Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.c
Go to the documentation of this file.
1 /*
2  * Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct Created by Vamsi Krishna S <[email protected]> Kernel
21  * Probes initial implementation ( includes contributions from
22  * Rusty Russell).
23  * 2004-July Suparna Bhattacharya <[email protected]> added jumper probes
24  * interface to access function arguments.
25  * 2004-Nov Ananth N Mavinakayanahalli <[email protected]> kprobes port
26  * for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/cacheflush.h>
36 #include <asm/sstep.h>
37 #include <asm/uaccess.h>
38 
39 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
40 #define MSR_SINGLESTEP (MSR_DE)
41 #else
42 #define MSR_SINGLESTEP (MSR_SE)
43 #endif
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
47 
49 
51 {
52  int ret = 0;
54 
55  if ((unsigned long)p->addr & 0x03) {
56  printk("Attempt to register kprobe at an unaligned address\n");
57  ret = -EINVAL;
58  } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
59  printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
60  ret = -EINVAL;
61  }
62 
63  /* insn must be on a special executable page on ppc64. This is
64  * not explicitly required on ppc32 (right now), but it doesn't hurt */
65  if (!ret) {
66  p->ainsn.insn = get_insn_slot();
67  if (!p->ainsn.insn)
68  ret = -ENOMEM;
69  }
70 
71  if (!ret) {
72  memcpy(p->ainsn.insn, p->addr,
73  MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74  p->opcode = *p->addr;
75  flush_icache_range((unsigned long)p->ainsn.insn,
76  (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
77  }
78 
79  p->ainsn.boostable = 0;
80  return ret;
81 }
82 
84 {
86  flush_icache_range((unsigned long) p->addr,
87  (unsigned long) p->addr + sizeof(kprobe_opcode_t));
88 }
89 
91 {
92  *p->addr = p->opcode;
93  flush_icache_range((unsigned long) p->addr,
94  (unsigned long) p->addr + sizeof(kprobe_opcode_t));
95 }
96 
98 {
99  if (p->ainsn.insn) {
100  free_insn_slot(p->ainsn.insn, 0);
101  p->ainsn.insn = NULL;
102  }
103 }
104 
105 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
106 {
107  /* We turn off async exceptions to ensure that the single step will
108  * be for the instruction we have the kprobe on, if we dont its
109  * possible we'd get the single step reported for an exception handler
110  * like Decrementer or External Interrupt */
111  regs->msr &= ~MSR_EE;
112  regs->msr |= MSR_SINGLESTEP;
113 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
114  regs->msr &= ~MSR_CE;
115  mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
116 #ifdef CONFIG_PPC_47x
117  isync();
118 #endif
119 #endif
120 
121  /*
122  * On powerpc we should single step on the original
123  * instruction even if the probed insn is a trap
124  * variant as values in regs could play a part in
125  * if the trap is taken or not
126  */
127  regs->nip = (unsigned long)p->ainsn.insn;
128 }
129 
130 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
131 {
132  kcb->prev_kprobe.kp = kprobe_running();
133  kcb->prev_kprobe.status = kcb->kprobe_status;
134  kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
135 }
136 
137 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
138 {
139  __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
140  kcb->kprobe_status = kcb->prev_kprobe.status;
141  kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
142 }
143 
144 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
145  struct kprobe_ctlblk *kcb)
146 {
147  __get_cpu_var(current_kprobe) = p;
148  kcb->kprobe_saved_msr = regs->msr;
149 }
150 
152  struct pt_regs *regs)
153 {
154  ri->ret_addr = (kprobe_opcode_t *)regs->link;
155 
156  /* Replace the return addr with trampoline addr */
157  regs->link = (unsigned long)kretprobe_trampoline;
158 }
159 
160 static int __kprobes kprobe_handler(struct pt_regs *regs)
161 {
162  struct kprobe *p;
163  int ret = 0;
164  unsigned int *addr = (unsigned int *)regs->nip;
165  struct kprobe_ctlblk *kcb;
166 
167  /*
168  * We don't want to be preempted for the entire
169  * duration of kprobe processing
170  */
171  preempt_disable();
172  kcb = get_kprobe_ctlblk();
173 
174  /* Check we're not actually recursing */
175  if (kprobe_running()) {
176  p = get_kprobe(addr);
177  if (p) {
178  kprobe_opcode_t insn = *p->ainsn.insn;
179  if (kcb->kprobe_status == KPROBE_HIT_SS &&
180  is_trap(insn)) {
181  /* Turn off 'trace' bits */
182  regs->msr &= ~MSR_SINGLESTEP;
183  regs->msr |= kcb->kprobe_saved_msr;
184  goto no_kprobe;
185  }
186  /* We have reentered the kprobe_handler(), since
187  * another probe was hit while within the handler.
188  * We here save the original kprobes variables and
189  * just single step on the instruction of the new probe
190  * without calling any user handlers.
191  */
192  save_previous_kprobe(kcb);
193  set_current_kprobe(p, regs, kcb);
194  kcb->kprobe_saved_msr = regs->msr;
196  prepare_singlestep(p, regs);
197  kcb->kprobe_status = KPROBE_REENTER;
198  return 1;
199  } else {
200  if (*addr != BREAKPOINT_INSTRUCTION) {
201  /* If trap variant, then it belongs not to us */
202  kprobe_opcode_t cur_insn = *addr;
203  if (is_trap(cur_insn))
204  goto no_kprobe;
205  /* The breakpoint instruction was removed by
206  * another cpu right after we hit, no further
207  * handling of this interrupt is appropriate
208  */
209  ret = 1;
210  goto no_kprobe;
211  }
212  p = __get_cpu_var(current_kprobe);
213  if (p->break_handler && p->break_handler(p, regs)) {
214  goto ss_probe;
215  }
216  }
217  goto no_kprobe;
218  }
219 
220  p = get_kprobe(addr);
221  if (!p) {
222  if (*addr != BREAKPOINT_INSTRUCTION) {
223  /*
224  * PowerPC has multiple variants of the "trap"
225  * instruction. If the current instruction is a
226  * trap variant, it could belong to someone else
227  */
228  kprobe_opcode_t cur_insn = *addr;
229  if (is_trap(cur_insn))
230  goto no_kprobe;
231  /*
232  * The breakpoint instruction was removed right
233  * after we hit it. Another cpu has removed
234  * either a probepoint or a debugger breakpoint
235  * at this address. In either case, no further
236  * handling of this interrupt is appropriate.
237  */
238  ret = 1;
239  }
240  /* Not one of ours: let kernel handle it */
241  goto no_kprobe;
242  }
243 
244  kcb->kprobe_status = KPROBE_HIT_ACTIVE;
245  set_current_kprobe(p, regs, kcb);
246  if (p->pre_handler && p->pre_handler(p, regs))
247  /* handler has already set things up, so skip ss setup */
248  return 1;
249 
250 ss_probe:
251  if (p->ainsn.boostable >= 0) {
252  unsigned int insn = *p->ainsn.insn;
253 
254  /* regs->nip is also adjusted if emulate_step returns 1 */
255  ret = emulate_step(regs, insn);
256  if (ret > 0) {
257  /*
258  * Once this instruction has been boosted
259  * successfully, set the boostable flag
260  */
261  if (unlikely(p->ainsn.boostable == 0))
262  p->ainsn.boostable = 1;
263 
264  if (p->post_handler)
265  p->post_handler(p, regs, 0);
266 
267  kcb->kprobe_status = KPROBE_HIT_SSDONE;
268  reset_current_kprobe();
270  return 1;
271  } else if (ret < 0) {
272  /*
273  * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
274  * So, we should never get here... but, its still
275  * good to catch them, just in case...
276  */
277  printk("Can't step on instruction %x\n", insn);
278  BUG();
279  } else if (ret == 0)
280  /* This instruction can't be boosted */
281  p->ainsn.boostable = -1;
282  }
283  prepare_singlestep(p, regs);
284  kcb->kprobe_status = KPROBE_HIT_SS;
285  return 1;
286 
287 no_kprobe:
289  return ret;
290 }
291 
292 /*
293  * Function return probe trampoline:
294  * - init_kprobes() establishes a probepoint here
295  * - When the probed function returns, this probe
296  * causes the handlers to fire
297  */
298 static void __used kretprobe_trampoline_holder(void)
299 {
300  asm volatile(".global kretprobe_trampoline\n"
301  "kretprobe_trampoline:\n"
302  "nop\n");
303 }
304 
305 /*
306  * Called when the probe at kretprobe trampoline is hit
307  */
308 static int __kprobes trampoline_probe_handler(struct kprobe *p,
309  struct pt_regs *regs)
310 {
311  struct kretprobe_instance *ri = NULL;
312  struct hlist_head *head, empty_rp;
313  struct hlist_node *node, *tmp;
314  unsigned long flags, orig_ret_address = 0;
315  unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
316 
317  INIT_HLIST_HEAD(&empty_rp);
318  kretprobe_hash_lock(current, &head, &flags);
319 
320  /*
321  * It is possible to have multiple instances associated with a given
322  * task either because an multiple functions in the call path
323  * have a return probe installed on them, and/or more than one return
324  * return probe was registered for a target function.
325  *
326  * We can handle this because:
327  * - instances are always inserted at the head of the list
328  * - when multiple return probes are registered for the same
329  * function, the first instance's ret_addr will point to the
330  * real return address, and all the rest will point to
331  * kretprobe_trampoline
332  */
333  hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
334  if (ri->task != current)
335  /* another task is sharing our hash bucket */
336  continue;
337 
338  if (ri->rp && ri->rp->handler)
339  ri->rp->handler(ri, regs);
340 
341  orig_ret_address = (unsigned long)ri->ret_addr;
342  recycle_rp_inst(ri, &empty_rp);
343 
344  if (orig_ret_address != trampoline_address)
345  /*
346  * This is the real return address. Any other
347  * instances associated with this task are for
348  * other calls deeper on the call stack
349  */
350  break;
351  }
352 
353  kretprobe_assert(ri, orig_ret_address, trampoline_address);
354  regs->nip = orig_ret_address;
355 
356  reset_current_kprobe();
359 
360  hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
361  hlist_del(&ri->hlist);
362  kfree(ri);
363  }
364  /*
365  * By returning a non-zero value, we are telling
366  * kprobe_handler() that we don't want the post_handler
367  * to run (and have re-enabled preemption)
368  */
369  return 1;
370 }
371 
372 /*
373  * Called after single-stepping. p->addr is the address of the
374  * instruction whose first byte has been replaced by the "breakpoint"
375  * instruction. To avoid the SMP problems that can occur when we
376  * temporarily put back the original opcode to single-step, we
377  * single-stepped a copy of the instruction. The address of this
378  * copy is p->ainsn.insn.
379  */
380 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
381 {
382  struct kprobe *cur = kprobe_running();
383  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
384 
385  if (!cur)
386  return 0;
387 
388  /* make sure we got here for instruction we have a kprobe on */
389  if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
390  return 0;
391 
392  if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
393  kcb->kprobe_status = KPROBE_HIT_SSDONE;
394  cur->post_handler(cur, regs, 0);
395  }
396 
397  /* Adjust nip to after the single-stepped instruction */
398  regs->nip = (unsigned long)cur->addr + 4;
399  regs->msr |= kcb->kprobe_saved_msr;
400 
401  /*Restore back the original saved kprobes variables and continue. */
402  if (kcb->kprobe_status == KPROBE_REENTER) {
403  restore_previous_kprobe(kcb);
404  goto out;
405  }
406  reset_current_kprobe();
407 out:
409 
410  /*
411  * if somebody else is singlestepping across a probe point, msr
412  * will have DE/SE set, in which case, continue the remaining processing
413  * of do_debug, as if this is not a probe hit.
414  */
415  if (regs->msr & MSR_SINGLESTEP)
416  return 0;
417 
418  return 1;
419 }
420 
421 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
422 {
423  struct kprobe *cur = kprobe_running();
424  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
425  const struct exception_table_entry *entry;
426 
427  switch(kcb->kprobe_status) {
428  case KPROBE_HIT_SS:
429  case KPROBE_REENTER:
430  /*
431  * We are here because the instruction being single
432  * stepped caused a page fault. We reset the current
433  * kprobe and the nip points back to the probe address
434  * and allow the page fault handler to continue as a
435  * normal page fault.
436  */
437  regs->nip = (unsigned long)cur->addr;
438  regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
439  regs->msr |= kcb->kprobe_saved_msr;
440  if (kcb->kprobe_status == KPROBE_REENTER)
441  restore_previous_kprobe(kcb);
442  else
443  reset_current_kprobe();
445  break;
446  case KPROBE_HIT_ACTIVE:
447  case KPROBE_HIT_SSDONE:
448  /*
449  * We increment the nmissed count for accounting,
450  * we can also use npre/npostfault count for accouting
451  * these specific fault cases.
452  */
454 
455  /*
456  * We come here because instructions in the pre/post
457  * handler caused the page_fault, this could happen
458  * if handler tries to access user space by
459  * copy_from_user(), get_user() etc. Let the
460  * user-specified handler try to fix it first.
461  */
462  if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
463  return 1;
464 
465  /*
466  * In case the user-specified fault handler returned
467  * zero, try to fix up.
468  */
469  if ((entry = search_exception_tables(regs->nip)) != NULL) {
470  regs->nip = entry->fixup;
471  return 1;
472  }
473 
474  /*
475  * fixup_exception() could not handle it,
476  * Let do_page_fault() fix it.
477  */
478  break;
479  default:
480  break;
481  }
482  return 0;
483 }
484 
485 /*
486  * Wrapper routine to for handling exceptions.
487  */
489  unsigned long val, void *data)
490 {
491  struct die_args *args = (struct die_args *)data;
492  int ret = NOTIFY_DONE;
493 
494  if (args->regs && user_mode(args->regs))
495  return ret;
496 
497  switch (val) {
498  case DIE_BPT:
499  if (kprobe_handler(args->regs))
500  ret = NOTIFY_STOP;
501  break;
502  case DIE_SSTEP:
503  if (post_kprobe_handler(args->regs))
504  ret = NOTIFY_STOP;
505  break;
506  default:
507  break;
508  }
509  return ret;
510 }
511 
512 #ifdef CONFIG_PPC64
513 unsigned long arch_deref_entry_point(void *entry)
514 {
515  return ((func_descr_t *)entry)->entry;
516 }
517 #endif
518 
519 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
520 {
521  struct jprobe *jp = container_of(p, struct jprobe, kp);
522  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523 
524  memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
525 
526  /* setup return addr to the jprobe handler routine */
527  regs->nip = arch_deref_entry_point(jp->entry);
528 #ifdef CONFIG_PPC64
529  regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
530 #endif
531 
532  return 1;
533 }
534 
536 {
537  asm volatile("trap" ::: "memory");
538 }
539 
540 static void __used __kprobes jprobe_return_end(void)
541 {
542 };
543 
544 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
545 {
546  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
547 
548  /*
549  * FIXME - we should ideally be validating that we got here 'cos
550  * of the "trap" in jprobe_return() above, before restoring the
551  * saved regs...
552  */
553  memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
555  return 1;
556 }
557 
558 static struct kprobe trampoline_p = {
561 };
562 
564 {
565  return register_kprobe(&trampoline_p);
566 }
567 
569 {
571  return 1;
572 
573  return 0;
574 }