Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  * Stephane Eranian <[email protected]>
6  * David Mosberger <[email protected]>
7  * Copyright (C) 1999 Don Dugger <[email protected]>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <[email protected]>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36 
38 
40 
41 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
42 
43 #ifdef CONFIG_IA64_DEBUG_IRQ
44 
45 unsigned long last_cli_ip;
46 EXPORT_SYMBOL(last_cli_ip);
47 
48 #endif
49 
50 #ifdef CONFIG_PARAVIRT
51 /* We need to define a real function for sched_clock, to override the
52  weak default version */
53 unsigned long long sched_clock(void)
54 {
55  return paravirt_sched_clock();
56 }
57 #endif
58 
59 #ifdef CONFIG_PARAVIRT
60 static void
61 paravirt_clocksource_resume(struct clocksource *cs)
62 {
63  if (pv_time_ops.clocksource_resume)
64  pv_time_ops.clocksource_resume();
65 }
66 #endif
67 
68 static struct clocksource clocksource_itc = {
69  .name = "itc",
70  .rating = 350,
71  .read = itc_get_cycles,
72  .mask = CLOCKSOURCE_MASK(64),
74 #ifdef CONFIG_PARAVIRT
75  .resume = paravirt_clocksource_resume,
76 #endif
77 };
78 static struct clocksource *itc_clocksource;
79 
80 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
81 
82 #include <linux/kernel_stat.h>
83 
84 extern cputime_t cycle_to_cputime(u64 cyc);
85 
86 static void vtime_account_user(struct task_struct *tsk)
87 {
88  cputime_t delta_utime;
89  struct thread_info *ti = task_thread_info(tsk);
90 
91  if (ti->ac_utime) {
92  delta_utime = cycle_to_cputime(ti->ac_utime);
93  account_user_time(tsk, delta_utime, delta_utime);
94  ti->ac_utime = 0;
95  }
96 }
97 
98 /*
99  * Called from the context switch with interrupts disabled, to charge all
100  * accumulated times to the current process, and to prepare accounting on
101  * the next process.
102  */
103 void vtime_task_switch(struct task_struct *prev)
104 {
105  struct thread_info *pi = task_thread_info(prev);
106  struct thread_info *ni = task_thread_info(current);
107 
108  if (idle_task(smp_processor_id()) != prev)
109  vtime_account_system(prev);
110  else
111  vtime_account_idle(prev);
112 
113  vtime_account_user(prev);
114 
115  pi->ac_stamp = ni->ac_stamp;
116  ni->ac_stime = ni->ac_utime = 0;
117 }
118 
119 /*
120  * Account time for a transition between system, hard irq or soft irq state.
121  * Note that this function is called with interrupts enabled.
122  */
123 static cputime_t vtime_delta(struct task_struct *tsk)
124 {
125  struct thread_info *ti = task_thread_info(tsk);
126  cputime_t delta_stime;
127  __u64 now;
128 
129  now = ia64_get_itc();
130 
131  delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
132  ti->ac_stime = 0;
133  ti->ac_stamp = now;
134 
135  return delta_stime;
136 }
137 
138 void vtime_account_system(struct task_struct *tsk)
139 {
140  cputime_t delta = vtime_delta(tsk);
141 
142  account_system_time(tsk, 0, delta, delta);
143 }
144 
145 void vtime_account_idle(struct task_struct *tsk)
146 {
147  account_idle_time(vtime_delta(tsk));
148 }
149 
150 /*
151  * Called from the timer interrupt handler to charge accumulated user time
152  * to the current process. Must be called with interrupts disabled.
153  */
154 void account_process_tick(struct task_struct *p, int user_tick)
155 {
156  vtime_account_user(p);
157 }
158 
159 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
160 
161 static irqreturn_t
162 timer_interrupt (int irq, void *dev_id)
163 {
164  unsigned long new_itm;
165 
167  return IRQ_HANDLED;
168  }
169 
170  platform_timer_interrupt(irq, dev_id);
171 
172  new_itm = local_cpu_data->itm_next;
173 
174  if (!time_after(ia64_get_itc(), new_itm))
175  printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
176  ia64_get_itc(), new_itm);
177 
179 
180  if (paravirt_do_steal_accounting(&new_itm))
181  goto skip_process_time_accounting;
182 
183  while (1) {
185 
186  new_itm += local_cpu_data->itm_delta;
187 
189  xtime_update(1);
190 
191  local_cpu_data->itm_next = new_itm;
192 
193  if (time_after(new_itm, ia64_get_itc()))
194  break;
195 
196  /*
197  * Allow IPIs to interrupt the timer loop.
198  */
201  }
202 
203 skip_process_time_accounting:
204 
205  do {
206  /*
207  * If we're too close to the next clock tick for
208  * comfort, we increase the safety margin by
209  * intentionally dropping the next tick(s). We do NOT
210  * update itm.next because that would force us to call
211  * xtime_update() which in turn would let our clock run
212  * too fast (with the potentially devastating effect
213  * of losing monotony of time).
214  */
215  while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
216  new_itm += local_cpu_data->itm_delta;
217  ia64_set_itm(new_itm);
218  /* double check, in case we got hit by a (slow) PMI: */
219  } while (time_after_eq(ia64_get_itc(), new_itm));
220  return IRQ_HANDLED;
221 }
222 
223 /*
224  * Encapsulate access to the itm structure for SMP.
225  */
226 void
228 {
229  int cpu = smp_processor_id();
230  unsigned long shift = 0, delta;
231 
232  /* arrange for the cycle counter to generate a timer interrupt: */
233  ia64_set_itv(IA64_TIMER_VECTOR);
234 
235  delta = local_cpu_data->itm_delta;
236  /*
237  * Stagger the timer tick for each CPU so they don't occur all at (almost) the
238  * same time:
239  */
240  if (cpu) {
241  unsigned long hi = 1UL << ia64_fls(cpu);
242  shift = (2*(cpu - hi) + 1) * delta/hi/2;
243  }
244  local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
245  ia64_set_itm(local_cpu_data->itm_next);
246 }
247 
248 static int nojitter;
249 
250 static int __init nojitter_setup(char *str)
251 {
252  nojitter = 1;
253  printk("Jitter checking for ITC timers disabled\n");
254  return 1;
255 }
256 
257 __setup("nojitter", nojitter_setup);
258 
259 
260 void __devinit
262 {
263  unsigned long platform_base_freq, itc_freq;
264  struct pal_freq_ratio itc_ratio, proc_ratio;
265  long status, platform_base_drift, itc_drift;
266 
267  /*
268  * According to SAL v2.6, we need to use a SAL call to determine the platform base
269  * frequency and then a PAL call to determine the frequency ratio between the ITC
270  * and the base frequency.
271  */
273  &platform_base_freq, &platform_base_drift);
274  if (status != 0) {
275  printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
276  } else {
277  status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
278  if (status != 0)
279  printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
280  }
281  if (status != 0) {
282  /* invent "random" values */
284  "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
285  platform_base_freq = 100000000;
286  platform_base_drift = -1; /* no drift info */
287  itc_ratio.num = 3;
288  itc_ratio.den = 1;
289  }
290  if (platform_base_freq < 40000000) {
291  printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
292  platform_base_freq);
293  platform_base_freq = 75000000;
294  platform_base_drift = -1;
295  }
296  if (!proc_ratio.den)
297  proc_ratio.den = 1; /* avoid division by zero */
298  if (!itc_ratio.den)
299  itc_ratio.den = 1; /* avoid division by zero */
300 
301  itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
302 
303  local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
304  printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
305  "ITC freq=%lu.%03luMHz", smp_processor_id(),
306  platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
307  itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
308 
309  if (platform_base_drift != -1) {
310  itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
311  printk("+/-%ldppm\n", itc_drift);
312  } else {
313  itc_drift = -1;
314  printk("\n");
315  }
316 
317  local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
318  local_cpu_data->itc_freq = itc_freq;
319  local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
321  + itc_freq/2)/itc_freq;
322 
324 #ifdef CONFIG_SMP
325  /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
326  * Jitter compensation requires a cmpxchg which may limit
327  * the scalability of the syscalls for retrieving time.
328  * The ITC synchronization is usually successful to within a few
329  * ITC ticks but this is not a sure thing. If you need to improve
330  * timer performance in SMP situations then boot the kernel with the
331  * "nojitter" option. However, doing so may result in time fluctuating (maybe
332  * even going backward) if the ITC offsets between the individual CPUs
333  * are too large.
334  */
335  if (!nojitter)
336  itc_jitter_data.itc_jitter = 1;
337 #endif
338  } else
339  /*
340  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
341  * ITC values may fluctuate significantly between processors.
342  * Clock should not be used for hrtimers. Mark itc as only
343  * useful for boot and testing.
344  *
345  * Note that jitter compensation is off! There is no point of
346  * synchronizing ITCs since they may be large differentials
347  * that change over time.
348  *
349  * The only way to fix this would be to repeatedly sync the
350  * ITCs. Until that time we have to avoid ITC.
351  */
352  clocksource_itc.rating = 50;
353 
355 
356  /* avoid softlock up message when cpu is unplug and plugged again. */
358 
359  /* Setup the CPU local timer tick */
361 
362  if (!itc_clocksource) {
363  clocksource_register_hz(&clocksource_itc,
364  local_cpu_data->itc_freq);
365  itc_clocksource = &clocksource_itc;
366  }
367 }
368 
369 static cycle_t itc_get_cycles(struct clocksource *cs)
370 {
371  unsigned long lcycle, now, ret;
372 
373  if (!itc_jitter_data.itc_jitter)
374  return get_cycles();
375 
376  lcycle = itc_jitter_data.itc_lastcycle;
377  now = get_cycles();
378  if (lcycle && time_after(lcycle, now))
379  return lcycle;
380 
381  /*
382  * Keep track of the last timer value returned.
383  * In an SMP environment, you could lose out in contention of
384  * cmpxchg. If so, your cmpxchg returns new value which the
385  * winner of contention updated to. Use the new value instead.
386  */
387  ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
388  if (unlikely(ret != lcycle))
389  return ret;
390 
391  return now;
392 }
393 
394 
395 static struct irqaction timer_irqaction = {
396  .handler = timer_interrupt,
397  .flags = IRQF_DISABLED | IRQF_IRQPOLL,
398  .name = "timer"
399 };
400 
401 static struct platform_device rtc_efi_dev = {
402  .name = "rtc-efi",
403  .id = -1,
404 };
405 
406 static int __init rtc_init(void)
407 {
408  if (platform_device_register(&rtc_efi_dev) < 0)
409  printk(KERN_ERR "unable to register rtc device...\n");
410 
411  /* not necessarily an error */
412  return 0;
413 }
414 module_init(rtc_init);
415 
417 {
418  efi_gettimeofday(ts);
419 }
420 
421 void __init
422 time_init (void)
423 {
424  register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
425  ia64_init_itm();
426 }
427 
428 /*
429  * Generic udelay assumes that if preemption is allowed and the thread
430  * migrates to another CPU, that the ITC values are synchronized across
431  * all CPUs.
432  */
433 static void
434 ia64_itc_udelay (unsigned long usecs)
435 {
436  unsigned long start = ia64_get_itc();
437  unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
438 
439  while (time_before(ia64_get_itc(), end))
440  cpu_relax();
441 }
442 
443 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
444 
445 void
446 udelay (unsigned long usecs)
447 {
448  (*ia64_udelay)(usecs);
449 }
451 
452 /* IA64 doesn't cache the timezone */
454 {
455 }
456 
457 void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
458  struct clocksource *c, u32 mult)
459 {
460  write_seqcount_begin(&fsyscall_gtod_data.seq);
461 
462  /* copy fsyscall clock data */
463  fsyscall_gtod_data.clk_mask = c->mask;
464  fsyscall_gtod_data.clk_mult = mult;
465  fsyscall_gtod_data.clk_shift = c->shift;
466  fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
467  fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
468 
469  /* copy kernel time structures */
470  fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
471  fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
472  fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
473  + wall->tv_sec;
474  fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
475  + wall->tv_nsec;
476 
477  /* normalize */
478  while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
479  fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
480  fsyscall_gtod_data.monotonic_time.tv_sec++;
481  }
482 
483  write_seqcount_end(&fsyscall_gtod_data.seq);
484 }
485