Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
module.c
Go to the documentation of this file.
1 /* Kernel dynamically loadable module help for PARISC.
2  *
3  * The best reference for this stuff is probably the Processor-
4  * Specific ELF Supplement for PA-RISC:
5  * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
6  *
7  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8  * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9  * Copyright (C) 2008 Helge Deller <[email protected]>
10  *
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  *
27  * Notes:
28  * - PLT stub handling
29  * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30  * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31  * fail to reach their PLT stub if we only create one big stub array for
32  * all sections at the beginning of the core or init section.
33  * Instead we now insert individual PLT stub entries directly in front of
34  * of the code sections where the stubs are actually called.
35  * This reduces the distance between the PCREL location and the stub entry
36  * so that the relocations can be fulfilled.
37  * While calculating the final layout of the kernel module in memory, the
38  * kernel module loader calls arch_mod_section_prepend() to request the
39  * to be reserved amount of memory in front of each individual section.
40  *
41  * - SEGREL32 handling
42  * We are not doing SEGREL32 handling correctly. According to the ABI, we
43  * should do a value offset, like this:
44  * if (in_init(me, (void *)val))
45  * val -= (uint32_t)me->module_init;
46  * else
47  * val -= (uint32_t)me->module_core;
48  * However, SEGREL32 is used only for PARISC unwind entries, and we want
49  * those entries to have an absolute address, and not just an offset.
50  *
51  * The unwind table mechanism has the ability to specify an offset for
52  * the unwind table; however, because we split off the init functions into
53  * a different piece of memory, it is not possible to do this using a
54  * single offset. Instead, we use the above hack for now.
55  */
56 
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
60 #include <linux/fs.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 
67 #include <asm/pgtable.h>
68 #include <asm/unwind.h>
69 
70 #if 0
71 #define DEBUGP printk
72 #else
73 #define DEBUGP(fmt...)
74 #endif
75 
76 #define RELOC_REACHABLE(val, bits) \
77  (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
78  ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
79  0 : 1)
80 
81 #define CHECK_RELOC(val, bits) \
82  if (!RELOC_REACHABLE(val, bits)) { \
83  printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
84  me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85  return -ENOEXEC; \
86  }
87 
88 /* Maximum number of GOT entries. We use a long displacement ldd from
89  * the bottom of the table, which has a maximum signed displacement of
90  * 0x3fff; however, since we're only going forward, this becomes
91  * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
92  * at most 1023 entries.
93  * To overcome this 14bit displacement with some kernel modules, we'll
94  * use instead the unusal 16bit displacement method (see reassemble_16a)
95  * which gives us a maximum positive displacement of 0x7fff, and as such
96  * allows us to allocate up to 4095 GOT entries. */
97 #define MAX_GOTS 4095
98 
99 /* three functions to determine where in the module core
100  * or init pieces the location is */
101 static inline int in_init(struct module *me, void *loc)
102 {
103  return (loc >= me->module_init &&
104  loc <= (me->module_init + me->init_size));
105 }
106 
107 static inline int in_core(struct module *me, void *loc)
108 {
109  return (loc >= me->module_core &&
110  loc <= (me->module_core + me->core_size));
111 }
112 
113 static inline int in_local(struct module *me, void *loc)
114 {
115  return in_init(me, loc) || in_core(me, loc);
116 }
117 
118 #ifndef CONFIG_64BIT
119 struct got_entry {
121 };
122 
123 struct stub_entry {
124  Elf32_Word insns[2]; /* each stub entry has two insns */
125 };
126 #else
127 struct got_entry {
129 };
130 
131 struct stub_entry {
132  Elf64_Word insns[4]; /* each stub entry has four insns */
133 };
134 #endif
135 
136 /* Field selection types defined by hppa */
137 #define rnd(x) (((x)+0x1000)&~0x1fff)
138 /* fsel: full 32 bits */
139 #define fsel(v,a) ((v)+(a))
140 /* lsel: select left 21 bits */
141 #define lsel(v,a) (((v)+(a))>>11)
142 /* rsel: select right 11 bits */
143 #define rsel(v,a) (((v)+(a))&0x7ff)
144 /* lrsel with rounding of addend to nearest 8k */
145 #define lrsel(v,a) (((v)+rnd(a))>>11)
146 /* rrsel with rounding of addend to nearest 8k */
147 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148 
149 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
150 
151 
152 /* The reassemble_* functions prepare an immediate value for
153  insertion into an opcode. pa-risc uses all sorts of weird bitfields
154  in the instruction to hold the value. */
155 static inline int sign_unext(int x, int len)
156 {
157  int len_ones;
158 
159  len_ones = (1 << len) - 1;
160  return x & len_ones;
161 }
162 
163 static inline int low_sign_unext(int x, int len)
164 {
165  int sign, temp;
166 
167  sign = (x >> (len-1)) & 1;
168  temp = sign_unext(x, len-1);
169  return (temp << 1) | sign;
170 }
171 
172 static inline int reassemble_14(int as14)
173 {
174  return (((as14 & 0x1fff) << 1) |
175  ((as14 & 0x2000) >> 13));
176 }
177 
178 static inline int reassemble_16a(int as16)
179 {
180  int s, t;
181 
182  /* Unusual 16-bit encoding, for wide mode only. */
183  t = (as16 << 1) & 0xffff;
184  s = (as16 & 0x8000);
185  return (t ^ s ^ (s >> 1)) | (s >> 15);
186 }
187 
188 
189 static inline int reassemble_17(int as17)
190 {
191  return (((as17 & 0x10000) >> 16) |
192  ((as17 & 0x0f800) << 5) |
193  ((as17 & 0x00400) >> 8) |
194  ((as17 & 0x003ff) << 3));
195 }
196 
197 static inline int reassemble_21(int as21)
198 {
199  return (((as21 & 0x100000) >> 20) |
200  ((as21 & 0x0ffe00) >> 8) |
201  ((as21 & 0x000180) << 7) |
202  ((as21 & 0x00007c) << 14) |
203  ((as21 & 0x000003) << 12));
204 }
205 
206 static inline int reassemble_22(int as22)
207 {
208  return (((as22 & 0x200000) >> 21) |
209  ((as22 & 0x1f0000) << 5) |
210  ((as22 & 0x00f800) << 5) |
211  ((as22 & 0x000400) >> 8) |
212  ((as22 & 0x0003ff) << 3));
213 }
214 
215 void *module_alloc(unsigned long size)
216 {
217  if (size == 0)
218  return NULL;
219  /* using RWX means less protection for modules, but it's
220  * easier than trying to map the text, data, init_text and
221  * init_data correctly */
224  PAGE_KERNEL_RWX, -1,
225  __builtin_return_address(0));
226 }
227 
228 #ifndef CONFIG_64BIT
229 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
230 {
231  return 0;
232 }
233 
234 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
235 {
236  return 0;
237 }
238 
239 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
240 {
241  unsigned long cnt = 0;
242 
243  for (; n > 0; n--, rela++)
244  {
245  switch (ELF32_R_TYPE(rela->r_info)) {
246  case R_PARISC_PCREL17F:
247  case R_PARISC_PCREL22F:
248  cnt++;
249  }
250  }
251 
252  return cnt;
253 }
254 #else
255 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
256 {
257  unsigned long cnt = 0;
258 
259  for (; n > 0; n--, rela++)
260  {
261  switch (ELF64_R_TYPE(rela->r_info)) {
262  case R_PARISC_LTOFF21L:
263  case R_PARISC_LTOFF14R:
264  case R_PARISC_PCREL22F:
265  cnt++;
266  }
267  }
268 
269  return cnt;
270 }
271 
272 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
273 {
274  unsigned long cnt = 0;
275 
276  for (; n > 0; n--, rela++)
277  {
278  switch (ELF64_R_TYPE(rela->r_info)) {
279  case R_PARISC_FPTR64:
280  cnt++;
281  }
282  }
283 
284  return cnt;
285 }
286 
287 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
288 {
289  unsigned long cnt = 0;
290 
291  for (; n > 0; n--, rela++)
292  {
293  switch (ELF64_R_TYPE(rela->r_info)) {
294  case R_PARISC_PCREL22F:
295  cnt++;
296  }
297  }
298 
299  return cnt;
300 }
301 #endif
302 
303 
304 /* Free memory returned from module_alloc */
305 void module_free(struct module *mod, void *module_region)
306 {
307  kfree(mod->arch.section);
308  mod->arch.section = NULL;
309 
310  vfree(module_region);
311 }
312 
313 /* Additional bytes needed in front of individual sections */
314 unsigned int arch_mod_section_prepend(struct module *mod,
315  unsigned int section)
316 {
317  /* size needed for all stubs of this section (including
318  * one additional for correct alignment of the stubs) */
319  return (mod->arch.section[section].stub_entries + 1)
320  * sizeof(struct stub_entry);
321 }
322 
323 #define CONST
325  CONST Elf_Shdr *sechdrs,
326  CONST char *secstrings,
327  struct module *me)
328 {
329  unsigned long gots = 0, fdescs = 0, len;
330  unsigned int i;
331 
332  len = hdr->e_shnum * sizeof(me->arch.section[0]);
333  me->arch.section = kzalloc(len, GFP_KERNEL);
334  if (!me->arch.section)
335  return -ENOMEM;
336 
337  for (i = 1; i < hdr->e_shnum; i++) {
338  const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
339  unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
340  unsigned int count, s;
341 
342  if (strncmp(secstrings + sechdrs[i].sh_name,
343  ".PARISC.unwind", 14) == 0)
344  me->arch.unwind_section = i;
345 
346  if (sechdrs[i].sh_type != SHT_RELA)
347  continue;
348 
349  /* some of these are not relevant for 32-bit/64-bit
350  * we leave them here to make the code common. the
351  * compiler will do its thing and optimize out the
352  * stuff we don't need
353  */
354  gots += count_gots(rels, nrels);
355  fdescs += count_fdescs(rels, nrels);
356 
357  /* XXX: By sorting the relocs and finding duplicate entries
358  * we could reduce the number of necessary stubs and save
359  * some memory. */
360  count = count_stubs(rels, nrels);
361  if (!count)
362  continue;
363 
364  /* so we need relocation stubs. reserve necessary memory. */
365  /* sh_info gives the section for which we need to add stubs. */
366  s = sechdrs[i].sh_info;
367 
368  /* each code section should only have one relocation section */
369  WARN_ON(me->arch.section[s].stub_entries);
370 
371  /* store number of stubs we need for this section */
372  me->arch.section[s].stub_entries += count;
373  }
374 
375  /* align things a bit */
376  me->core_size = ALIGN(me->core_size, 16);
377  me->arch.got_offset = me->core_size;
378  me->core_size += gots * sizeof(struct got_entry);
379 
380  me->core_size = ALIGN(me->core_size, 16);
381  me->arch.fdesc_offset = me->core_size;
382  me->core_size += fdescs * sizeof(Elf_Fdesc);
383 
384  me->arch.got_max = gots;
385  me->arch.fdesc_max = fdescs;
386 
387  return 0;
388 }
389 
390 #ifdef CONFIG_64BIT
391 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
392 {
393  unsigned int i;
394  struct got_entry *got;
395 
396  value += addend;
397 
398  BUG_ON(value == 0);
399 
400  got = me->module_core + me->arch.got_offset;
401  for (i = 0; got[i].addr; i++)
402  if (got[i].addr == value)
403  goto out;
404 
405  BUG_ON(++me->arch.got_count > me->arch.got_max);
406 
407  got[i].addr = value;
408  out:
409  DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
410  value);
411  return i * sizeof(struct got_entry);
412 }
413 #endif /* CONFIG_64BIT */
414 
415 #ifdef CONFIG_64BIT
416 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
417 {
418  Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
419 
420  if (!value) {
421  printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
422  return 0;
423  }
424 
425  /* Look for existing fdesc entry. */
426  while (fdesc->addr) {
427  if (fdesc->addr == value)
428  return (Elf_Addr)fdesc;
429  fdesc++;
430  }
431 
432  BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
433 
434  /* Create new one */
435  fdesc->addr = value;
436  fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
437  return (Elf_Addr)fdesc;
438 }
439 #endif /* CONFIG_64BIT */
440 
445 };
446 
447 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
448  enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
449 {
450  struct stub_entry *stub;
451  int __maybe_unused d;
452 
453  /* initialize stub_offset to point in front of the section */
454  if (!me->arch.section[targetsec].stub_offset) {
455  loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
456  sizeof(struct stub_entry);
457  /* get correct alignment for the stubs */
458  loc0 = ALIGN(loc0, sizeof(struct stub_entry));
459  me->arch.section[targetsec].stub_offset = loc0;
460  }
461 
462  /* get address of stub entry */
463  stub = (void *) me->arch.section[targetsec].stub_offset;
464  me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
465 
466  /* do not write outside available stub area */
467  BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
468 
469 
470 #ifndef CONFIG_64BIT
471 /* for 32-bit the stub looks like this:
472  * ldil L'XXX,%r1
473  * be,n R'XXX(%sr4,%r1)
474  */
475  //value = *(unsigned long *)((value + addend) & ~3); /* why? */
476 
477  stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
478  stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
479 
480  stub->insns[0] |= reassemble_21(lrsel(value, addend));
481  stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
482 
483 #else
484 /* for 64-bit we have three kinds of stubs:
485  * for normal function calls:
486  * ldd 0(%dp),%dp
487  * ldd 10(%dp), %r1
488  * bve (%r1)
489  * ldd 18(%dp), %dp
490  *
491  * for millicode:
492  * ldil 0, %r1
493  * ldo 0(%r1), %r1
494  * ldd 10(%r1), %r1
495  * bve,n (%r1)
496  *
497  * for direct branches (jumps between different section of the
498  * same module):
499  * ldil 0, %r1
500  * ldo 0(%r1), %r1
501  * bve,n (%r1)
502  */
503  switch (stub_type) {
504  case ELF_STUB_GOT:
505  d = get_got(me, value, addend);
506  if (d <= 15) {
507  /* Format 5 */
508  stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
509  stub->insns[0] |= low_sign_unext(d, 5) << 16;
510  } else {
511  /* Format 3 */
512  stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
513  stub->insns[0] |= reassemble_16a(d);
514  }
515  stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
516  stub->insns[2] = 0xe820d000; /* bve (%r1) */
517  stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
518  break;
519  case ELF_STUB_MILLI:
520  stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
521  stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
522  stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
523  stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
524 
525  stub->insns[0] |= reassemble_21(lrsel(value, addend));
526  stub->insns[1] |= reassemble_14(rrsel(value, addend));
527  break;
528  case ELF_STUB_DIRECT:
529  stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
530  stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
531  stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
532 
533  stub->insns[0] |= reassemble_21(lrsel(value, addend));
534  stub->insns[1] |= reassemble_14(rrsel(value, addend));
535  break;
536  }
537 
538 #endif
539 
540  return (Elf_Addr)stub;
541 }
542 
543 #ifndef CONFIG_64BIT
545  const char *strtab,
546  unsigned int symindex,
547  unsigned int relsec,
548  struct module *me)
549 {
550  int i;
551  Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
552  Elf32_Sym *sym;
553  Elf32_Word *loc;
554  Elf32_Addr val;
555  Elf32_Sword addend;
556  Elf32_Addr dot;
557  Elf_Addr loc0;
558  unsigned int targetsec = sechdrs[relsec].sh_info;
559  //unsigned long dp = (unsigned long)$global$;
560  register unsigned long dp asm ("r27");
561 
562  DEBUGP("Applying relocate section %u to %u\n", relsec,
563  targetsec);
564  for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
565  /* This is where to make the change */
566  loc = (void *)sechdrs[targetsec].sh_addr
567  + rel[i].r_offset;
568  /* This is the start of the target section */
569  loc0 = sechdrs[targetsec].sh_addr;
570  /* This is the symbol it is referring to */
571  sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
572  + ELF32_R_SYM(rel[i].r_info);
573  if (!sym->st_value) {
574  printk(KERN_WARNING "%s: Unknown symbol %s\n",
575  me->name, strtab + sym->st_name);
576  return -ENOENT;
577  }
578  //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
579  dot = (Elf32_Addr)loc & ~0x03;
580 
581  val = sym->st_value;
582  addend = rel[i].r_addend;
583 
584 #if 0
585 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
586  DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
587  strtab + sym->st_name,
588  (uint32_t)loc, val, addend,
598  "UNKNOWN");
599 #undef r
600 #endif
601 
602  switch (ELF32_R_TYPE(rel[i].r_info)) {
603  case R_PARISC_PLABEL32:
604  /* 32-bit function address */
605  /* no function descriptors... */
606  *loc = fsel(val, addend);
607  break;
608  case R_PARISC_DIR32:
609  /* direct 32-bit ref */
610  *loc = fsel(val, addend);
611  break;
612  case R_PARISC_DIR21L:
613  /* left 21 bits of effective address */
614  val = lrsel(val, addend);
615  *loc = mask(*loc, 21) | reassemble_21(val);
616  break;
617  case R_PARISC_DIR14R:
618  /* right 14 bits of effective address */
619  val = rrsel(val, addend);
620  *loc = mask(*loc, 14) | reassemble_14(val);
621  break;
622  case R_PARISC_SEGREL32:
623  /* 32-bit segment relative address */
624  /* See note about special handling of SEGREL32 at
625  * the beginning of this file.
626  */
627  *loc = fsel(val, addend);
628  break;
629  case R_PARISC_DPREL21L:
630  /* left 21 bit of relative address */
631  val = lrsel(val - dp, addend);
632  *loc = mask(*loc, 21) | reassemble_21(val);
633  break;
634  case R_PARISC_DPREL14R:
635  /* right 14 bit of relative address */
636  val = rrsel(val - dp, addend);
637  *loc = mask(*loc, 14) | reassemble_14(val);
638  break;
639  case R_PARISC_PCREL17F:
640  /* 17-bit PC relative address */
641  /* calculate direct call offset */
642  val += addend;
643  val = (val - dot - 8)/4;
644  if (!RELOC_REACHABLE(val, 17)) {
645  /* direct distance too far, create
646  * stub entry instead */
647  val = get_stub(me, sym->st_value, addend,
648  ELF_STUB_DIRECT, loc0, targetsec);
649  val = (val - dot - 8)/4;
650  CHECK_RELOC(val, 17);
651  }
652  *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
653  break;
654  case R_PARISC_PCREL22F:
655  /* 22-bit PC relative address; only defined for pa20 */
656  /* calculate direct call offset */
657  val += addend;
658  val = (val - dot - 8)/4;
659  if (!RELOC_REACHABLE(val, 22)) {
660  /* direct distance too far, create
661  * stub entry instead */
662  val = get_stub(me, sym->st_value, addend,
663  ELF_STUB_DIRECT, loc0, targetsec);
664  val = (val - dot - 8)/4;
665  CHECK_RELOC(val, 22);
666  }
667  *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
668  break;
669 
670  default:
671  printk(KERN_ERR "module %s: Unknown relocation: %u\n",
672  me->name, ELF32_R_TYPE(rel[i].r_info));
673  return -ENOEXEC;
674  }
675  }
676 
677  return 0;
678 }
679 
680 #else
681 int apply_relocate_add(Elf_Shdr *sechdrs,
682  const char *strtab,
683  unsigned int symindex,
684  unsigned int relsec,
685  struct module *me)
686 {
687  int i;
688  Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
689  Elf64_Sym *sym;
690  Elf64_Word *loc;
691  Elf64_Xword *loc64;
692  Elf64_Addr val;
693  Elf64_Sxword addend;
694  Elf64_Addr dot;
695  Elf_Addr loc0;
696  unsigned int targetsec = sechdrs[relsec].sh_info;
697 
698  DEBUGP("Applying relocate section %u to %u\n", relsec,
699  targetsec);
700  for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
701  /* This is where to make the change */
702  loc = (void *)sechdrs[targetsec].sh_addr
703  + rel[i].r_offset;
704  /* This is the start of the target section */
705  loc0 = sechdrs[targetsec].sh_addr;
706  /* This is the symbol it is referring to */
707  sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
708  + ELF64_R_SYM(rel[i].r_info);
709  if (!sym->st_value) {
710  printk(KERN_WARNING "%s: Unknown symbol %s\n",
711  me->name, strtab + sym->st_name);
712  return -ENOENT;
713  }
714  //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
715  dot = (Elf64_Addr)loc & ~0x03;
716  loc64 = (Elf64_Xword *)loc;
717 
718  val = sym->st_value;
719  addend = rel[i].r_addend;
720 
721 #if 0
722 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
723  printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
724  strtab + sym->st_name,
725  loc, val, addend,
732  "UNKNOWN");
733 #undef r
734 #endif
735 
736  switch (ELF64_R_TYPE(rel[i].r_info)) {
737  case R_PARISC_LTOFF21L:
738  /* LT-relative; left 21 bits */
739  val = get_got(me, val, addend);
740  DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
741  strtab + sym->st_name,
742  loc, val);
743  val = lrsel(val, 0);
744  *loc = mask(*loc, 21) | reassemble_21(val);
745  break;
746  case R_PARISC_LTOFF14R:
747  /* L(ltoff(val+addend)) */
748  /* LT-relative; right 14 bits */
749  val = get_got(me, val, addend);
750  val = rrsel(val, 0);
751  DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
752  strtab + sym->st_name,
753  loc, val);
754  *loc = mask(*loc, 14) | reassemble_14(val);
755  break;
756  case R_PARISC_PCREL22F:
757  /* PC-relative; 22 bits */
758  DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
759  strtab + sym->st_name,
760  loc, val);
761  val += addend;
762  /* can we reach it locally? */
763  if (in_local(me, (void *)val)) {
764  /* this is the case where the symbol is local
765  * to the module, but in a different section,
766  * so stub the jump in case it's more than 22
767  * bits away */
768  val = (val - dot - 8)/4;
769  if (!RELOC_REACHABLE(val, 22)) {
770  /* direct distance too far, create
771  * stub entry instead */
772  val = get_stub(me, sym->st_value,
773  addend, ELF_STUB_DIRECT,
774  loc0, targetsec);
775  } else {
776  /* Ok, we can reach it directly. */
777  val = sym->st_value;
778  val += addend;
779  }
780  } else {
781  val = sym->st_value;
782  if (strncmp(strtab + sym->st_name, "$$", 2)
783  == 0)
784  val = get_stub(me, val, addend, ELF_STUB_MILLI,
785  loc0, targetsec);
786  else
787  val = get_stub(me, val, addend, ELF_STUB_GOT,
788  loc0, targetsec);
789  }
790  DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
791  strtab + sym->st_name, loc, sym->st_value,
792  addend, val);
793  val = (val - dot - 8)/4;
794  CHECK_RELOC(val, 22);
795  *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
796  break;
797  case R_PARISC_DIR64:
798  /* 64-bit effective address */
799  *loc64 = val + addend;
800  break;
801  case R_PARISC_SEGREL32:
802  /* 32-bit segment relative address */
803  /* See note about special handling of SEGREL32 at
804  * the beginning of this file.
805  */
806  *loc = fsel(val, addend);
807  break;
808  case R_PARISC_FPTR64:
809  /* 64-bit function address */
810  if(in_local(me, (void *)(val + addend))) {
811  *loc64 = get_fdesc(me, val+addend);
812  DEBUGP("FDESC for %s at %p points to %lx\n",
813  strtab + sym->st_name, *loc64,
814  ((Elf_Fdesc *)*loc64)->addr);
815  } else {
816  /* if the symbol is not local to this
817  * module then val+addend is a pointer
818  * to the function descriptor */
819  DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
820  strtab + sym->st_name,
821  loc, val);
822  *loc64 = val + addend;
823  }
824  break;
825 
826  default:
827  printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
828  me->name, ELF64_R_TYPE(rel[i].r_info));
829  return -ENOEXEC;
830  }
831  }
832  return 0;
833 }
834 #endif
835 
836 static void
837 register_unwind_table(struct module *me,
838  const Elf_Shdr *sechdrs)
839 {
840  unsigned char *table, *end;
841  unsigned long gp;
842 
843  if (!me->arch.unwind_section)
844  return;
845 
846  table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
847  end = table + sechdrs[me->arch.unwind_section].sh_size;
848  gp = (Elf_Addr)me->module_core + me->arch.got_offset;
849 
850  DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
851  me->arch.unwind_section, table, end, gp);
852  me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
853 }
854 
855 static void
856 deregister_unwind_table(struct module *me)
857 {
858  if (me->arch.unwind)
859  unwind_table_remove(me->arch.unwind);
860 }
861 
863  const Elf_Shdr *sechdrs,
864  struct module *me)
865 {
866  int i;
867  unsigned long nsyms;
868  const char *strtab = NULL;
869  Elf_Sym *newptr, *oldptr;
870  Elf_Shdr *symhdr = NULL;
871 #ifdef DEBUG
872  Elf_Fdesc *entry;
873  u32 *addr;
874 
875  entry = (Elf_Fdesc *)me->init;
876  printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
877  entry->gp, entry->addr);
878  addr = (u32 *)entry->addr;
879  printk("INSNS: %x %x %x %x\n",
880  addr[0], addr[1], addr[2], addr[3]);
881  printk("got entries used %ld, gots max %ld\n"
882  "fdescs used %ld, fdescs max %ld\n",
883  me->arch.got_count, me->arch.got_max,
884  me->arch.fdesc_count, me->arch.fdesc_max);
885 #endif
886 
887  register_unwind_table(me, sechdrs);
888 
889  /* haven't filled in me->symtab yet, so have to find it
890  * ourselves */
891  for (i = 1; i < hdr->e_shnum; i++) {
892  if(sechdrs[i].sh_type == SHT_SYMTAB
893  && (sechdrs[i].sh_flags & SHF_ALLOC)) {
894  int strindex = sechdrs[i].sh_link;
895  /* FIXME: AWFUL HACK
896  * The cast is to drop the const from
897  * the sechdrs pointer */
898  symhdr = (Elf_Shdr *)&sechdrs[i];
899  strtab = (char *)sechdrs[strindex].sh_addr;
900  break;
901  }
902  }
903 
904  DEBUGP("module %s: strtab %p, symhdr %p\n",
905  me->name, strtab, symhdr);
906 
907  if(me->arch.got_count > MAX_GOTS) {
908  printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
909  me->name, me->arch.got_count, MAX_GOTS);
910  return -EINVAL;
911  }
912 
913  kfree(me->arch.section);
914  me->arch.section = NULL;
915 
916  /* no symbol table */
917  if(symhdr == NULL)
918  return 0;
919 
920  oldptr = (void *)symhdr->sh_addr;
921  newptr = oldptr + 1; /* we start counting at 1 */
922  nsyms = symhdr->sh_size / sizeof(Elf_Sym);
923  DEBUGP("OLD num_symtab %lu\n", nsyms);
924 
925  for (i = 1; i < nsyms; i++) {
926  oldptr++; /* note, count starts at 1 so preincrement */
927  if(strncmp(strtab + oldptr->st_name,
928  ".L", 2) == 0)
929  continue;
930 
931  if(newptr != oldptr)
932  *newptr++ = *oldptr;
933  else
934  newptr++;
935 
936  }
937  nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
938  DEBUGP("NEW num_symtab %lu\n", nsyms);
939  symhdr->sh_size = nsyms * sizeof(Elf_Sym);
940  return 0;
941 }
942 
944 {
945  deregister_unwind_table(mod);
946 }