Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * linux/arch/cris/arch-v32/kernel/time.c
3  *
4  * Copyright (C) 2003-2010 Axis Communications AB
5  *
6  */
7 
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
19 #include <asm/io.h>
20 #include <asm/delay.h>
21 #include <asm/irq.h>
22 #include <asm/irq_regs.h>
23 
24 #include <hwregs/reg_map.h>
25 #include <hwregs/reg_rdwr.h>
26 #include <hwregs/timer_defs.h>
27 #include <hwregs/intr_vect_defs.h>
28 #ifdef CONFIG_CRIS_MACH_ARTPEC3
29 #include <hwregs/clkgen_defs.h>
30 #endif
31 
32 /* Watchdog defines */
33 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
34 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
35 /* Number of 763 counts before watchdog bites */
36 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
37 
38 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
39 static cycle_t read_cont_rotime(struct clocksource *cs)
40 {
41  return (u32)REG_RD(timer, regi_timer0, r_time);
42 }
43 
44 static struct clocksource cont_rotime = {
45  .name = "crisv32_rotime",
46  .rating = 300,
47  .read = read_cont_rotime,
48  .mask = CLOCKSOURCE_MASK(32),
50 };
51 
52 static int __init etrax_init_cont_rotime(void)
53 {
54  clocksource_register_khz(&cont_rotime, 100000);
55  return 0;
56 }
57 arch_initcall(etrax_init_cont_rotime);
58 
59 
60 unsigned long timer_regs[NR_CPUS] =
61 {
63 #ifdef CONFIG_SMP
65 #endif
66 };
67 
68 extern int set_rtc_mmss(unsigned long nowtime);
69 
70 #ifdef CONFIG_CPU_FREQ
71 static int
72 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
73  void *data);
74 
75 static struct notifier_block cris_time_freq_notifier_block = {
76  .notifier_call = cris_time_freq_notifier,
77 };
78 #endif
79 
80 unsigned long get_ns_in_jiffie(void)
81 {
83  unsigned long ns;
84 
85  data = REG_RD(timer, regi_timer0, r_tmr0_data);
86  ns = (TIMER0_DIV - data) * 10;
87  return ns;
88 }
89 
90 
91 /* From timer MDS describing the hardware watchdog:
92  * 4.3.1 Watchdog Operation
93  * The watchdog timer is an 8-bit timer with a configurable start value.
94  * Once started the watchdog counts downwards with a frequency of 763 Hz
95  * (100/131072 MHz). When the watchdog counts down to 1, it generates an
96  * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
97  * chip.
98  */
99 /* This gives us 1.3 ms to do something useful when the NMI comes */
100 
101 /* Right now, starting the watchdog is the same as resetting it */
102 #define start_watchdog reset_watchdog
103 
104 #if defined(CONFIG_ETRAX_WATCHDOG)
105 static short int watchdog_key = 42; /* arbitrary 7 bit number */
106 #endif
107 
108 /* Number of pages to consider "out of memory". It is normal that the memory
109  * is used though, so set this really low. */
110 #define WATCHDOG_MIN_FREE_PAGES 8
111 
112 void reset_watchdog(void)
113 {
114 #if defined(CONFIG_ETRAX_WATCHDOG)
115  reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
116 
117  /* Only keep watchdog happy as long as we have memory left! */
118  if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
119  /* Reset the watchdog with the inverse of the old key */
120  /* Invert key, which is 7 bits */
121  watchdog_key ^= ETRAX_WD_KEY_MASK;
122  wd_ctrl.cnt = ETRAX_WD_CNT;
123  wd_ctrl.cmd = regk_timer_start;
124  wd_ctrl.key = watchdog_key;
125  REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
126  }
127 #endif
128 }
129 
130 /* stop the watchdog - we still need the correct key */
131 
132 void stop_watchdog(void)
133 {
134 #if defined(CONFIG_ETRAX_WATCHDOG)
135  reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
136  watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
137  wd_ctrl.cnt = ETRAX_WD_CNT;
138  wd_ctrl.cmd = regk_timer_stop;
139  wd_ctrl.key = watchdog_key;
140  REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
141 #endif
142 }
143 
144 extern void show_registers(struct pt_regs *regs);
145 
147 {
148 #if defined(CONFIG_ETRAX_WATCHDOG)
149  extern int cause_of_death;
150 
151  oops_in_progress = 1;
152  printk(KERN_WARNING "Watchdog bite\n");
153 
154  /* Check if forced restart or unexpected watchdog */
155  if (cause_of_death == 0xbedead) {
156 #ifdef CONFIG_CRIS_MACH_ARTPEC3
157  /* There is a bug in Artpec-3 (voodoo TR 78) that requires
158  * us to go to lower frequency for the reset to be reliable
159  */
161  REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
162  ctrl.pll = 0;
163  REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
164 #endif
165  while(1);
166  }
167 
168  /* Unexpected watchdog, stop the watchdog and dump registers. */
169  stop_watchdog();
170  printk(KERN_WARNING "Oops: bitten by watchdog\n");
171  show_registers(regs);
172  oops_in_progress = 0;
173 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
174  reset_watchdog();
175 #endif
176  while(1) /* nothing */;
177 #endif
178 }
179 
180 /*
181  * timer_interrupt() needs to keep up the real-time clock,
182  * as well as call the "xtime_update()" routine every clocktick.
183  */
184 extern void cris_do_profile(struct pt_regs *regs);
185 
186 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
187 {
188  struct pt_regs *regs = get_irq_regs();
189  int cpu = smp_processor_id();
190  reg_timer_r_masked_intr masked_intr;
191  reg_timer_rw_ack_intr ack_intr = { 0 };
192 
193  /* Check if the timer interrupt is for us (a tmr0 int) */
194  masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
195  if (!masked_intr.tmr0)
196  return IRQ_NONE;
197 
198  /* Acknowledge the timer irq. */
199  ack_intr.tmr0 = 1;
200  REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
201 
202  /* Reset watchdog otherwise it resets us! */
203  reset_watchdog();
204 
205  /* Update statistics. */
207 
208  cris_do_profile(regs); /* Save profiling information */
209 
210  /* The master CPU is responsible for the time keeping. */
211  if (cpu != 0)
212  return IRQ_HANDLED;
213 
214  /* Call the real timer interrupt handler */
215  xtime_update(1);
216  return IRQ_HANDLED;
217 }
218 
219 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
220  * It needs to be IRQF_DISABLED to make the jiffies update work properly.
221  */
222 static struct irqaction irq_timer = {
223  .handler = timer_interrupt,
224  .flags = IRQF_SHARED | IRQF_DISABLED,
225  .name = "timer"
226 };
227 
229 {
230  int cpu = smp_processor_id();
231  reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
233  reg_timer_rw_intr_mask timer_intr_mask;
234 
235  /* Setup the etrax timers.
236  * Base frequency is 100MHz, divider 1000000 -> 100 HZ
237  * We use timer0, so timer1 is free.
238  * The trig timer is used by the fasttimer API if enabled.
239  */
240 
241  tmr0_ctrl.op = regk_timer_ld;
242  tmr0_ctrl.freq = regk_timer_f100;
243  REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
244  REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
245  tmr0_ctrl.op = regk_timer_run;
246  REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
247 
248  /* Enable the timer irq. */
249  timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
250  timer_intr_mask.tmr0 = 1;
251  REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
252 }
253 
254 void __init time_init(void)
255 {
257 
258  /* Probe for the RTC and read it if it exists.
259  * Before the RTC can be probed the loops_per_usec variable needs
260  * to be initialized to make usleep work. A better value for
261  * loops_per_usec is calculated by the kernel later once the
262  * clock has started.
263  */
264  loops_per_usec = 50;
265 
266  /* Start CPU local timer. */
267  cris_timer_init();
268 
269  /* Enable the timer irq in global config. */
270  intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
271  intr_mask.timer0 = 1;
272  REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
273 
274  /* Now actually register the timer irq handler that calls
275  * timer_interrupt(). */
276  setup_irq(TIMER0_INTR_VECT, &irq_timer);
277 
278  /* Enable watchdog if we should use one. */
279 
280 #if defined(CONFIG_ETRAX_WATCHDOG)
281  printk(KERN_INFO "Enabling watchdog...\n");
282  start_watchdog();
283 
284  /* If we use the hardware watchdog, we want to trap it as an NMI
285  * and dump registers before it resets us. For this to happen, we
286  * must set the "m" NMI enable flag (which once set, is unset only
287  * when an NMI is taken). */
288  {
289  unsigned long flags;
290  local_save_flags(flags);
291  flags |= (1<<30); /* NMI M flag is at bit 30 */
292  local_irq_restore(flags);
293  }
294 #endif
295 
296 #ifdef CONFIG_CPU_FREQ
297  cpufreq_register_notifier(&cris_time_freq_notifier_block,
299 #endif
300 }
301 
302 #ifdef CONFIG_CPU_FREQ
303 static int
304 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
305  void *data)
306 {
307  struct cpufreq_freqs *freqs = data;
308  if (val == CPUFREQ_POSTCHANGE) {
310  reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
311  do {
312  data = REG_RD(timer, timer_regs[freqs->cpu],
313  r_tmr0_data);
314  } while (data > 20);
315  REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
316  }
317  return 0;
318 }
319 #endif