Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
processor.h
Go to the documentation of this file.
1 #ifndef _ASM_IA64_PROCESSOR_H
2 #define _ASM_IA64_PROCESSOR_H
3 
4 /*
5  * Copyright (C) 1998-2004 Hewlett-Packard Co
6  * David Mosberger-Tang <[email protected]>
7  * Stephane Eranian <[email protected]>
8  * Copyright (C) 1999 Asit Mallick <[email protected]>
9  * Copyright (C) 1999 Don Dugger <[email protected]>
10  *
11  * 11/24/98 S.Eranian added ia64_set_iva()
12  * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
13  * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
14  */
15 
16 
17 #include <asm/intrinsics.h>
18 #include <asm/kregs.h>
19 #include <asm/ptrace.h>
20 #include <asm/ustack.h>
21 
22 #define __ARCH_WANT_UNLOCKED_CTXSW
23 #define ARCH_HAS_PREFETCH_SWITCH_STACK
24 
25 #define IA64_NUM_PHYS_STACK_REG 96
26 #define IA64_NUM_DBG_REGS 8
27 
28 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
29 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
30 
31 /*
32  * TASK_SIZE really is a mis-named. It really is the maximum user
33  * space address (plus one). On IA-64, there are five regions of 2TB
34  * each (assuming 8KB page size), for a total of 8TB of user virtual
35  * address space.
36  */
37 #define TASK_SIZE DEFAULT_TASK_SIZE
38 
39 /*
40  * This decides where the kernel will search for a free chunk of vm
41  * space during mmap's.
42  */
43 #define TASK_UNMAPPED_BASE (current->thread.map_base)
44 
45 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
46 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
47 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
48 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
49 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
50 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
51  sync at ctx sw */
52 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
53 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
54 
55 #define IA64_THREAD_UAC_SHIFT 3
56 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
57 #define IA64_THREAD_FPEMU_SHIFT 6
58 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
59 
60 
61 /*
62  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
63  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
64  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
65  */
66 #define IA64_NSEC_PER_CYC_SHIFT 30
67 
68 #ifndef __ASSEMBLY__
69 
70 #include <linux/cache.h>
71 #include <linux/compiler.h>
72 #include <linux/threads.h>
73 #include <linux/types.h>
74 
75 #include <asm/fpu.h>
76 #include <asm/page.h>
77 #include <asm/percpu.h>
78 #include <asm/rse.h>
79 #include <asm/unwind.h>
80 #include <linux/atomic.h>
81 #ifdef CONFIG_NUMA
82 #include <asm/nodedata.h>
83 #endif
84 
85 /* like above but expressed as bitfields for more efficient access: */
86 struct ia64_psr {
88  __u64 be : 1;
89  __u64 up : 1;
90  __u64 ac : 1;
91  __u64 mfl : 1;
92  __u64 mfh : 1;
94  __u64 ic : 1;
95  __u64 i : 1;
96  __u64 pk : 1;
98  __u64 dt : 1;
99  __u64 dfl : 1;
100  __u64 dfh : 1;
101  __u64 sp : 1;
102  __u64 pp : 1;
103  __u64 di : 1;
104  __u64 si : 1;
105  __u64 db : 1;
106  __u64 lp : 1;
107  __u64 tb : 1;
108  __u64 rt : 1;
110  __u64 cpl : 2;
111  __u64 is : 1;
112  __u64 mc : 1;
113  __u64 it : 1;
114  __u64 id : 1;
115  __u64 da : 1;
116  __u64 dd : 1;
117  __u64 ss : 1;
118  __u64 ri : 2;
119  __u64 ed : 1;
120  __u64 bn : 1;
121  __u64 reserved4 : 19;
122 };
124 union ia64_isr {
125  __u64 val;
126  struct {
127  __u64 code : 16;
130  __u64 x : 1;
131  __u64 w : 1;
132  __u64 r : 1;
133  __u64 na : 1;
134  __u64 sp : 1;
135  __u64 rs : 1;
136  __u64 ir : 1;
137  __u64 ni : 1;
138  __u64 so : 1;
139  __u64 ei : 2;
140  __u64 ed : 1;
141  __u64 reserved2 : 20;
142  };
143 };
145 union ia64_lid {
146  __u64 val;
147  struct {
148  __u64 rv : 16;
149  __u64 eid : 8;
150  __u64 id : 8;
151  __u64 ig : 32;
152  };
153 };
155 union ia64_tpr {
156  __u64 val;
157  struct {
158  __u64 ig0 : 4;
159  __u64 mic : 4;
160  __u64 rsv : 8;
161  __u64 mmi : 1;
162  __u64 ig1 : 47;
163  };
164 };
166 union ia64_itir {
167  __u64 val;
168  struct {
169  __u64 rv3 : 2; /* 0-1 */
170  __u64 ps : 6; /* 2-7 */
171  __u64 key : 24; /* 8-31 */
172  __u64 rv4 : 32; /* 32-63 */
173  };
174 };
176 union ia64_rr {
177  __u64 val;
178  struct {
179  __u64 ve : 1; /* enable hw walker */
180  __u64 reserved0: 1; /* reserved */
181  __u64 ps : 6; /* log page size */
182  __u64 rid : 24; /* region id */
183  __u64 reserved1: 32; /* reserved */
184  };
185 };
186 
187 /*
188  * CPU type, hardware bug flags, and per-CPU state. Frequently used
189  * state comes earlier:
190  */
191 struct cpuinfo_ia64 {
192  unsigned int softirq_pending;
193  unsigned long itm_delta; /* # of clock cycles between clock ticks */
194  unsigned long itm_next; /* interval timer mask value to use for next clock tick */
195  unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
196  unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
197  unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
198  unsigned long itc_freq; /* frequency of ITC counter */
199  unsigned long proc_freq; /* frequency of processor */
200  unsigned long cyc_per_usec; /* itc_freq/1000000 */
201  unsigned long ptce_base;
202  unsigned int ptce_count[2];
203  unsigned int ptce_stride[2];
204  struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
205 
206 #ifdef CONFIG_SMP
207  unsigned long loops_per_jiffy;
208  int cpu;
209  unsigned int socket_id; /* physical processor socket id */
210  unsigned short core_id; /* core id */
211  unsigned short thread_id; /* thread id */
212  unsigned short num_log; /* Total number of logical processors on
213  * this socket that were successfully booted */
214  unsigned char cores_per_socket; /* Cores per processor socket */
215  unsigned char threads_per_core; /* Threads per core */
216 #endif
217 
218  /* CPUID-derived information: */
219  unsigned long ppn;
220  unsigned long features;
221  unsigned char number;
222  unsigned char revision;
223  unsigned char model;
224  unsigned char family;
225  unsigned char archrev;
226  char vendor[16];
227  char *model_name;
228 
229 #ifdef CONFIG_NUMA
230  struct ia64_node_data *node_data;
231 #endif
232 };
233 
234 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
235 
236 /*
237  * The "local" data variable. It refers to the per-CPU data of the currently executing
238  * CPU, much like "current" points to the per-task data of the currently executing task.
239  * Do not use the address of local_cpu_data, since it will be different from
240  * cpu_data(smp_processor_id())!
241  */
242 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
243 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
244 
245 extern void print_cpu_info (struct cpuinfo_ia64 *);
246 
247 typedef struct {
248  unsigned long seg;
249 } mm_segment_t;
251 #define SET_UNALIGN_CTL(task,value) \
252 ({ \
253  (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
254  | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
255  0; \
256 })
257 #define GET_UNALIGN_CTL(task,addr) \
258 ({ \
259  put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
260  (int __user *) (addr)); \
261 })
263 #define SET_FPEMU_CTL(task,value) \
264 ({ \
265  (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
266  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
267  0; \
268 })
269 #define GET_FPEMU_CTL(task,addr) \
270 ({ \
271  put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
272  (int __user *) (addr)); \
273 })
274 
276  __u32 flags; /* various thread flags (see IA64_THREAD_*) */
277  /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
278  __u8 on_ustack; /* executing on user-stacks? */
279  __u8 pad[3];
280  __u64 ksp; /* kernel stack pointer */
281  __u64 map_base; /* base address for get_unmapped_area() */
282  __u64 rbs_bot; /* the base address for the RBS */
283  int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
284 
285 #ifdef CONFIG_PERFMON
286  void *pfm_context; /* pointer to detailed PMU context */
287  unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */
288 # define INIT_THREAD_PM .pfm_context = NULL, \
289  .pfm_needs_checking = 0UL,
290 #else
291 # define INIT_THREAD_PM
292 #endif
293  unsigned long dbr[IA64_NUM_DBG_REGS];
294  unsigned long ibr[IA64_NUM_DBG_REGS];
295  struct ia64_fpreg fph[96]; /* saved/loaded on demand */
296 };
298 #define INIT_THREAD { \
299  .flags = 0, \
300  .on_ustack = 0, \
301  .ksp = 0, \
302  .map_base = DEFAULT_MAP_BASE, \
303  .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
304  .last_fph_cpu = -1, \
305  INIT_THREAD_PM \
306  .dbr = {0, }, \
307  .ibr = {0, }, \
308  .fph = {{{{0}}}, } \
309 }
311 #define start_thread(regs,new_ip,new_sp) do { \
312  regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
313  & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
314  regs->cr_iip = new_ip; \
315  regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
316  regs->ar_rnat = 0; \
317  regs->ar_bspstore = current->thread.rbs_bot; \
318  regs->ar_fpsr = FPSR_DEFAULT; \
319  regs->loadrs = 0; \
320  regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
321  regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
322  if (unlikely(!get_dumpable(current->mm))) { \
323  /* \
324  * Zap scratch regs to avoid leaking bits between processes with different \
325  * uid/privileges. \
326  */ \
327  regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
328  regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
329  } \
330 } while (0)
331 
332 /* Forward declarations, a strange C thing... */
333 struct mm_struct;
334 struct task_struct;
335 
336 /*
337  * Free all resources held by a thread. This is called after the
338  * parent of DEAD_TASK has collected the exit status of the task via
339  * wait().
340  */
341 #define release_thread(dead_task)
342 
343 /*
344  * This is the mechanism for creating a new kernel thread.
345  *
346  * NOTE 1: Only a kernel-only process (ie the swapper or direct
347  * descendants who haven't done an "execve()") should use this: it
348  * will work within a system call from a "real" process, but the
349  * process memory space will not be free'd until both the parent and
350  * the child have exited.
351  *
352  * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get
353  * into trouble in init/main.c when the child thread returns to
354  * do_basic_setup() and the timing is such that free_initmem() has
355  * been called already.
356  */
357 extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
358 
359 /* Get wait channel for task P. */
360 extern unsigned long get_wchan (struct task_struct *p);
361 
362 /* Return instruction pointer of blocked task TSK. */
363 #define KSTK_EIP(tsk) \
364  ({ \
365  struct pt_regs *_regs = task_pt_regs(tsk); \
366  _regs->cr_iip + ia64_psr(_regs)->ri; \
367  })
368 
369 /* Return stack pointer of blocked task TSK. */
370 #define KSTK_ESP(tsk) ((tsk)->thread.ksp)
372 extern void ia64_getreg_unknown_kr (void);
373 extern void ia64_setreg_unknown_kr (void);
374 
375 #define ia64_get_kr(regnum) \
376 ({ \
377  unsigned long r = 0; \
378  \
379  switch (regnum) { \
380  case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
381  case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
382  case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
383  case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
384  case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
385  case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
386  case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
387  case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
388  default: ia64_getreg_unknown_kr(); break; \
389  } \
390  r; \
391 })
392 
393 #define ia64_set_kr(regnum, r) \
394 ({ \
395  switch (regnum) { \
396  case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
397  case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
398  case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
399  case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
400  case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
401  case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
402  case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
403  case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
404  default: ia64_setreg_unknown_kr(); break; \
405  } \
406 })
407 
408 /*
409  * The following three macros can't be inline functions because we don't have struct
410  * task_struct at this point.
411  */
412 
413 /*
414  * Return TRUE if task T owns the fph partition of the CPU we're running on.
415  * Must be called from code that has preemption disabled.
416  */
417 #define ia64_is_local_fpu_owner(t) \
418 ({ \
419  struct task_struct *__ia64_islfo_task = (t); \
420  (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
421  && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
422 })
423 
424 /*
425  * Mark task T as owning the fph partition of the CPU we're running on.
426  * Must be called from code that has preemption disabled.
427  */
428 #define ia64_set_local_fpu_owner(t) do { \
429  struct task_struct *__ia64_slfo_task = (t); \
430  __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
431  ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
432 } while (0)
433 
434 /* Mark the fph partition of task T as being invalid on all CPUs. */
435 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
436 
437 extern void __ia64_init_fpu (void);
438 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
439 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
440 extern void ia64_save_debug_regs (unsigned long *save_area);
441 extern void ia64_load_debug_regs (unsigned long *save_area);
442 
443 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
444 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
445 
446 /* load fp 0.0 into fph */
447 static inline void
448 ia64_init_fpu (void) {
449  ia64_fph_enable();
450  __ia64_init_fpu();
452 }
453 
454 /* save f32-f127 at FPH */
455 static inline void
456 ia64_save_fpu (struct ia64_fpreg *fph) {
457  ia64_fph_enable();
458  __ia64_save_fpu(fph);
460 }
461 
462 /* load f32-f127 from FPH */
463 static inline void
464 ia64_load_fpu (struct ia64_fpreg *fph) {
465  ia64_fph_enable();
466  __ia64_load_fpu(fph);
468 }
469 
470 static inline __u64
471 ia64_clear_ic (void)
472 {
473  __u64 psr;
474  psr = ia64_getreg(_IA64_REG_PSR);
475  ia64_stop();
477  ia64_srlz_i();
478  return psr;
479 }
480 
481 /*
482  * Restore the psr.
483  */
484 static inline void
485 ia64_set_psr (__u64 psr)
486 {
487  ia64_stop();
489  ia64_srlz_i();
490 }
491 
492 /*
493  * Insert a translation into an instruction and/or data translation
494  * register.
495  */
496 static inline void
497 ia64_itr (__u64 target_mask, __u64 tr_num,
498  __u64 vmaddr, __u64 pte,
499  __u64 log_page_size)
500 {
501  ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502  ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503  ia64_stop();
504  if (target_mask & 0x1)
505  ia64_itri(tr_num, pte);
506  if (target_mask & 0x2)
507  ia64_itrd(tr_num, pte);
508 }
509 
510 /*
511  * Insert a translation into the instruction and/or data translation
512  * cache.
513  */
514 static inline void
515 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
516  __u64 log_page_size)
517 {
518  ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
519  ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
520  ia64_stop();
521  /* as per EAS2.6, itc must be the last instruction in an instruction group */
522  if (target_mask & 0x1)
523  ia64_itci(pte);
524  if (target_mask & 0x2)
525  ia64_itcd(pte);
526 }
527 
528 /*
529  * Purge a range of addresses from instruction and/or data translation
530  * register(s).
531  */
532 static inline void
533 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
534 {
535  if (target_mask & 0x1)
536  ia64_ptri(vmaddr, (log_size << 2));
537  if (target_mask & 0x2)
538  ia64_ptrd(vmaddr, (log_size << 2));
539 }
540 
541 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */
542 static inline void
543 ia64_set_iva (void *ivt_addr)
544 {
545  ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
546  ia64_srlz_i();
547 }
548 
549 /* Set the page table address and control bits. */
550 static inline void
551 ia64_set_pta (__u64 pta)
552 {
553  /* Note: srlz.i implies srlz.d */
555  ia64_srlz_i();
556 }
557 
558 static inline void
559 ia64_eoi (void)
560 {
562  ia64_srlz_d();
563 }
564 
565 #define cpu_relax() ia64_hint(ia64_hint_pause)
566 
567 static inline int
568 ia64_get_irr(unsigned int vector)
569 {
570  unsigned int reg = vector / 64;
571  unsigned int bit = vector % 64;
572  u64 irr;
573 
574  switch (reg) {
575  case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
576  case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
577  case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
578  case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
579  }
580 
581  return test_bit(bit, &irr);
582 }
583 
584 static inline void
585 ia64_set_lrr0 (unsigned long val)
586 {
588  ia64_srlz_d();
589 }
590 
591 static inline void
592 ia64_set_lrr1 (unsigned long val)
593 {
595  ia64_srlz_d();
596 }
597 
598 
599 /*
600  * Given the address to which a spill occurred, return the unat bit
601  * number that corresponds to this address.
602  */
603 static inline __u64
604 ia64_unat_pos (void *spill_addr)
605 {
606  return ((__u64) spill_addr >> 3) & 0x3f;
607 }
608 
609 /*
610  * Set the NaT bit of an integer register which was spilled at address
611  * SPILL_ADDR. UNAT is the mask to be updated.
612  */
613 static inline void
614 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
615 {
616  __u64 bit = ia64_unat_pos(spill_addr);
617  __u64 mask = 1UL << bit;
618 
619  *unat = (*unat & ~mask) | (nat << bit);
620 }
621 
622 /*
623  * Return saved PC of a blocked thread.
624  * Note that the only way T can block is through a call to schedule() -> switch_to().
625  */
626 static inline unsigned long
627 thread_saved_pc (struct task_struct *t)
628 {
629  struct unw_frame_info info;
630  unsigned long ip;
631 
633  if (unw_unwind(&info) < 0)
634  return 0;
635  unw_get_ip(&info, &ip);
636  return ip;
637 }
639 /*
640  * Get the current instruction/program counter value.
641  */
642 #define current_text_addr() \
643  ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
644 
645 static inline __u64
646 ia64_get_ivr (void)
647 {
648  __u64 r;
649  ia64_srlz_d();
651  ia64_srlz_d();
652  return r;
653 }
654 
655 static inline void
656 ia64_set_dbr (__u64 regnum, __u64 value)
657 {
658  __ia64_set_dbr(regnum, value);
659 #ifdef CONFIG_ITANIUM
660  ia64_srlz_d();
661 #endif
662 }
663 
664 static inline __u64
665 ia64_get_dbr (__u64 regnum)
666 {
667  __u64 retval;
668 
669  retval = __ia64_get_dbr(regnum);
670 #ifdef CONFIG_ITANIUM
671  ia64_srlz_d();
672 #endif
673  return retval;
674 }
675 
676 static inline __u64
677 ia64_rotr (__u64 w, __u64 n)
678 {
679  return (w >> n) | (w << (64 - n));
680 }
681 
682 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
683 
684 /*
685  * Take a mapped kernel address and return the equivalent address
686  * in the region 7 identity mapped virtual area.
687  */
688 static inline void *
689 ia64_imva (void *addr)
690 {
691  void *result;
692  result = (void *) ia64_tpa(addr);
693  return __va(result);
694 }
696 #define ARCH_HAS_PREFETCH
697 #define ARCH_HAS_PREFETCHW
698 #define ARCH_HAS_SPINLOCK_PREFETCH
699 #define PREFETCH_STRIDE L1_CACHE_BYTES
700 
701 static inline void
702 prefetch (const void *x)
703 {
705 }
706 
707 static inline void
708 prefetchw (const void *x)
709 {
711 }
712 
713 #define spin_lock_prefetch(x) prefetchw(x)
715 extern unsigned long boot_option_idle_override;
716 
719 
720 void default_idle(void);
721 
722 #define ia64_platform_is(x) (strcmp(x, ia64_platform_name) == 0)
723 
724 #endif /* !__ASSEMBLY__ */
725 
726 #endif /* _ASM_IA64_PROCESSOR_H */