Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dma-mapping.h
Go to the documentation of this file.
1 #ifndef _PARISC_DMA_MAPPING_H
2 #define _PARISC_DMA_MAPPING_H
3 
4 #include <linux/mm.h>
5 #include <asm/cacheflush.h>
6 #include <asm/scatterlist.h>
7 
8 /* See Documentation/DMA-API-HOWTO.txt */
9 struct hppa_dma_ops {
11  void *(*alloc_consistent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
12  void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *iova, gfp_t flag);
13  void (*free_consistent)(struct device *dev, size_t size, void *vaddr, dma_addr_t iova);
16  int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction);
17  void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nhwents, enum dma_data_direction direction);
20  void (*dma_sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction);
22 };
23 
24 /*
25 ** We could live without the hppa_dma_ops indirection if we didn't want
26 ** to support 4 different coherent dma models with one binary (they will
27 ** someday be loadable modules):
28 ** I/O MMU consistent method dma_sync behavior
29 ** ============= ====================== =======================
30 ** a) PA-7x00LC uncachable host memory flush/purge
31 ** b) U2/Uturn cachable host memory NOP
32 ** c) Ike/Astro cachable host memory NOP
33 ** d) EPIC/SAGA memory on EPIC/SAGA flush/reset DMA channel
34 **
35 ** PA-7[13]00LC processors have a GSC bus interface and no I/O MMU.
36 **
37 ** Systems (eg PCX-T workstations) that don't fall into the above
38 ** categories will need to modify the needed drivers to perform
39 ** flush/purge and allocate "regular" cacheable pages for everything.
40 */
41 
42 #ifdef CONFIG_PA11
43 extern struct hppa_dma_ops pcxl_dma_ops;
44 extern struct hppa_dma_ops pcx_dma_ops;
45 #endif
46 
47 extern struct hppa_dma_ops *hppa_dma_ops;
48 
49 static inline void *
51  gfp_t flag)
52 {
53  return hppa_dma_ops->alloc_consistent(dev, size, dma_handle, flag);
54 }
55 
56 static inline void *
57 dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
58  gfp_t flag)
59 {
60  return hppa_dma_ops->alloc_noncoherent(dev, size, dma_handle, flag);
61 }
62 
63 static inline void
64 dma_free_coherent(struct device *dev, size_t size,
65  void *vaddr, dma_addr_t dma_handle)
66 {
67  hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
68 }
69 
70 static inline void
71 dma_free_noncoherent(struct device *dev, size_t size,
72  void *vaddr, dma_addr_t dma_handle)
73 {
74  hppa_dma_ops->free_consistent(dev, size, vaddr, dma_handle);
75 }
76 
77 static inline dma_addr_t
78 dma_map_single(struct device *dev, void *ptr, size_t size,
80 {
81  return hppa_dma_ops->map_single(dev, ptr, size, direction);
82 }
83 
84 static inline void
85 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
86  enum dma_data_direction direction)
87 {
88  hppa_dma_ops->unmap_single(dev, dma_addr, size, direction);
89 }
90 
91 static inline int
92 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
93  enum dma_data_direction direction)
94 {
95  return hppa_dma_ops->map_sg(dev, sg, nents, direction);
96 }
97 
98 static inline void
99 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
100  enum dma_data_direction direction)
101 {
102  hppa_dma_ops->unmap_sg(dev, sg, nhwentries, direction);
103 }
104 
105 static inline dma_addr_t
106 dma_map_page(struct device *dev, struct page *page, unsigned long offset,
107  size_t size, enum dma_data_direction direction)
108 {
109  return dma_map_single(dev, (page_address(page) + (offset)), size, direction);
110 }
111 
112 static inline void
113 dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
114  enum dma_data_direction direction)
115 {
116  dma_unmap_single(dev, dma_address, size, direction);
117 }
118 
119 
120 static inline void
121 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
122  enum dma_data_direction direction)
123 {
124  if(hppa_dma_ops->dma_sync_single_for_cpu)
125  hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, 0, size, direction);
126 }
127 
128 static inline void
129 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
130  enum dma_data_direction direction)
131 {
132  if(hppa_dma_ops->dma_sync_single_for_device)
133  hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, 0, size, direction);
134 }
135 
136 static inline void
137 dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
138  unsigned long offset, size_t size,
139  enum dma_data_direction direction)
140 {
141  if(hppa_dma_ops->dma_sync_single_for_cpu)
142  hppa_dma_ops->dma_sync_single_for_cpu(dev, dma_handle, offset, size, direction);
143 }
144 
145 static inline void
146 dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
147  unsigned long offset, size_t size,
148  enum dma_data_direction direction)
149 {
150  if(hppa_dma_ops->dma_sync_single_for_device)
151  hppa_dma_ops->dma_sync_single_for_device(dev, dma_handle, offset, size, direction);
152 }
153 
154 static inline void
155 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
156  enum dma_data_direction direction)
157 {
158  if(hppa_dma_ops->dma_sync_sg_for_cpu)
159  hppa_dma_ops->dma_sync_sg_for_cpu(dev, sg, nelems, direction);
160 }
161 
162 static inline void
163 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
164  enum dma_data_direction direction)
165 {
166  if(hppa_dma_ops->dma_sync_sg_for_device)
167  hppa_dma_ops->dma_sync_sg_for_device(dev, sg, nelems, direction);
168 }
169 
170 static inline int
171 dma_supported(struct device *dev, u64 mask)
172 {
173  return hppa_dma_ops->dma_supported(dev, mask);
174 }
175 
176 static inline int
177 dma_set_mask(struct device *dev, u64 mask)
178 {
179  if(!dev->dma_mask || !dma_supported(dev, mask))
180  return -EIO;
181 
182  *dev->dma_mask = mask;
183 
184  return 0;
185 }
186 
187 static inline void
188 dma_cache_sync(struct device *dev, void *vaddr, size_t size,
189  enum dma_data_direction direction)
190 {
191  if(hppa_dma_ops->dma_sync_single_for_cpu)
192  flush_kernel_dcache_range((unsigned long)vaddr, size);
193 }
194 
195 static inline void *
196 parisc_walk_tree(struct device *dev)
197 {
198  struct device *otherdev;
199  if(likely(dev->platform_data != NULL))
200  return dev->platform_data;
201  /* OK, just traverse the bus to find it */
202  for(otherdev = dev->parent; otherdev;
203  otherdev = otherdev->parent) {
204  if(otherdev->platform_data) {
205  dev->platform_data = otherdev->platform_data;
206  break;
207  }
208  }
209  BUG_ON(!dev->platform_data);
210  return dev->platform_data;
211 }
212 
213 #define GET_IOC(dev) (HBA_DATA(parisc_walk_tree(dev))->iommu)
214 
215 
216 #ifdef CONFIG_IOMMU_CCIO
217 struct parisc_device;
218 struct ioc;
219 void * ccio_get_iommu(const struct parisc_device *dev);
220 int ccio_request_resource(const struct parisc_device *dev,
221  struct resource *res);
222 int ccio_allocate_resource(const struct parisc_device *dev,
223  struct resource *res, unsigned long size,
224  unsigned long min, unsigned long max, unsigned long align);
225 #else /* !CONFIG_IOMMU_CCIO */
226 #define ccio_get_iommu(dev) NULL
227 #define ccio_request_resource(dev, res) insert_resource(&iomem_resource, res)
228 #define ccio_allocate_resource(dev, res, size, min, max, align) \
229  allocate_resource(&iomem_resource, res, size, min, max, \
230  align, NULL, NULL)
231 #endif /* !CONFIG_IOMMU_CCIO */
232 
233 #ifdef CONFIG_IOMMU_SBA
234 struct parisc_device;
235 void * sba_get_iommu(struct parisc_device *dev);
236 #endif
237 
238 /* At the moment, we panic on error for IOMMU resource exaustion */
239 #define dma_mapping_error(dev, x) 0
240 
241 #endif