Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init.c
Go to the documentation of this file.
1 /*
2  * linux/arch/parisc/mm/init.c
3  *
4  * Copyright (C) 1995 Linus Torvalds
5  * Copyright 1999 SuSE GmbH
6  * changed by Philipp Rumpf
7  * Copyright 1999 Philipp Rumpf ([email protected])
8  * Copyright 2004 Randolph Chung ([email protected])
9  * Copyright 2006-2007 Helge Deller ([email protected])
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 
34 extern int data_start;
35 
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39  * guarantee that global objects will be laid out in memory in the same order
40  * as the order of declaration, so put these in different sections and use
41  * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
44 
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
47 
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
52 
53 static struct resource data_resource = {
54  .name = "Kernel data",
56 };
57 
58 static struct resource code_resource = {
59  .name = "Kernel code",
61 };
62 
63 static struct resource pdcdata_resource = {
64  .name = "PDC data (Page Zero)",
65  .start = 0,
66  .end = 0x9ff,
68 };
69 
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
71 
72 /* The following array is initialized from the firmware specific
73  * information retrieved in kernel/inventory.c.
74  */
75 
78 
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
84 
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
86 
87 static void __init mem_limit_func(void)
88 {
89  char *cp, *end;
90  unsigned long limit;
91 
92  /* We need this before __setup() functions are called */
93 
94  limit = MAX_MEM;
95  for (cp = boot_command_line; *cp; ) {
96  if (memcmp(cp, "mem=", 4) == 0) {
97  cp += 4;
98  limit = memparse(cp, &end);
99  if (end != cp)
100  break;
101  cp = end;
102  } else {
103  while (*cp != ' ' && *cp)
104  ++cp;
105  while (*cp == ' ')
106  ++cp;
107  }
108  }
109 
110  if (limit < mem_limit)
111  mem_limit = limit;
112 }
113 
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
115 
116 static void __init setup_bootmem(void)
117 {
118  unsigned long bootmap_size;
119  unsigned long mem_max;
120  unsigned long bootmap_pages;
121  unsigned long bootmap_start_pfn;
122  unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124  physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125  int npmem_holes;
126 #endif
127  int i, sysram_resource_count;
128 
129  disable_sr_hashing(); /* Turn off space register hashing */
130 
131  /*
132  * Sort the ranges. Since the number of ranges is typically
133  * small, and performance is not an issue here, just do
134  * a simple insertion sort.
135  */
136 
137  for (i = 1; i < npmem_ranges; i++) {
138  int j;
139 
140  for (j = i; j > 0; j--) {
141  unsigned long tmp;
142 
143  if (pmem_ranges[j-1].start_pfn <
144  pmem_ranges[j].start_pfn) {
145 
146  break;
147  }
148  tmp = pmem_ranges[j-1].start_pfn;
151  tmp = pmem_ranges[j-1].pages;
153  pmem_ranges[j].pages = tmp;
154  }
155  }
156 
157 #ifndef CONFIG_DISCONTIGMEM
158  /*
159  * Throw out ranges that are too far apart (controlled by
160  * MAX_GAP).
161  */
162 
163  for (i = 1; i < npmem_ranges; i++) {
164  if (pmem_ranges[i].start_pfn -
165  (pmem_ranges[i-1].start_pfn +
166  pmem_ranges[i-1].pages) > MAX_GAP) {
167  npmem_ranges = i;
168  printk("Large gap in memory detected (%ld pages). "
169  "Consider turning on CONFIG_DISCONTIGMEM\n",
170  pmem_ranges[i].start_pfn -
171  (pmem_ranges[i-1].start_pfn +
172  pmem_ranges[i-1].pages));
173  break;
174  }
175  }
176 #endif
177 
178  if (npmem_ranges > 1) {
179 
180  /* Print the memory ranges */
181 
182  printk(KERN_INFO "Memory Ranges:\n");
183 
184  for (i = 0; i < npmem_ranges; i++) {
185  unsigned long start;
186  unsigned long size;
187 
188  size = (pmem_ranges[i].pages << PAGE_SHIFT);
189  start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190  printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191  i,start, start + (size - 1), size >> 20);
192  }
193  }
194 
195  sysram_resource_count = npmem_ranges;
196  for (i = 0; i < sysram_resource_count; i++) {
197  struct resource *res = &sysram_resources[i];
198  res->name = "System RAM";
200  res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
203  }
204 
205  /*
206  * For 32 bit kernels we limit the amount of memory we can
207  * support, in order to preserve enough kernel address space
208  * for other purposes. For 64 bit kernels we don't normally
209  * limit the memory, but this mechanism can be used to
210  * artificially limit the amount of memory (and it is written
211  * to work with multiple memory ranges).
212  */
213 
214  mem_limit_func(); /* check for "mem=" argument */
215 
216  mem_max = 0;
217  num_physpages = 0;
218  for (i = 0; i < npmem_ranges; i++) {
219  unsigned long rsize;
220 
221  rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222  if ((mem_max + rsize) > mem_limit) {
223  printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224  if (mem_max == mem_limit)
225  npmem_ranges = i;
226  else {
227  pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
228  - (mem_max >> PAGE_SHIFT);
229  npmem_ranges = i + 1;
230  mem_max = mem_limit;
231  }
233  break;
234  }
236  mem_max += rsize;
237  }
238 
239  printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240 
241 #ifndef CONFIG_DISCONTIGMEM
242  /* Merge the ranges, keeping track of the holes */
243 
244  {
245  unsigned long end_pfn;
246  unsigned long hole_pages;
247 
248  npmem_holes = 0;
249  end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250  for (i = 1; i < npmem_ranges; i++) {
251 
252  hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253  if (hole_pages) {
254  pmem_holes[npmem_holes].start_pfn = end_pfn;
255  pmem_holes[npmem_holes++].pages = hole_pages;
256  end_pfn += hole_pages;
257  }
258  end_pfn += pmem_ranges[i].pages;
259  }
260 
261  pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262  npmem_ranges = 1;
263  }
264 #endif
265 
266  bootmap_pages = 0;
267  for (i = 0; i < npmem_ranges; i++)
268  bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269 
270  bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271 
272 #ifdef CONFIG_DISCONTIGMEM
273  for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274  memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275  NODE_DATA(i)->bdata = &bootmem_node_data[i];
276  }
277  memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278 
279  for (i = 0; i < npmem_ranges; i++) {
280  node_set_state(i, N_NORMAL_MEMORY);
281  node_set_online(i);
282  }
283 #endif
284 
285  /*
286  * Initialize and free the full range of memory in each range.
287  * Note that the only writing these routines do are to the bootmap,
288  * and we've made sure to locate the bootmap properly so that they
289  * won't be writing over anything important.
290  */
291 
292  bootmap_pfn = bootmap_start_pfn;
293  max_pfn = 0;
294  for (i = 0; i < npmem_ranges; i++) {
295  unsigned long start_pfn;
296  unsigned long npages;
297 
298  start_pfn = pmem_ranges[i].start_pfn;
299  npages = pmem_ranges[i].pages;
300 
301  bootmap_size = init_bootmem_node(NODE_DATA(i),
302  bootmap_pfn,
303  start_pfn,
304  (start_pfn + npages) );
306  (start_pfn << PAGE_SHIFT),
307  (npages << PAGE_SHIFT) );
308  bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309  if ((start_pfn + npages) > max_pfn)
310  max_pfn = start_pfn + npages;
311  }
312 
313  /* IOMMU is always used to access "high mem" on those boxes
314  * that can support enough mem that a PCI device couldn't
315  * directly DMA to any physical addresses.
316  * ISA DMA support will need to revisit this.
317  */
319 
320  /* bootmap sizing messed up? */
321  BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322 
323  /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324 
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
326 
328  (unsigned long)(PAGE0->mem_free +
330  reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
331  (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
332  reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
333  ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335 
336 #ifndef CONFIG_DISCONTIGMEM
337 
338  /* reserve the holes */
339 
340  for (i = 0; i < npmem_holes; i++) {
342  (pmem_holes[i].start_pfn << PAGE_SHIFT),
343  (pmem_holes[i].pages << PAGE_SHIFT),
345  }
346 #endif
347 
348 #ifdef CONFIG_BLK_DEV_INITRD
349  if (initrd_start) {
350  printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
351  if (__pa(initrd_start) < mem_max) {
352  unsigned long initrd_reserve;
353 
354  if (__pa(initrd_end) > mem_max) {
355  initrd_reserve = mem_max - __pa(initrd_start);
356  } else {
357  initrd_reserve = initrd_end - initrd_start;
358  }
360  printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
361 
363  initrd_reserve, BOOTMEM_DEFAULT);
364  }
365  }
366 #endif
367 
368  data_resource.start = virt_to_phys(&data_start);
369  data_resource.end = virt_to_phys(_end) - 1;
370  code_resource.start = virt_to_phys(_text);
371  code_resource.end = virt_to_phys(&data_start)-1;
372 
373  /* We don't know which region the kernel will be in, so try
374  * all of them.
375  */
376  for (i = 0; i < sysram_resource_count; i++) {
377  struct resource *res = &sysram_resources[i];
378  request_resource(res, &code_resource);
379  request_resource(res, &data_resource);
380  }
381  request_resource(&sysram_resources[0], &pdcdata_resource);
382 }
383 
384 static void __init map_pages(unsigned long start_vaddr,
385  unsigned long start_paddr, unsigned long size,
386  pgprot_t pgprot, int force)
387 {
388  pgd_t *pg_dir;
389  pmd_t *pmd;
390  pte_t *pg_table;
391  unsigned long end_paddr;
392  unsigned long start_pmd;
393  unsigned long start_pte;
394  unsigned long tmp1;
395  unsigned long tmp2;
396  unsigned long address;
397  unsigned long vaddr;
398  unsigned long ro_start;
399  unsigned long ro_end;
400  unsigned long fv_addr;
401  unsigned long gw_addr;
402  extern const unsigned long fault_vector_20;
403  extern void * const linux_gateway_page;
404 
405  ro_start = __pa((unsigned long)_text);
406  ro_end = __pa((unsigned long)&data_start);
407  fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
408  gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
409 
410  end_paddr = start_paddr + size;
411 
412  pg_dir = pgd_offset_k(start_vaddr);
413 
414 #if PTRS_PER_PMD == 1
415  start_pmd = 0;
416 #else
417  start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
418 #endif
419  start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
420 
421  address = start_paddr;
422  vaddr = start_vaddr;
423  while (address < end_paddr) {
424 #if PTRS_PER_PMD == 1
425  pmd = (pmd_t *)__pa(pg_dir);
426 #else
427  pmd = (pmd_t *)pgd_address(*pg_dir);
428 
429  /*
430  * pmd is physical at this point
431  */
432 
433  if (!pmd) {
435  pmd = (pmd_t *) __pa(pmd);
436  }
437 
438  pgd_populate(NULL, pg_dir, __va(pmd));
439 #endif
440  pg_dir++;
441 
442  /* now change pmd to kernel virtual addresses */
443 
444  pmd = (pmd_t *)__va(pmd) + start_pmd;
445  for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
446 
447  /*
448  * pg_table is physical at this point
449  */
450 
451  pg_table = (pte_t *)pmd_address(*pmd);
452  if (!pg_table) {
453  pg_table = (pte_t *)
455  pg_table = (pte_t *) __pa(pg_table);
456  }
457 
458  pmd_populate_kernel(NULL, pmd, __va(pg_table));
459 
460  /* now change pg_table to kernel virtual addresses */
461 
462  pg_table = (pte_t *) __va(pg_table) + start_pte;
463  for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
464  pte_t pte;
465 
466  /*
467  * Map the fault vector writable so we can
468  * write the HPMC checksum.
469  */
470  if (force)
471  pte = __mk_pte(address, pgprot);
472  else if (core_kernel_text(vaddr) &&
473  address != fv_addr)
474  pte = __mk_pte(address, PAGE_KERNEL_EXEC);
475  else
476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
477  if (address >= ro_start && address < ro_end
478  && address != fv_addr
479  && address != gw_addr)
480  pte = __mk_pte(address, PAGE_KERNEL_RO);
481  else
482 #endif
483  pte = __mk_pte(address, pgprot);
484 
485  if (address >= end_paddr) {
486  if (force)
487  break;
488  else
489  pte_val(pte) = 0;
490  }
491 
492  set_pte(pg_table, pte);
493 
494  address += PAGE_SIZE;
495  vaddr += PAGE_SIZE;
496  }
497  start_pte = 0;
498 
499  if (address >= end_paddr)
500  break;
501  }
502  start_pmd = 0;
503  }
504 }
505 
506 void free_initmem(void)
507 {
508  unsigned long addr;
509  unsigned long init_begin = (unsigned long)__init_begin;
510  unsigned long init_end = (unsigned long)__init_end;
511 
512  /* The init text pages are marked R-X. We have to
513  * flush the icache and mark them RW-
514  *
515  * This is tricky, because map_pages is in the init section.
516  * Do a dummy remap of the data section first (the data
517  * section is already PAGE_KERNEL) to pull in the TLB entries
518  * for map_kernel */
519  map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520  PAGE_KERNEL_RWX, 1);
521  /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
522  * map_pages */
523  map_pages(init_begin, __pa(init_begin), init_end - init_begin,
524  PAGE_KERNEL, 1);
525 
526  /* force the kernel to see the new TLB entries */
527  __flush_tlb_range(0, init_begin, init_end);
528  /* Attempt to catch anyone trying to execute code here
529  * by filling the page with BRK insns.
530  */
531  memset((void *)init_begin, 0x00, init_end - init_begin);
532  /* finally dump all the instructions which were cached, since the
533  * pages are no-longer executable */
534  flush_icache_range(init_begin, init_end);
535 
536  for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
537  ClearPageReserved(virt_to_page(addr));
538  init_page_count(virt_to_page(addr));
539  free_page(addr);
540  num_physpages++;
541  totalram_pages++;
542  }
543 
544  /* set up a new led state on systems shipped LED State panel */
546 
547  printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
548  (init_end - init_begin) >> 10);
549 }
550 
551 
552 #ifdef CONFIG_DEBUG_RODATA
553 void mark_rodata_ro(void)
554 {
555  /* rodata memory was already mapped with KERNEL_RO access rights by
556  pagetable_init() and map_pages(). No need to do additional stuff here */
557  printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558  (unsigned long)(__end_rodata - __start_rodata) >> 10);
559 }
560 #endif
561 
562 
563 /*
564  * Just an arbitrary offset to serve as a "hole" between mapping areas
565  * (between top of physical memory and a potential pcxl dma mapping
566  * area, and below the vmalloc mapping area).
567  *
568  * The current 32K value just means that there will be a 32K "hole"
569  * between mapping areas. That means that any out-of-bounds memory
570  * accesses will hopefully be caught. The vmalloc() routines leaves
571  * a hole of 4kB between each vmalloced area for the same reason.
572  */
573 
574  /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
579 
580 #define VM_MAP_OFFSET (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582  & ~(VM_MAP_OFFSET-1)))
583 
585 EXPORT_SYMBOL(parisc_vmalloc_start);
586 
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
590 
591 void __init mem_init(void)
592 {
593  int codesize, reservedpages, datasize, initsize;
594 
595  /* Do sanity checks on page table constants */
596  BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
597  BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
598  BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
600  > BITS_PER_LONG);
601 
603 
604 #ifndef CONFIG_DISCONTIGMEM
606  totalram_pages += free_all_bootmem();
607 #else
608  {
609  int i;
610 
611  for (i = 0; i < npmem_ranges; i++)
612  totalram_pages += free_all_bootmem_node(NODE_DATA(i));
613  }
614 #endif
615 
616  codesize = (unsigned long)_etext - (unsigned long)_text;
617  datasize = (unsigned long)_edata - (unsigned long)_etext;
618  initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
619 
620  reservedpages = 0;
621 {
622  unsigned long pfn;
623 #ifdef CONFIG_DISCONTIGMEM
624  int i;
625 
626  for (i = 0; i < npmem_ranges; i++) {
627  for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
628  if (PageReserved(pfn_to_page(pfn)))
629  reservedpages++;
630  }
631  }
632 #else /* !CONFIG_DISCONTIGMEM */
633  for (pfn = 0; pfn < max_pfn; pfn++) {
634  /*
635  * Only count reserved RAM pages
636  */
637  if (PageReserved(pfn_to_page(pfn)))
638  reservedpages++;
639  }
640 #endif
641 }
642 
643 #ifdef CONFIG_PA11
644  if (hppa_dma_ops == &pcxl_dma_ops) {
648  } else {
649  pcxl_dma_start = 0;
651  }
652 #else
654 #endif
655 
656  printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
657  nr_free_pages() << (PAGE_SHIFT-10),
658  num_physpages << (PAGE_SHIFT-10),
659  codesize >> 10,
660  reservedpages << (PAGE_SHIFT-10),
661  datasize >> 10,
662  initsize >> 10
663  );
664 
665 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
666  printk("virtual kernel memory layout:\n"
667  " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
668  " memory : 0x%p - 0x%p (%4ld MB)\n"
669  " .init : 0x%p - 0x%p (%4ld kB)\n"
670  " .data : 0x%p - 0x%p (%4ld kB)\n"
671  " .text : 0x%p - 0x%p (%4ld kB)\n",
672 
673  (void*)VMALLOC_START, (void*)VMALLOC_END,
674  (VMALLOC_END - VMALLOC_START) >> 20,
675 
676  __va(0), high_memory,
677  ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
678 
680  ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
681 
682  _etext, _edata,
683  ((unsigned long)_edata - (unsigned long)_etext) >> 10,
684 
685  _text, _etext,
686  ((unsigned long)_etext - (unsigned long)_text) >> 10);
687 #endif
688 }
689 
690 unsigned long *empty_zero_page __read_mostly;
692 
693 void show_mem(unsigned int filter)
694 {
695  int i,free = 0,total = 0,reserved = 0;
696  int shared = 0, cached = 0;
697 
698  printk(KERN_INFO "Mem-info:\n");
699  show_free_areas(filter);
700 #ifndef CONFIG_DISCONTIGMEM
701  i = max_mapnr;
702  while (i-- > 0) {
703  total++;
704  if (PageReserved(mem_map+i))
705  reserved++;
706  else if (PageSwapCache(mem_map+i))
707  cached++;
708  else if (!page_count(&mem_map[i]))
709  free++;
710  else
711  shared += page_count(&mem_map[i]) - 1;
712  }
713 #else
714  for (i = 0; i < npmem_ranges; i++) {
715  int j;
716 
717  for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
718  struct page *p;
719  unsigned long flags;
720 
721  pgdat_resize_lock(NODE_DATA(i), &flags);
722  p = nid_page_nr(i, j) - node_start_pfn(i);
723 
724  total++;
725  if (PageReserved(p))
726  reserved++;
727  else if (PageSwapCache(p))
728  cached++;
729  else if (!page_count(p))
730  free++;
731  else
732  shared += page_count(p) - 1;
733  pgdat_resize_unlock(NODE_DATA(i), &flags);
734  }
735  }
736 #endif
737  printk(KERN_INFO "%d pages of RAM\n", total);
738  printk(KERN_INFO "%d reserved pages\n", reserved);
739  printk(KERN_INFO "%d pages shared\n", shared);
740  printk(KERN_INFO "%d pages swap cached\n", cached);
741 
742 
743 #ifdef CONFIG_DISCONTIGMEM
744  {
745  struct zonelist *zl;
746  int i, j;
747 
748  for (i = 0; i < npmem_ranges; i++) {
749  zl = node_zonelist(i, 0);
750  for (j = 0; j < MAX_NR_ZONES; j++) {
751  struct zoneref *z;
752  struct zone *zone;
753 
754  printk("Zone list for zone %d on node %d: ", j, i);
755  for_each_zone_zonelist(zone, z, zl, j)
756  printk("[%d/%s] ", zone_to_nid(zone),
757  zone->name);
758  printk("\n");
759  }
760  }
761  }
762 #endif
763 }
764 
765 /*
766  * pagetable_init() sets up the page tables
767  *
768  * Note that gateway_init() places the Linux gateway page at page 0.
769  * Since gateway pages cannot be dereferenced this has the desirable
770  * side effect of trapping those pesky NULL-reference errors in the
771  * kernel.
772  */
773 static void __init pagetable_init(void)
774 {
775  int range;
776 
777  /* Map each physical memory range to its kernel vaddr */
778 
779  for (range = 0; range < npmem_ranges; range++) {
780  unsigned long start_paddr;
781  unsigned long end_paddr;
782  unsigned long size;
783 
784  start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
785  end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
786  size = pmem_ranges[range].pages << PAGE_SHIFT;
787 
788  map_pages((unsigned long)__va(start_paddr), start_paddr,
789  size, PAGE_KERNEL, 0);
790  }
791 
792 #ifdef CONFIG_BLK_DEV_INITRD
793  if (initrd_end && initrd_end > mem_limit) {
794  printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
795  map_pages(initrd_start, __pa(initrd_start),
796  initrd_end - initrd_start, PAGE_KERNEL, 0);
797  }
798 #endif
799 
802 }
803 
804 static void __init gateway_init(void)
805 {
806  unsigned long linux_gateway_page_addr;
807  /* FIXME: This is 'const' in order to trick the compiler
808  into not treating it as DP-relative data. */
809  extern void * const linux_gateway_page;
810 
811  linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
812 
813  /*
814  * Setup Linux Gateway page.
815  *
816  * The Linux gateway page will reside in kernel space (on virtual
817  * page 0), so it doesn't need to be aliased into user space.
818  */
819 
820  map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
821  PAGE_SIZE, PAGE_GATEWAY, 1);
822 }
823 
824 #ifdef CONFIG_HPUX
825 void
826 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
827 {
828  pgd_t *pg_dir;
829  pmd_t *pmd;
830  pte_t *pg_table;
831  unsigned long start_pmd;
832  unsigned long start_pte;
833  unsigned long address;
834  unsigned long hpux_gw_page_addr;
835  /* FIXME: This is 'const' in order to trick the compiler
836  into not treating it as DP-relative data. */
837  extern void * const hpux_gateway_page;
838 
839  hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
840 
841  /*
842  * Setup HP-UX Gateway page.
843  *
844  * The HP-UX gateway page resides in the user address space,
845  * so it needs to be aliased into each process.
846  */
847 
848  pg_dir = pgd_offset(mm,hpux_gw_page_addr);
849 
850 #if PTRS_PER_PMD == 1
851  start_pmd = 0;
852 #else
853  start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
854 #endif
855  start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
856 
857  address = __pa(&hpux_gateway_page);
858 #if PTRS_PER_PMD == 1
859  pmd = (pmd_t *)__pa(pg_dir);
860 #else
861  pmd = (pmd_t *) pgd_address(*pg_dir);
862 
863  /*
864  * pmd is physical at this point
865  */
866 
867  if (!pmd) {
868  pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
869  pmd = (pmd_t *) __pa(pmd);
870  }
871 
872  __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
873 #endif
874  /* now change pmd to kernel virtual addresses */
875 
876  pmd = (pmd_t *)__va(pmd) + start_pmd;
877 
878  /*
879  * pg_table is physical at this point
880  */
881 
882  pg_table = (pte_t *) pmd_address(*pmd);
883  if (!pg_table)
884  pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
885 
886  __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
887 
888  /* now change pg_table to kernel virtual addresses */
889 
890  pg_table = (pte_t *) __va(pg_table) + start_pte;
891  set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
892 }
894 #endif
895 
896 void __init paging_init(void)
897 {
898  int i;
899 
900  setup_bootmem();
901  pagetable_init();
902  gateway_init();
903  flush_cache_all_local(); /* start with known state */
905 
906  for (i = 0; i < npmem_ranges; i++) {
907  unsigned long zones_size[MAX_NR_ZONES] = { 0, };
908 
909  zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
910 
911 #ifdef CONFIG_DISCONTIGMEM
912  /* Need to initialize the pfnnid_map before we can initialize
913  the zone */
914  {
915  int j;
916  for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
917  j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
918  j++) {
919  pfnnid_map[j] = i;
920  }
921  }
922 #endif
923 
924  free_area_init_node(i, zones_size,
925  pmem_ranges[i].start_pfn, NULL);
926  }
927 }
928 
929 #ifdef CONFIG_PA20
930 
931 /*
932  * Currently, all PA20 chips have 18 bit protection IDs, which is the
933  * limiting factor (space ids are 32 bits).
934  */
935 
936 #define NR_SPACE_IDS 262144
937 
938 #else
939 
940 /*
941  * Currently we have a one-to-one relationship between space IDs and
942  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
943  * support 15 bit protection IDs, so that is the limiting factor.
944  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
945  * probably not worth the effort for a special case here.
946  */
947 
948 #define NR_SPACE_IDS 32768
949 
950 #endif /* !CONFIG_PA20 */
951 
952 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
953 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
954 
955 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
956 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
957 static unsigned long space_id_index;
958 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
959 static unsigned long dirty_space_ids = 0;
960 
961 static DEFINE_SPINLOCK(sid_lock);
962 
963 unsigned long alloc_sid(void)
964 {
965  unsigned long index;
966 
967  spin_lock(&sid_lock);
968 
969  if (free_space_ids == 0) {
970  if (dirty_space_ids != 0) {
971  spin_unlock(&sid_lock);
972  flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
973  spin_lock(&sid_lock);
974  }
975  BUG_ON(free_space_ids == 0);
976  }
977 
978  free_space_ids--;
979 
980  index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
981  space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
982  space_id_index = index;
983 
984  spin_unlock(&sid_lock);
985 
986  return index << SPACEID_SHIFT;
987 }
988 
989 void free_sid(unsigned long spaceid)
990 {
991  unsigned long index = spaceid >> SPACEID_SHIFT;
992  unsigned long *dirty_space_offset;
993 
994  dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
995  index &= (BITS_PER_LONG - 1);
996 
997  spin_lock(&sid_lock);
998 
999  BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1000 
1001  *dirty_space_offset |= (1L << index);
1002  dirty_space_ids++;
1003 
1004  spin_unlock(&sid_lock);
1005 }
1006 
1007 
1008 #ifdef CONFIG_SMP
1009 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1010 {
1011  int i;
1012 
1013  /* NOTE: sid_lock must be held upon entry */
1014 
1015  *ndirtyptr = dirty_space_ids;
1016  if (dirty_space_ids != 0) {
1017  for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018  dirty_array[i] = dirty_space_id[i];
1019  dirty_space_id[i] = 0;
1020  }
1021  dirty_space_ids = 0;
1022  }
1023 
1024  return;
1025 }
1026 
1027 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1028 {
1029  int i;
1030 
1031  /* NOTE: sid_lock must be held upon entry */
1032 
1033  if (ndirty != 0) {
1034  for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035  space_id[i] ^= dirty_array[i];
1036  }
1037 
1038  free_space_ids += ndirty;
1039  space_id_index = 0;
1040  }
1041 }
1042 
1043 #else /* CONFIG_SMP */
1044 
1045 static void recycle_sids(void)
1046 {
1047  int i;
1048 
1049  /* NOTE: sid_lock must be held upon entry */
1050 
1051  if (dirty_space_ids != 0) {
1052  for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053  space_id[i] ^= dirty_space_id[i];
1054  dirty_space_id[i] = 0;
1055  }
1056 
1057  free_space_ids += dirty_space_ids;
1058  dirty_space_ids = 0;
1059  space_id_index = 0;
1060  }
1061 }
1062 #endif
1063 
1064 /*
1065  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066  * purged, we can safely reuse the space ids that were released but
1067  * not flushed from the tlb.
1068  */
1069 
1070 #ifdef CONFIG_SMP
1071 
1072 static unsigned long recycle_ndirty;
1073 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074 static unsigned int recycle_inuse;
1075 
1076 void flush_tlb_all(void)
1077 {
1078  int do_recycle;
1079 
1080  do_recycle = 0;
1081  spin_lock(&sid_lock);
1082  if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083  BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1084  get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085  recycle_inuse++;
1086  do_recycle++;
1087  }
1088  spin_unlock(&sid_lock);
1090  if (do_recycle) {
1091  spin_lock(&sid_lock);
1092  recycle_sids(recycle_ndirty,recycle_dirty_array);
1093  recycle_inuse = 0;
1094  spin_unlock(&sid_lock);
1095  }
1096 }
1097 #else
1098 void flush_tlb_all(void)
1099 {
1100  spin_lock(&sid_lock);
1102  recycle_sids();
1103  spin_unlock(&sid_lock);
1104 }
1105 #endif
1106 
1107 #ifdef CONFIG_BLK_DEV_INITRD
1108 void free_initrd_mem(unsigned long start, unsigned long end)
1109 {
1110  if (start >= end)
1111  return;
1112  printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113  for (; start < end; start += PAGE_SIZE) {
1114  ClearPageReserved(virt_to_page(start));
1115  init_page_count(virt_to_page(start));
1116  free_page(start);
1117  num_physpages++;
1118  totalram_pages++;
1119  }
1120 }
1121 #endif