Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 #include <linux/types.h>
2 #include <linux/i8253.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/smp.h>
6 #include <linux/time.h>
7 #include <linux/clockchips.h>
8 
9 #include <asm/sni.h>
10 #include <asm/time.h>
11 #include <asm-generic/rtc.h>
12 
13 #define SNI_CLOCK_TICK_RATE 3686400
14 #define SNI_COUNTER2_DIV 64
15 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16 
17 static void a20r_set_mode(enum clock_event_mode mode,
18  struct clock_event_device *evt)
19 {
20  switch (mode) {
21  case CLOCK_EVT_MODE_PERIODIC:
22  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
23  wmb();
24  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
25  wmb();
26  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
27  wmb();
28 
29  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
30  wmb();
31  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
32  wmb();
33  *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
34  wmb();
35 
36  break;
37  case CLOCK_EVT_MODE_ONESHOT:
38  case CLOCK_EVT_MODE_UNUSED:
39  case CLOCK_EVT_MODE_SHUTDOWN:
40  break;
41  case CLOCK_EVT_MODE_RESUME:
42  break;
43  }
44 }
45 
46 static struct clock_event_device a20r_clockevent_device = {
47  .name = "a20r-timer",
48  .features = CLOCK_EVT_FEAT_PERIODIC,
49 
50  /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
51 
52  .rating = 300,
53  .irq = SNI_A20R_IRQ_TIMER,
54  .set_mode = a20r_set_mode,
55 };
56 
57 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
58 {
59  struct clock_event_device *cd = dev_id;
60 
61  *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
62  wmb();
63 
64  cd->event_handler(cd);
65 
66  return IRQ_HANDLED;
67 }
68 
69 static struct irqaction a20r_irqaction = {
70  .handler = a20r_interrupt,
71  .flags = IRQF_PERCPU | IRQF_TIMER,
72  .name = "a20r-timer",
73 };
74 
75 /*
76  * a20r platform uses 2 counters to divide the input frequency.
77  * Counter 2 output is connected to Counter 0 & 1 input.
78  */
79 static void __init sni_a20r_timer_setup(void)
80 {
81  struct clock_event_device *cd = &a20r_clockevent_device;
82  struct irqaction *action = &a20r_irqaction;
83  unsigned int cpu = smp_processor_id();
84 
85  cd->cpumask = cpumask_of(cpu);
87  action->dev_id = cd;
88  setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
89 }
90 
91 #define SNI_8254_TICK_RATE 1193182UL
92 
93 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
94 
95 static __init unsigned long dosample(void)
96 {
97  u32 ct0, ct1;
98  volatile u8 msb;
99 
100  /* Start the counter. */
101  outb_p(0x34, 0x43);
102  outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
103  outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104 
105  /* Get initial counter invariant */
106  ct0 = read_c0_count();
107 
108  /* Latch and spin until top byte of counter0 is zero */
109  do {
110  outb(0x00, 0x43);
111  (void) inb(0x40);
112  msb = inb(0x40);
113  ct1 = read_c0_count();
114  } while (msb);
115 
116  /* Stop the counter. */
117  outb(0x38, 0x43);
118  /*
119  * Return the difference, this is how far the r4k counter increments
120  * for every 1/HZ seconds. We round off the nearest 1 MHz of master
121  * clock (= 1000000 / HZ / 2).
122  */
123  /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
124  return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
125 }
126 
127 /*
128  * Here we need to calibrate the cycle counter to at least be close.
129  */
131 {
132  unsigned long r4k_ticks[3];
133  unsigned long r4k_tick;
134 
135  /*
136  * Figure out the r4k offset, the algorithm is very simple and works in
137  * _all_ cases as long as the 8254 counter register itself works ok (as
138  * an interrupt driving timer it does not because of bug, this is why
139  * we are using the onchip r4k counter/compare register to serve this
140  * purpose, but for r4k_offset calculation it will work ok for us).
141  * There are other very complicated ways of performing this calculation
142  * but this one works just fine so I am not going to futz around. ;-)
143  */
144  printk(KERN_INFO "Calibrating system timer... ");
145  dosample(); /* Prime cache. */
146  dosample(); /* Prime cache. */
147  /* Zero is NOT an option. */
148  do {
149  r4k_ticks[0] = dosample();
150  } while (!r4k_ticks[0]);
151  do {
152  r4k_ticks[1] = dosample();
153  } while (!r4k_ticks[1]);
154 
155  if (r4k_ticks[0] != r4k_ticks[1]) {
156  printk("warning: timer counts differ, retrying... ");
157  r4k_ticks[2] = dosample();
158  if (r4k_ticks[2] == r4k_ticks[0]
159  || r4k_ticks[2] == r4k_ticks[1])
160  r4k_tick = r4k_ticks[2];
161  else {
162  printk("disagreement, using average... ");
163  r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
164  + r4k_ticks[2]) / 3;
165  }
166  } else
167  r4k_tick = r4k_ticks[0];
168 
169  printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
170  (int) (r4k_tick / (500000 / HZ)),
171  (int) (r4k_tick % (500000 / HZ)));
172 
173  mips_hpt_frequency = r4k_tick * HZ;
174 
175  switch (sni_brd_type) {
176  case SNI_BRD_10:
177  case SNI_BRD_10NEW:
178  case SNI_BRD_TOWER_OASIC:
179  case SNI_BRD_MINITOWER:
180  sni_a20r_timer_setup();
181  break;
182  }
183  setup_pit_timer();
184 }
185 
187 {
188  ts->tv_sec = -1;
189  ts->tv_nsec = 0;
190 }