Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process.c
Go to the documentation of this file.
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  * Copyright IBM Corp. 1999, 2009
5  * Author(s): Martin Schwidefsky <[email protected]>,
6  * Hartmut Penner <[email protected]>,
7  * Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36 
38 
39 /*
40  * Return saved PC of a blocked thread. used in kernel/sched.
41  * resume in entry.S does not create a new stack frame, it
42  * just stores the registers %r6-%r15 to the frame given by
43  * schedule. We want to return the address of the caller of
44  * schedule, so we have to walk the backchain one time to
45  * find the frame schedule() store its return address.
46  */
47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49  struct stack_frame *sf, *low, *high;
50 
51  if (!tsk || !task_stack_page(tsk))
52  return 0;
53  low = task_stack_page(tsk);
54  high = (struct stack_frame *) task_pt_regs(tsk);
55  sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56  if (sf <= low || sf > high)
57  return 0;
58  sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59  if (sf <= low || sf > high)
60  return 0;
61  return sf->gprs[8];
62 }
63 
64 /*
65  * The idle loop on a S390...
66  */
67 static void default_idle(void)
68 {
70  cpu_die();
72  if (need_resched()) {
74  return;
75  }
77  if (test_thread_flag(TIF_MCCK_PENDING)) {
80  return;
81  }
82  /* Halt the cpu and keep track of cpu time accounting. */
84 }
85 
86 void cpu_idle(void)
87 {
88  for (;;) {
89  tick_nohz_idle_enter();
91  while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
92  default_idle();
93  rcu_idle_exit();
94  tick_nohz_idle_exit();
95  if (test_thread_flag(TIF_MCCK_PENDING))
98  }
99 }
100 
101 extern void __kprobes kernel_thread_starter(void);
102 
103 /*
104  * Free current thread data structures etc..
105  */
106 void exit_thread(void)
107 {
109 }
110 
111 void flush_thread(void)
112 {
113 }
114 
115 void release_thread(struct task_struct *dead_task)
116 {
117 }
118 
119 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
120  unsigned long arg,
121  struct task_struct *p, struct pt_regs *regs)
122 {
123  struct thread_info *ti;
124  struct fake_frame
125  {
126  struct stack_frame sf;
127  struct pt_regs childregs;
128  } *frame;
129 
130  frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
131  p->thread.ksp = (unsigned long) frame;
132  /* Save access registers to new thread structure. */
133  save_access_regs(&p->thread.acrs[0]);
134  /* start new process with ar4 pointing to the correct address space */
135  p->thread.mm_segment = get_fs();
136  /* Don't copy debug registers */
137  memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
138  memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
139  clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
140  clear_tsk_thread_flag(p, TIF_PER_TRAP);
141  /* Initialize per thread user and system timer values */
142  ti = task_thread_info(p);
143  ti->user_timer = 0;
144  ti->system_timer = 0;
145 
146  frame->sf.back_chain = 0;
147  /* new return point is ret_from_fork */
148  frame->sf.gprs[8] = (unsigned long) ret_from_fork;
149  /* fake return stack for resume(), don't go back to schedule */
150  frame->sf.gprs[9] = (unsigned long) frame;
151 
152  /* Store access registers to kernel stack of new process. */
153  if (unlikely(!regs)) {
154  /* kernel thread */
155  memset(&frame->childregs, 0, sizeof(struct pt_regs));
156  frame->childregs.psw.mask = psw_kernel_bits | PSW_MASK_DAT |
158  frame->childregs.psw.addr = PSW_ADDR_AMODE |
159  (unsigned long) kernel_thread_starter;
160  frame->childregs.gprs[9] = new_stackp; /* function */
161  frame->childregs.gprs[10] = arg;
162  frame->childregs.gprs[11] = (unsigned long) do_exit;
163  frame->childregs.orig_gpr2 = -1;
164 
165  return 0;
166  }
167  frame->childregs = *regs;
168  frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
169  frame->childregs.gprs[15] = new_stackp;
170 
171  /* Don't copy runtime instrumentation info */
172  p->thread.ri_cb = NULL;
173  p->thread.ri_signum = 0;
174  frame->childregs.psw.mask &= ~PSW_MASK_RI;
175 
176 #ifndef CONFIG_64BIT
177  /*
178  * save fprs to current->thread.fp_regs to merge them with
179  * the emulated registers and then copy the result to the child.
180  */
181  save_fp_regs(&current->thread.fp_regs);
182  memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
183  sizeof(s390_fp_regs));
184  /* Set a new TLS ? */
185  if (clone_flags & CLONE_SETTLS)
186  p->thread.acrs[0] = regs->gprs[6];
187 #else /* CONFIG_64BIT */
188  /* Save the fpu registers to new thread structure. */
189  save_fp_regs(&p->thread.fp_regs);
190  /* Set a new TLS ? */
191  if (clone_flags & CLONE_SETTLS) {
192  if (is_compat_task()) {
193  p->thread.acrs[0] = (unsigned int) regs->gprs[6];
194  } else {
195  p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
196  p->thread.acrs[1] = (unsigned int) regs->gprs[6];
197  }
198  }
199 #endif /* CONFIG_64BIT */
200  return 0;
201 }
202 
204 {
205  struct pt_regs *regs = task_pt_regs(current);
206  return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
207 }
208 
209 SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
210  int __user *, parent_tidptr, int __user *, child_tidptr)
211 {
212  struct pt_regs *regs = task_pt_regs(current);
213 
214  if (!newsp)
215  newsp = regs->gprs[15];
216  return do_fork(clone_flags, newsp, regs, 0,
217  parent_tidptr, child_tidptr);
218 }
219 
220 /*
221  * This is trivial, and on the face of it looks like it
222  * could equally well be done in user mode.
223  *
224  * Not so, for quite unobvious reasons - register pressure.
225  * In user mode vfork() cannot have a stack frame, and if
226  * done by calling the "clone()" system call directly, you
227  * do not have enough call-clobbered registers to hold all
228  * the information you need.
229  */
231 {
232  struct pt_regs *regs = task_pt_regs(current);
233  return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
234  regs->gprs[15], regs, 0, NULL, NULL);
235 }
236 
238 {
239  current->thread.fp_regs.fpc = 0;
240  if (MACHINE_HAS_IEEE)
241  asm volatile("sfpc %0,%0" : : "d" (0));
242 }
243 
244 /*
245  * fill in the FPU structure for a core dump.
246  */
247 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
248 {
249 #ifndef CONFIG_64BIT
250  /*
251  * save fprs to current->thread.fp_regs to merge them with
252  * the emulated registers and then copy the result to the dump.
253  */
254  save_fp_regs(&current->thread.fp_regs);
255  memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
256 #else /* CONFIG_64BIT */
257  save_fp_regs(fpregs);
258 #endif /* CONFIG_64BIT */
259  return 1;
260 }
262 
263 unsigned long get_wchan(struct task_struct *p)
264 {
265  struct stack_frame *sf, *low, *high;
266  unsigned long return_address;
267  int count;
268 
269  if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
270  return 0;
271  low = task_stack_page(p);
272  high = (struct stack_frame *) task_pt_regs(p);
273  sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
274  if (sf <= low || sf > high)
275  return 0;
276  for (count = 0; count < 16; count++) {
277  sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
278  if (sf <= low || sf > high)
279  return 0;
280  return_address = sf->gprs[8] & PSW_ADDR_INSN;
281  if (!in_sched_functions(return_address))
282  return return_address;
283  }
284  return 0;
285 }
286 
287 unsigned long arch_align_stack(unsigned long sp)
288 {
289  if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
290  sp -= get_random_int() & ~PAGE_MASK;
291  return sp & ~0xf;
292 }
293 
294 static inline unsigned long brk_rnd(void)
295 {
296  /* 8MB for 32bit, 1GB for 64bit */
297  if (is_32bit_task())
298  return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
299  else
300  return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
301 }
302 
303 unsigned long arch_randomize_brk(struct mm_struct *mm)
304 {
305  unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
306 
307  if (ret < mm->brk)
308  return mm->brk;
309  return ret;
310 }
311 
312 unsigned long randomize_et_dyn(unsigned long base)
313 {
314  unsigned long ret = PAGE_ALIGN(base + brk_rnd());
315 
316  if (!(current->flags & PF_RANDOMIZE))
317  return base;
318  if (ret < base)
319  return base;
320  return ret;
321 }