Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process.c
Go to the documentation of this file.
1 /*
2  * linux/arch/unicore32/kernel/process.c
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <stdarg.h>
13 
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/gpio.h>
33 #include <linux/stacktrace.h>
34 
35 #include <asm/cacheflush.h>
36 #include <asm/processor.h>
37 #include <asm/stacktrace.h>
38 
39 #include "setup.h"
40 
41 static const char * const processor_modes[] = {
42  "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07",
43  "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F",
44  "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT",
45  "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR"
46 };
47 
48 /*
49  * The idle thread, has rather strange semantics for calling pm_idle,
50  * but this is what x86 does and we need to do the same, so that
51  * things like cpuidle get called in the same way.
52  */
53 void cpu_idle(void)
54 {
55  /* endless idle loop with no priority at all */
56  while (1) {
57  tick_nohz_idle_enter();
59  while (!need_resched()) {
62  cpu_do_idle();
65  }
66  rcu_idle_exit();
67  tick_nohz_idle_exit();
69  schedule();
71  }
72 }
73 
74 static char reboot_mode = 'h';
75 
77 {
78  reboot_mode = str[0];
79  return 1;
80 }
81 
82 __setup("reboot=", reboot_setup);
83 
84 void machine_halt(void)
85 {
87 }
88 
89 /*
90  * Function pointers to optional machine specific functions
91  */
93 
95 {
96  if (pm_power_off)
97  pm_power_off();
98  machine_halt();
99 }
100 
101 void machine_restart(char *cmd)
102 {
103  /* Disable interrupts first */
105 
106  /*
107  * Tell the mm system that we are going to reboot -
108  * we may need it to insert some 1:1 mappings so that
109  * soft boot works.
110  */
111  setup_mm_for_reboot(reboot_mode);
112 
113  /* Clean and invalidate caches */
114  flush_cache_all();
115 
116  /* Turn off caching */
117  cpu_proc_fin();
118 
119  /* Push out any further dirty data, and ensure cache is empty */
120  flush_cache_all();
121 
122  /*
123  * Now handle reboot code.
124  */
125  if (reboot_mode == 's') {
126  /* Jump into ROM at address 0xffff0000 */
128  } else {
129  writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */
130  writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */
131  writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */
132 
133  /* Use on-chip reset capability */
134  /* following instructions must be in one icache line */
135  __asm__ __volatile__(
136  " .align 5\n\t"
137  " stw %1, [%0]\n\t"
138  "201: ldw r0, [%0]\n\t"
139  " cmpsub.a r0, #0\n\t"
140  " bne 201b\n\t"
141  " stw %3, [%2]\n\t"
142  " nop; nop; nop\n\t"
143  /* prefetch 3 instructions at most */
144  :
145  : "r" (PM_PMCR),
147  | PM_PMCR_CFBVGA),
148  "r" (RESETC_SWRR),
149  "r" (RESETC_SWRR_SRB)
150  : "r0", "memory");
151  }
152 
153  /*
154  * Whoops - the architecture was unable to reboot.
155  * Tell the user!
156  */
157  mdelay(1000);
158  printk(KERN_EMERG "Reboot failed -- System halted\n");
159  do { } while (1);
160 }
161 
162 void __show_regs(struct pt_regs *regs)
163 {
164  unsigned long flags;
165  char buf[64];
166 
167  printk(KERN_DEFAULT "CPU: %d %s (%s %.*s)\n",
169  init_utsname()->release,
170  (int)strcspn(init_utsname()->version, " "),
171  init_utsname()->version);
172  print_symbol("PC is at %s\n", instruction_pointer(regs));
173  print_symbol("LR is at %s\n", regs->UCreg_lr);
174  printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
175  "sp : %08lx ip : %08lx fp : %08lx\n",
176  regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr,
177  regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp);
178  printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n",
179  regs->UCreg_26, regs->UCreg_25,
180  regs->UCreg_24);
181  printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n",
182  regs->UCreg_23, regs->UCreg_22,
183  regs->UCreg_21, regs->UCreg_20);
184  printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n",
185  regs->UCreg_19, regs->UCreg_18,
186  regs->UCreg_17, regs->UCreg_16);
187  printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n",
188  regs->UCreg_15, regs->UCreg_14,
189  regs->UCreg_13, regs->UCreg_12);
190  printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n",
191  regs->UCreg_11, regs->UCreg_10,
192  regs->UCreg_09, regs->UCreg_08);
193  printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
194  regs->UCreg_07, regs->UCreg_06,
195  regs->UCreg_05, regs->UCreg_04);
196  printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
197  regs->UCreg_03, regs->UCreg_02,
198  regs->UCreg_01, regs->UCreg_00);
199 
200  flags = regs->UCreg_asr;
201  buf[0] = flags & PSR_S_BIT ? 'S' : 's';
202  buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
203  buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
204  buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
205  buf[4] = '\0';
206 
207  printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n",
208  buf, interrupts_enabled(regs) ? "n" : "ff",
209  fast_interrupts_enabled(regs) ? "n" : "ff",
210  processor_modes[processor_mode(regs)],
211  segment_eq(get_fs(), get_ds()) ? "kernel" : "user");
212  {
213  unsigned int ctrl;
214 
215  buf[0] = '\0';
216  {
217  unsigned int transbase;
218  asm("movc %0, p0.c2, #0\n"
219  : "=r" (transbase));
220  snprintf(buf, sizeof(buf), " Table: %08x", transbase);
221  }
222  asm("movc %0, p0.c1, #0\n" : "=r" (ctrl));
223 
224  printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf);
225  }
226 }
227 
228 void show_regs(struct pt_regs *regs)
229 {
230  printk(KERN_DEFAULT "\n");
231  printk(KERN_DEFAULT "Pid: %d, comm: %20s\n",
232  task_pid_nr(current), current->comm);
233  __show_regs(regs);
234  __backtrace();
235 }
236 
237 /*
238  * Free current thread data structures etc..
239  */
240 void exit_thread(void)
241 {
242 }
243 
244 void flush_thread(void)
245 {
247  struct task_struct *tsk = current;
248 
249  memset(thread->used_cp, 0, sizeof(thread->used_cp));
250  memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
251 #ifdef CONFIG_UNICORE_FPU_F64
252  memset(&thread->fpstate, 0, sizeof(struct fp_state));
253 #endif
254 }
255 
256 void release_thread(struct task_struct *dead_task)
257 {
258 }
259 
262 
263 int
264 copy_thread(unsigned long clone_flags, unsigned long stack_start,
265  unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
266 {
267  struct thread_info *thread = task_thread_info(p);
268  struct pt_regs *childregs = task_pt_regs(p);
269 
270  memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
271  thread->cpu_context.sp = (unsigned long)childregs;
272  if (unlikely(!regs)) {
273  thread->cpu_context.pc = (unsigned long)ret_from_kernel_thread;
274  thread->cpu_context.r4 = stack_start;
275  thread->cpu_context.r5 = stk_sz;
276  memset(childregs, 0, sizeof(struct pt_regs));
277  } else {
278  thread->cpu_context.pc = (unsigned long)ret_from_fork;
279  *childregs = *regs;
280  childregs->UCreg_00 = 0;
281  childregs->UCreg_sp = stack_start;
282 
283  if (clone_flags & CLONE_SETTLS)
284  childregs->UCreg_16 = regs->UCreg_03;
285  }
286  return 0;
287 }
288 
289 /*
290  * Fill in the task's elfregs structure for a core dump.
291  */
293 {
294  elf_core_copy_regs(elfregs, task_pt_regs(t));
295  return 1;
296 }
297 
298 /*
299  * fill in the fpe structure for a core dump...
300  */
302 {
304  int used_math = thread->used_cp[1] | thread->used_cp[2];
305 
306 #ifdef CONFIG_UNICORE_FPU_F64
307  if (used_math)
308  memcpy(fp, &thread->fpstate, sizeof(*fp));
309 #endif
310  return used_math != 0;
311 }
313 
314 unsigned long get_wchan(struct task_struct *p)
315 {
316  struct stackframe frame;
317  int count = 0;
318  if (!p || p == current || p->state == TASK_RUNNING)
319  return 0;
320 
321  frame.fp = thread_saved_fp(p);
322  frame.sp = thread_saved_sp(p);
323  frame.lr = 0; /* recovered from the stack */
324  frame.pc = thread_saved_pc(p);
325  do {
326  int ret = unwind_frame(&frame);
327  if (ret < 0)
328  return 0;
329  if (!in_sched_functions(frame.pc))
330  return frame.pc;
331  } while ((count++) < 16);
332  return 0;
333 }
334 
335 unsigned long arch_randomize_brk(struct mm_struct *mm)
336 {
337  unsigned long range_end = mm->brk + 0x02000000;
338  return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
339 }
340 
341 /*
342  * The vectors page is always readable from user space for the
343  * atomic helpers and the signal restart code. Let's declare a mapping
344  * for it so it is visible through ptrace and /proc/<pid>/mem.
345  */
346 
348 {
349  struct mm_struct *mm = current->mm;
350  return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
351  VM_READ | VM_EXEC |
352  VM_MAYREAD | VM_MAYEXEC |
353  VM_DONTEXPAND | VM_DONTDUMP,
354  NULL);
355 }
356 
357 const char *arch_vma_name(struct vm_area_struct *vma)
358 {
359  return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
360 }