Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ads7871.c
Go to the documentation of this file.
1 /*
2  * ads7871 - driver for TI ADS7871 A/D converter
3  *
4  * Copyright (c) 2010 Paul Thomas <[email protected]>
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 or
13  * later as publishhed by the Free Software Foundation.
14  *
15  * You need to have something like this in struct spi_board_info
16  * {
17  * .modalias = "ads7871",
18  * .max_speed_hz = 2*1000*1000,
19  * .chip_select = 0,
20  * .bus_num = 1,
21  * },
22  */
23 
24 /*From figure 18 in the datasheet*/
25 /*Register addresses*/
26 #define REG_LS_BYTE 0 /*A/D Output Data, LS Byte*/
27 #define REG_MS_BYTE 1 /*A/D Output Data, MS Byte*/
28 #define REG_PGA_VALID 2 /*PGA Valid Register*/
29 #define REG_AD_CONTROL 3 /*A/D Control Register*/
30 #define REG_GAIN_MUX 4 /*Gain/Mux Register*/
31 #define REG_IO_STATE 5 /*Digital I/O State Register*/
32 #define REG_IO_CONTROL 6 /*Digital I/O Control Register*/
33 #define REG_OSC_CONTROL 7 /*Rev/Oscillator Control Register*/
34 #define REG_SER_CONTROL 24 /*Serial Interface Control Register*/
35 #define REG_ID 31 /*ID Register*/
36 
37 /*
38  * From figure 17 in the datasheet
39  * These bits get ORed with the address to form
40  * the instruction byte
41  */
42 /*Instruction Bit masks*/
43 #define INST_MODE_bm (1<<7)
44 #define INST_READ_bm (1<<6)
45 #define INST_16BIT_bm (1<<5)
46 
47 /*From figure 18 in the datasheet*/
48 /*bit masks for Rev/Oscillator Control Register*/
49 #define MUX_CNV_bv 7
50 #define MUX_CNV_bm (1<<MUX_CNV_bv)
51 #define MUX_M3_bm (1<<3) /*M3 selects single ended*/
52 #define MUX_G_bv 4 /*allows for reg = (gain << MUX_G_bv) | ...*/
53 
54 /*From figure 18 in the datasheet*/
55 /*bit masks for Rev/Oscillator Control Register*/
56 #define OSC_OSCR_bm (1<<5)
57 #define OSC_OSCE_bm (1<<4)
58 #define OSC_REFE_bm (1<<3)
59 #define OSC_BUFE_bm (1<<2)
60 #define OSC_R2V_bm (1<<1)
61 #define OSC_RBG_bm (1<<0)
62 
63 #include <linux/module.h>
64 #include <linux/init.h>
65 #include <linux/spi/spi.h>
66 #include <linux/hwmon.h>
67 #include <linux/hwmon-sysfs.h>
68 #include <linux/err.h>
69 #include <linux/mutex.h>
70 #include <linux/delay.h>
71 
72 #define DEVICE_NAME "ads7871"
73 
74 struct ads7871_data {
75  struct device *hwmon_dev;
77 };
78 
79 static int ads7871_read_reg8(struct spi_device *spi, int reg)
80 {
81  int ret;
82  reg = reg | INST_READ_bm;
83  ret = spi_w8r8(spi, reg);
84  return ret;
85 }
86 
87 static int ads7871_read_reg16(struct spi_device *spi, int reg)
88 {
89  int ret;
90  reg = reg | INST_READ_bm | INST_16BIT_bm;
91  ret = spi_w8r16(spi, reg);
92  return ret;
93 }
94 
95 static int ads7871_write_reg8(struct spi_device *spi, int reg, u8 val)
96 {
97  u8 tmp[2] = {reg, val};
98  return spi_write(spi, tmp, sizeof(tmp));
99 }
100 
101 static ssize_t show_voltage(struct device *dev,
102  struct device_attribute *da, char *buf)
103 {
104  struct spi_device *spi = to_spi_device(dev);
106  int ret, val, i = 0;
107  uint8_t channel, mux_cnv;
108 
109  channel = attr->index;
110  /*
111  * TODO: add support for conversions
112  * other than single ended with a gain of 1
113  */
114  /*MUX_M3_bm forces single ended*/
115  /*This is also where the gain of the PGA would be set*/
116  ads7871_write_reg8(spi, REG_GAIN_MUX,
117  (MUX_CNV_bm | MUX_M3_bm | channel));
118 
119  ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
120  mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
121  /*
122  * on 400MHz arm9 platform the conversion
123  * is already done when we do this test
124  */
125  while ((i < 2) && mux_cnv) {
126  i++;
127  ret = ads7871_read_reg8(spi, REG_GAIN_MUX);
128  mux_cnv = ((ret & MUX_CNV_bm)>>MUX_CNV_bv);
130  }
131 
132  if (mux_cnv == 0) {
133  val = ads7871_read_reg16(spi, REG_LS_BYTE);
134  /*result in volts*10000 = (val/8192)*2.5*10000*/
135  val = ((val>>2) * 25000) / 8192;
136  return sprintf(buf, "%d\n", val);
137  } else {
138  return -1;
139  }
140 }
141 
142 static ssize_t ads7871_show_name(struct device *dev,
143  struct device_attribute *devattr, char *buf)
144 {
145  return sprintf(buf, "%s\n", to_spi_device(dev)->modalias);
146 }
147 
148 static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_voltage, NULL, 0);
149 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_voltage, NULL, 1);
150 static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_voltage, NULL, 2);
151 static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_voltage, NULL, 3);
152 static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_voltage, NULL, 4);
153 static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_voltage, NULL, 5);
154 static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_voltage, NULL, 6);
155 static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_voltage, NULL, 7);
156 
157 static DEVICE_ATTR(name, S_IRUGO, ads7871_show_name, NULL);
158 
159 static struct attribute *ads7871_attributes[] = {
160  &sensor_dev_attr_in0_input.dev_attr.attr,
161  &sensor_dev_attr_in1_input.dev_attr.attr,
162  &sensor_dev_attr_in2_input.dev_attr.attr,
163  &sensor_dev_attr_in3_input.dev_attr.attr,
164  &sensor_dev_attr_in4_input.dev_attr.attr,
165  &sensor_dev_attr_in5_input.dev_attr.attr,
166  &sensor_dev_attr_in6_input.dev_attr.attr,
167  &sensor_dev_attr_in7_input.dev_attr.attr,
168  &dev_attr_name.attr,
169  NULL
170 };
171 
172 static const struct attribute_group ads7871_group = {
173  .attrs = ads7871_attributes,
174 };
175 
176 static int __devinit ads7871_probe(struct spi_device *spi)
177 {
178  int ret, err;
179  uint8_t val;
180  struct ads7871_data *pdata;
181 
182  dev_dbg(&spi->dev, "probe\n");
183 
184  /* Configure the SPI bus */
185  spi->mode = (SPI_MODE_0);
186  spi->bits_per_word = 8;
187  spi_setup(spi);
188 
189  ads7871_write_reg8(spi, REG_SER_CONTROL, 0);
190  ads7871_write_reg8(spi, REG_AD_CONTROL, 0);
191 
193  ads7871_write_reg8(spi, REG_OSC_CONTROL, val);
194  ret = ads7871_read_reg8(spi, REG_OSC_CONTROL);
195 
196  dev_dbg(&spi->dev, "REG_OSC_CONTROL write:%x, read:%x\n", val, ret);
197  /*
198  * because there is no other error checking on an SPI bus
199  * we need to make sure we really have a chip
200  */
201  if (val != ret)
202  return -ENODEV;
203 
204  pdata = devm_kzalloc(&spi->dev, sizeof(struct ads7871_data),
205  GFP_KERNEL);
206  if (!pdata)
207  return -ENOMEM;
208 
209  err = sysfs_create_group(&spi->dev.kobj, &ads7871_group);
210  if (err < 0)
211  return err;
212 
213  spi_set_drvdata(spi, pdata);
214 
215  pdata->hwmon_dev = hwmon_device_register(&spi->dev);
216  if (IS_ERR(pdata->hwmon_dev)) {
217  err = PTR_ERR(pdata->hwmon_dev);
218  goto error_remove;
219  }
220 
221  return 0;
222 
223 error_remove:
224  sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
225  return err;
226 }
227 
228 static int __devexit ads7871_remove(struct spi_device *spi)
229 {
230  struct ads7871_data *pdata = spi_get_drvdata(spi);
231 
233  sysfs_remove_group(&spi->dev.kobj, &ads7871_group);
234  return 0;
235 }
236 
237 static struct spi_driver ads7871_driver = {
238  .driver = {
239  .name = DEVICE_NAME,
240  .owner = THIS_MODULE,
241  },
242 
243  .probe = ads7871_probe,
244  .remove = __devexit_p(ads7871_remove),
245 };
246 
247 module_spi_driver(ads7871_driver);
248 
249 MODULE_AUTHOR("Paul Thomas <[email protected]>");
250 MODULE_DESCRIPTION("TI ADS7871 A/D driver");
251 MODULE_LICENSE("GPL");