exit(void)
1634 {
1635  platform_device_unregister(abituguru_pdev);
1636  platform_driver_unregister(&abituguru_driver);
1637 }
1638 
1639 MODULE_AUTHOR("Hans de Goede <[email protected]>");
1640 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1641 MODULE_LICENSE("GPL");
1642 
1643 module_init(abituguru_init);
1644 module_exit(abituguru_exit);