Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.c
Go to the documentation of this file.
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <[email protected]>
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <linux/slab.h>
11 #include <asm/signal.h>
12 #include <asm/cacheflush.h>
13 #include <asm/uaccess.h>
14 
15 /* We do not have hardware single-stepping on sparc64.
16  * So we implement software single-stepping with breakpoint
17  * traps. The top-level scheme is similar to that used
18  * in the x86 kprobes implementation.
19  *
20  * In the kprobe->ainsn.insn[] array we store the original
21  * instruction at index zero and a break instruction at
22  * index one.
23  *
24  * When we hit a kprobe we:
25  * - Run the pre-handler
26  * - Remember "regs->tnpc" and interrupt level stored in
27  * "regs->tstate" so we can restore them later
28  * - Disable PIL interrupts
29  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
30  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
31  * - Mark that we are actively in a kprobe
32  *
33  * At this point we wait for the second breakpoint at
34  * kprobe->ainsn.insn[1] to hit. When it does we:
35  * - Run the post-handler
36  * - Set regs->tpc to "remembered" regs->tnpc stored above,
37  * restore the PIL interrupt level in "regs->tstate" as well
38  * - Make any adjustments necessary to regs->tnpc in order
39  * to handle relative branches correctly. See below.
40  * - Mark that we are no longer actively in a kprobe.
41  */
42 
43 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
45 
47 
49 {
50  if ((unsigned long) p->addr & 0x3UL)
51  return -EILSEQ;
52 
53  p->ainsn.insn[0] = *p->addr;
54  flushi(&p->ainsn.insn[0]);
55 
56  p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
57  flushi(&p->ainsn.insn[1]);
58 
59  p->opcode = *p->addr;
60  return 0;
61 }
62 
64 {
66  flushi(p->addr);
67 }
68 
70 {
71  *p->addr = p->opcode;
72  flushi(p->addr);
73 }
74 
75 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
76 {
77  kcb->prev_kprobe.kp = kprobe_running();
78  kcb->prev_kprobe.status = kcb->kprobe_status;
79  kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
80  kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
81 }
82 
83 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
84 {
85  __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
86  kcb->kprobe_status = kcb->prev_kprobe.status;
87  kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
88  kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
89 }
90 
91 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
92  struct kprobe_ctlblk *kcb)
93 {
94  __get_cpu_var(current_kprobe) = p;
95  kcb->kprobe_orig_tnpc = regs->tnpc;
96  kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
97 }
98 
99 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
100  struct kprobe_ctlblk *kcb)
101 {
102  regs->tstate |= TSTATE_PIL;
103 
104  /*single step inline, if it a breakpoint instruction*/
105  if (p->opcode == BREAKPOINT_INSTRUCTION) {
106  regs->tpc = (unsigned long) p->addr;
107  regs->tnpc = kcb->kprobe_orig_tnpc;
108  } else {
109  regs->tpc = (unsigned long) &p->ainsn.insn[0];
110  regs->tnpc = (unsigned long) &p->ainsn.insn[1];
111  }
112 }
113 
114 static int __kprobes kprobe_handler(struct pt_regs *regs)
115 {
116  struct kprobe *p;
117  void *addr = (void *) regs->tpc;
118  int ret = 0;
119  struct kprobe_ctlblk *kcb;
120 
121  /*
122  * We don't want to be preempted for the entire
123  * duration of kprobe processing
124  */
125  preempt_disable();
126  kcb = get_kprobe_ctlblk();
127 
128  if (kprobe_running()) {
129  p = get_kprobe(addr);
130  if (p) {
131  if (kcb->kprobe_status == KPROBE_HIT_SS) {
132  regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
134  goto no_kprobe;
135  }
136  /* We have reentered the kprobe_handler(), since
137  * another probe was hit while within the handler.
138  * We here save the original kprobes variables and
139  * just single step on the instruction of the new probe
140  * without calling any user handlers.
141  */
142  save_previous_kprobe(kcb);
143  set_current_kprobe(p, regs, kcb);
145  kcb->kprobe_status = KPROBE_REENTER;
146  prepare_singlestep(p, regs, kcb);
147  return 1;
148  } else {
149  if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
150  /* The breakpoint instruction was removed by
151  * another cpu right after we hit, no further
152  * handling of this interrupt is appropriate
153  */
154  ret = 1;
155  goto no_kprobe;
156  }
157  p = __get_cpu_var(current_kprobe);
158  if (p->break_handler && p->break_handler(p, regs))
159  goto ss_probe;
160  }
161  goto no_kprobe;
162  }
163 
164  p = get_kprobe(addr);
165  if (!p) {
166  if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
167  /*
168  * The breakpoint instruction was removed right
169  * after we hit it. Another cpu has removed
170  * either a probepoint or a debugger breakpoint
171  * at this address. In either case, no further
172  * handling of this interrupt is appropriate.
173  */
174  ret = 1;
175  }
176  /* Not one of ours: let kernel handle it */
177  goto no_kprobe;
178  }
179 
180  set_current_kprobe(p, regs, kcb);
182  if (p->pre_handler && p->pre_handler(p, regs))
183  return 1;
184 
185 ss_probe:
186  prepare_singlestep(p, regs, kcb);
188  return 1;
189 
190 no_kprobe:
192  return ret;
193 }
194 
195 /* If INSN is a relative control transfer instruction,
196  * return the corrected branch destination value.
197  *
198  * regs->tpc and regs->tnpc still hold the values of the
199  * program counters at the time of trap due to the execution
200  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
201  *
202  */
203 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
204  struct pt_regs *regs)
205 {
206  unsigned long real_pc = (unsigned long) p->addr;
207 
208  /* Branch not taken, no mods necessary. */
209  if (regs->tnpc == regs->tpc + 0x4UL)
210  return real_pc + 0x8UL;
211 
212  /* The three cases are call, branch w/prediction,
213  * and traditional branch.
214  */
215  if ((insn & 0xc0000000) == 0x40000000 ||
216  (insn & 0xc1c00000) == 0x00400000 ||
217  (insn & 0xc1c00000) == 0x00800000) {
218  unsigned long ainsn_addr;
219 
220  ainsn_addr = (unsigned long) &p->ainsn.insn[0];
221 
222  /* The instruction did all the work for us
223  * already, just apply the offset to the correct
224  * instruction location.
225  */
226  return (real_pc + (regs->tnpc - ainsn_addr));
227  }
228 
229  /* It is jmpl or some other absolute PC modification instruction,
230  * leave NPC as-is.
231  */
232  return regs->tnpc;
233 }
234 
235 /* If INSN is an instruction which writes it's PC location
236  * into a destination register, fix that up.
237  */
238 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
239  unsigned long real_pc)
240 {
241  unsigned long *slot = NULL;
242 
243  /* Simplest case is 'call', which always uses %o7 */
244  if ((insn & 0xc0000000) == 0x40000000) {
245  slot = &regs->u_regs[UREG_I7];
246  }
247 
248  /* 'jmpl' encodes the register inside of the opcode */
249  if ((insn & 0xc1f80000) == 0x81c00000) {
250  unsigned long rd = ((insn >> 25) & 0x1f);
251 
252  if (rd <= 15) {
253  slot = &regs->u_regs[rd];
254  } else {
255  /* Hard case, it goes onto the stack. */
256  flushw_all();
257 
258  rd -= 16;
259  slot = (unsigned long *)
260  (regs->u_regs[UREG_FP] + STACK_BIAS);
261  slot += rd;
262  }
263  }
264  if (slot != NULL)
265  *slot = real_pc;
266 }
267 
268 /*
269  * Called after single-stepping. p->addr is the address of the
270  * instruction which has been replaced by the breakpoint
271  * instruction. To avoid the SMP problems that can occur when we
272  * temporarily put back the original opcode to single-step, we
273  * single-stepped a copy of the instruction. The address of this
274  * copy is &p->ainsn.insn[0].
275  *
276  * This function prepares to return from the post-single-step
277  * breakpoint trap.
278  */
279 static void __kprobes resume_execution(struct kprobe *p,
280  struct pt_regs *regs, struct kprobe_ctlblk *kcb)
281 {
282  u32 insn = p->ainsn.insn[0];
283 
284  regs->tnpc = relbranch_fixup(insn, p, regs);
285 
286  /* This assignment must occur after relbranch_fixup() */
287  regs->tpc = kcb->kprobe_orig_tnpc;
288 
289  retpc_fixup(regs, insn, (unsigned long) p->addr);
290 
291  regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
293 }
294 
295 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
296 {
297  struct kprobe *cur = kprobe_running();
298  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299 
300  if (!cur)
301  return 0;
302 
303  if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
304  kcb->kprobe_status = KPROBE_HIT_SSDONE;
305  cur->post_handler(cur, regs, 0);
306  }
307 
308  resume_execution(cur, regs, kcb);
309 
310  /*Restore back the original saved kprobes variables and continue. */
311  if (kcb->kprobe_status == KPROBE_REENTER) {
312  restore_previous_kprobe(kcb);
313  goto out;
314  }
315  reset_current_kprobe();
316 out:
318 
319  return 1;
320 }
321 
322 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
323 {
324  struct kprobe *cur = kprobe_running();
325  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
326  const struct exception_table_entry *entry;
327 
328  switch(kcb->kprobe_status) {
329  case KPROBE_HIT_SS:
330  case KPROBE_REENTER:
331  /*
332  * We are here because the instruction being single
333  * stepped caused a page fault. We reset the current
334  * kprobe and the tpc points back to the probe address
335  * and allow the page fault handler to continue as a
336  * normal page fault.
337  */
338  regs->tpc = (unsigned long)cur->addr;
339  regs->tnpc = kcb->kprobe_orig_tnpc;
340  regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
342  if (kcb->kprobe_status == KPROBE_REENTER)
343  restore_previous_kprobe(kcb);
344  else
345  reset_current_kprobe();
347  break;
348  case KPROBE_HIT_ACTIVE:
349  case KPROBE_HIT_SSDONE:
350  /*
351  * We increment the nmissed count for accounting,
352  * we can also use npre/npostfault count for accouting
353  * these specific fault cases.
354  */
356 
357  /*
358  * We come here because instructions in the pre/post
359  * handler caused the page_fault, this could happen
360  * if handler tries to access user space by
361  * copy_from_user(), get_user() etc. Let the
362  * user-specified handler try to fix it first.
363  */
364  if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
365  return 1;
366 
367  /*
368  * In case the user-specified fault handler returned
369  * zero, try to fix up.
370  */
371 
372  entry = search_exception_tables(regs->tpc);
373  if (entry) {
374  regs->tpc = entry->fixup;
375  regs->tnpc = regs->tpc + 4;
376  return 1;
377  }
378 
379  /*
380  * fixup_exception() could not handle it,
381  * Let do_page_fault() fix it.
382  */
383  break;
384  default:
385  break;
386  }
387 
388  return 0;
389 }
390 
391 /*
392  * Wrapper routine to for handling exceptions.
393  */
395  unsigned long val, void *data)
396 {
397  struct die_args *args = (struct die_args *)data;
398  int ret = NOTIFY_DONE;
399 
400  if (args->regs && user_mode(args->regs))
401  return ret;
402 
403  switch (val) {
404  case DIE_DEBUG:
405  if (kprobe_handler(args->regs))
406  ret = NOTIFY_STOP;
407  break;
408  case DIE_DEBUG_2:
409  if (post_kprobe_handler(args->regs))
410  ret = NOTIFY_STOP;
411  break;
412  default:
413  break;
414  }
415  return ret;
416 }
417 
418 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
419  struct pt_regs *regs)
420 {
421  BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422 
423  if (user_mode(regs)) {
425  bad_trap(regs, trap_level);
426  return;
427  }
428 
429  /* trap_level == 0x170 --> ta 0x70
430  * trap_level == 0x171 --> ta 0x71
431  */
432  if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
433  (trap_level == 0x170) ? "debug" : "debug_2",
434  regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
435  bad_trap(regs, trap_level);
436 }
437 
438 /* Jprobes support. */
439 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
440 {
441  struct jprobe *jp = container_of(p, struct jprobe, kp);
442  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443 
444  memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
445 
446  regs->tpc = (unsigned long) jp->entry;
447  regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
448  regs->tstate |= TSTATE_PIL;
449 
450  return 1;
451 }
452 
454 {
455  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456  register unsigned long orig_fp asm("g1");
457 
458  orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
459  __asm__ __volatile__("\n"
460 "1: cmp %%sp, %0\n\t"
461  "blu,a,pt %%xcc, 1b\n\t"
462  " restore\n\t"
463  ".globl jprobe_return_trap_instruction\n"
464 "jprobe_return_trap_instruction:\n\t"
465  "ta 0x70"
466  : /* no outputs */
467  : "r" (orig_fp));
468 }
469 
470 extern void jprobe_return_trap_instruction(void);
471 
472 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474  u32 *addr = (u32 *) regs->tpc;
475  struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 
477  if (addr == (u32 *) jprobe_return_trap_instruction) {
478  memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
480  return 1;
481  }
482  return 0;
483 }
484 
485 /* The value stored in the return address register is actually 2
486  * instructions before where the callee will return to.
487  * Sequences usually look something like this
488  *
489  * call some_function <--- return register points here
490  * nop <--- call delay slot
491  * whatever <--- where callee returns to
492  *
493  * To keep trampoline_probe_handler logic simpler, we normalize the
494  * value kept in ri->ret_addr so we don't need to keep adjusting it
495  * back and forth.
496  */
498  struct pt_regs *regs)
499 {
500  ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
501 
502  /* Replace the return addr with trampoline addr */
503  regs->u_regs[UREG_RETPC] =
504  ((unsigned long)kretprobe_trampoline) - 8;
505 }
506 
507 /*
508  * Called when the probe at kretprobe trampoline is hit
509  */
510 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
511 {
512  struct kretprobe_instance *ri = NULL;
513  struct hlist_head *head, empty_rp;
514  struct hlist_node *node, *tmp;
515  unsigned long flags, orig_ret_address = 0;
516  unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
517 
518  INIT_HLIST_HEAD(&empty_rp);
519  kretprobe_hash_lock(current, &head, &flags);
520 
521  /*
522  * It is possible to have multiple instances associated with a given
523  * task either because an multiple functions in the call path
524  * have a return probe installed on them, and/or more than one return
525  * return probe was registered for a target function.
526  *
527  * We can handle this because:
528  * - instances are always inserted at the head of the list
529  * - when multiple return probes are registered for the same
530  * function, the first instance's ret_addr will point to the
531  * real return address, and all the rest will point to
532  * kretprobe_trampoline
533  */
534  hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
535  if (ri->task != current)
536  /* another task is sharing our hash bucket */
537  continue;
538 
539  if (ri->rp && ri->rp->handler)
540  ri->rp->handler(ri, regs);
541 
542  orig_ret_address = (unsigned long)ri->ret_addr;
543  recycle_rp_inst(ri, &empty_rp);
544 
545  if (orig_ret_address != trampoline_address)
546  /*
547  * This is the real return address. Any other
548  * instances associated with this task are for
549  * other calls deeper on the call stack
550  */
551  break;
552  }
553 
554  kretprobe_assert(ri, orig_ret_address, trampoline_address);
555  regs->tpc = orig_ret_address;
556  regs->tnpc = orig_ret_address + 4;
557 
558  reset_current_kprobe();
561 
562  hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
563  hlist_del(&ri->hlist);
564  kfree(ri);
565  }
566  /*
567  * By returning a non-zero value, we are telling
568  * kprobe_handler() that we don't want the post_handler
569  * to run (and have re-enabled preemption)
570  */
571  return 1;
572 }
573 
575 {
576  asm volatile(".global kretprobe_trampoline\n"
577  "kretprobe_trampoline:\n"
578  "\tnop\n"
579  "\tnop\n");
580 }
581 static struct kprobe trampoline_p = {
584 };
585 
587 {
588  return register_kprobe(&trampoline_p);
589 }
590 
592 {
594  return 1;
595 
596  return 0;
597 }