Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmu.c
Go to the documentation of this file.
1 /*
2  * linux/arch/unicore32/mm/mmu.c
3  *
4  * Code specific to PKUnity SoC and UniCore ISA
5  *
6  * Copyright (C) 2001-2010 GUAN Xue-tao
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/memblock.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <linux/io.h>
22 
23 #include <asm/cputype.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
28 #include <asm/memblock.h>
29 
30 #include <mach/map.h>
31 
32 #include "mm.h"
33 
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
39 EXPORT_SYMBOL(empty_zero_page);
40 
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
45 
47 EXPORT_SYMBOL(pgprot_user);
48 
50 EXPORT_SYMBOL(pgprot_kernel);
51 
52 static int __init noalign_setup(char *__unused)
53 {
54  cr_alignment &= ~CR_A;
56  set_cr(cr_alignment);
57  return 1;
58 }
59 __setup("noalign", noalign_setup);
60 
61 void adjust_cr(unsigned long mask, unsigned long set)
62 {
63  unsigned long flags;
64 
65  mask &= ~CR_A;
66 
67  set &= mask;
68 
69  local_irq_save(flags);
70 
71  cr_no_alignment = (cr_no_alignment & ~mask) | set;
72  cr_alignment = (cr_alignment & ~mask) | set;
73 
74  set_cr((get_cr() & ~mask) | set);
75 
76  local_irq_restore(flags);
77 }
78 
79 struct map_desc {
80  unsigned long virtual;
81  unsigned long pfn;
82  unsigned long length;
83  unsigned int type;
84 };
85 
86 #define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \
87  PTE_DIRTY | PTE_READ | PTE_WRITE)
88 #define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \
89  PMD_SECT_READ | PMD_SECT_WRITE)
90 
91 static struct mem_type mem_types[] = {
92  [MT_DEVICE] = { /* Strongly ordered */
93  .prot_pte = PROT_PTE_DEVICE,
94  .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
95  .prot_sect = PROT_SECT_DEVICE,
96  },
97  /*
98  * MT_KUSER: pte for vecpage -- cacheable,
99  * and sect for unigfx mmap -- noncacheable
100  */
101  [MT_KUSER] = {
102  .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
104  .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
105  .prot_sect = PROT_SECT_DEVICE,
106  },
107  [MT_HIGH_VECTORS] = {
108  .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
110  PTE_EXEC,
111  .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
112  },
113  [MT_MEMORY] = {
114  .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
116  .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT,
117  .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
119  },
120  [MT_ROM] = {
121  .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
123  },
124 };
125 
126 const struct mem_type *get_mem_type(unsigned int type)
127 {
128  return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
129 }
131 
132 /*
133  * Adjust the PMD section entries according to the CPU in use.
134  */
135 static void __init build_mem_type_table(void)
136 {
137  pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
138  pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
141 }
142 
143 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
144 
145 static void __init *early_alloc(unsigned long sz)
146 {
147  void *ptr = __va(memblock_alloc(sz, sz));
148  memset(ptr, 0, sz);
149  return ptr;
150 }
151 
152 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
153  unsigned long prot)
154 {
155  if (pmd_none(*pmd)) {
156  pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
157  __pmd_populate(pmd, __pa(pte) | prot);
158  }
159  BUG_ON(pmd_bad(*pmd));
160  return pte_offset_kernel(pmd, addr);
161 }
162 
163 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
164  unsigned long end, unsigned long pfn,
165  const struct mem_type *type)
166 {
167  pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
168  do {
169  set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
170  pfn++;
171  } while (pte++, addr += PAGE_SIZE, addr != end);
172 }
173 
174 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
175  unsigned long end, unsigned long phys,
176  const struct mem_type *type)
177 {
178  pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
179 
180  /*
181  * Try a section mapping - end, addr and phys must all be aligned
182  * to a section boundary.
183  */
184  if (((addr | end | phys) & ~SECTION_MASK) == 0) {
185  pmd_t *p = pmd;
186 
187  do {
188  set_pmd(pmd, __pmd(phys | type->prot_sect));
189  phys += SECTION_SIZE;
190  } while (pmd++, addr += SECTION_SIZE, addr != end);
191 
192  flush_pmd_entry(p);
193  } else {
194  /*
195  * No need to loop; pte's aren't interested in the
196  * individual L1 entries.
197  */
198  alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
199  }
200 }
201 
202 /*
203  * Create the page directory entries and any necessary
204  * page tables for the mapping specified by `md'. We
205  * are able to cope here with varying sizes and address
206  * offsets, and we take full advantage of sections.
207  */
208 static void __init create_mapping(struct map_desc *md)
209 {
210  unsigned long phys, addr, length, end;
211  const struct mem_type *type;
212  pgd_t *pgd;
213 
214  if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
215  printk(KERN_WARNING "BUG: not creating mapping for "
216  "0x%08llx at 0x%08lx in user region\n",
217  __pfn_to_phys((u64)md->pfn), md->virtual);
218  return;
219  }
220 
221  if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
222  md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
223  printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
224  "overlaps vmalloc space\n",
225  __pfn_to_phys((u64)md->pfn), md->virtual);
226  }
227 
228  type = &mem_types[md->type];
229 
230  addr = md->virtual & PAGE_MASK;
231  phys = (unsigned long)__pfn_to_phys(md->pfn);
232  length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
233 
234  if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
235  printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
236  "be mapped using pages, ignoring.\n",
237  __pfn_to_phys(md->pfn), addr);
238  return;
239  }
240 
241  pgd = pgd_offset_k(addr);
242  end = addr + length;
243  do {
244  unsigned long next = pgd_addr_end(addr, end);
245 
246  alloc_init_section(pgd, addr, next, phys, type);
247 
248  phys += next - addr;
249  addr = next;
250  } while (pgd++, addr != end);
251 }
252 
253 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
254 
255 /*
256  * vmalloc=size forces the vmalloc area to be exactly 'size'
257  * bytes. This can be used to increase (or decrease) the vmalloc
258  * area - the default is 128m.
259  */
260 static int __init early_vmalloc(char *arg)
261 {
262  unsigned long vmalloc_reserve = memparse(arg, NULL);
263 
264  if (vmalloc_reserve < SZ_16M) {
265  vmalloc_reserve = SZ_16M;
267  "vmalloc area too small, limiting to %luMB\n",
268  vmalloc_reserve >> 20);
269  }
270 
271  if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
272  vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
274  "vmalloc area is too big, limiting to %luMB\n",
275  vmalloc_reserve >> 20);
276  }
277 
278  vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
279  return 0;
280 }
281 early_param("vmalloc", early_vmalloc);
282 
283 static phys_addr_t lowmem_limit __initdata = SZ_1G;
284 
285 static void __init sanity_check_meminfo(void)
286 {
287  int i, j;
288 
289  lowmem_limit = __pa(vmalloc_min - 1) + 1;
290  memblock_set_current_limit(lowmem_limit);
291 
292  for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
293  struct membank *bank = &meminfo.bank[j];
294  *bank = meminfo.bank[i];
295  j++;
296  }
297  meminfo.nr_banks = j;
298 }
299 
300 static inline void prepare_page_table(void)
301 {
302  unsigned long addr;
304 
305  /*
306  * Clear out all the mappings below the kernel image.
307  */
308  for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
309  pmd_clear(pmd_off_k(addr));
310 
311  for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
312  pmd_clear(pmd_off_k(addr));
313 
314  /*
315  * Find the end of the first block of lowmem.
316  */
317  end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
318  if (end >= lowmem_limit)
319  end = lowmem_limit;
320 
321  /*
322  * Clear out all the kernel space mappings, except for the first
323  * memory bank, up to the end of the vmalloc region.
324  */
325  for (addr = __phys_to_virt(end);
326  addr < VMALLOC_END; addr += PGDIR_SIZE)
327  pmd_clear(pmd_off_k(addr));
328 }
329 
330 /*
331  * Reserve the special regions of memory
332  */
334 {
335  /*
336  * Reserve the page tables. These are already in use,
337  * and can only be in node 0.
338  */
340 }
341 
342 /*
343  * Set up device the mappings. Since we clear out the page tables for all
344  * mappings above VMALLOC_END, we will remove any debug device mappings.
345  * This means you have to be careful how you debug this function, or any
346  * called function. This means you can't use any function or debugging
347  * method which may touch any device, otherwise the kernel _will_ crash.
348  */
349 static void __init devicemaps_init(void)
350 {
351  struct map_desc map;
352  unsigned long addr;
353  void *vectors;
354 
355  /*
356  * Allocate the vector page early.
357  */
358  vectors = early_alloc(PAGE_SIZE);
359 
360  for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
361  pmd_clear(pmd_off_k(addr));
362 
363  /*
364  * Create a mapping for the machine vectors at the high-vectors
365  * location (0xffff0000). If we aren't using high-vectors, also
366  * create a mapping at the low-vectors virtual address.
367  */
368  map.pfn = __phys_to_pfn(virt_to_phys(vectors));
369  map.virtual = VECTORS_BASE;
370  map.length = PAGE_SIZE;
372  create_mapping(&map);
373 
374  /*
375  * Create a mapping for the kuser page at the special
376  * location (0xbfff0000) to the same vectors location.
377  */
378  map.pfn = __phys_to_pfn(virt_to_phys(vectors));
379  map.virtual = KUSER_VECPAGE_BASE;
380  map.length = PAGE_SIZE;
381  map.type = MT_KUSER;
382  create_mapping(&map);
383 
384  /*
385  * Finally flush the caches and tlb to ensure that we're in a
386  * consistent state wrt the writebuffer. This also ensures that
387  * any write-allocated cache lines in the vector page are written
388  * back. After this point, we can start to touch devices again.
389  */
391  flush_cache_all();
392 }
393 
394 static void __init map_lowmem(void)
395 {
396  struct memblock_region *reg;
397 
398  /* Map all the lowmem memory banks. */
399  for_each_memblock(memory, reg) {
400  phys_addr_t start = reg->base;
401  phys_addr_t end = start + reg->size;
402  struct map_desc map;
403 
404  if (end > lowmem_limit)
405  end = lowmem_limit;
406  if (start >= end)
407  break;
408 
409  map.pfn = __phys_to_pfn(start);
410  map.virtual = __phys_to_virt(start);
411  map.length = end - start;
412  map.type = MT_MEMORY;
413 
414  create_mapping(&map);
415  }
416 }
417 
418 /*
419  * paging_init() sets up the page tables, initialises the zone memory
420  * maps, and sets up the zero page, bad page and bad page tables.
421  */
422 void __init paging_init(void)
423 {
424  void *zero_page;
425 
426  build_mem_type_table();
428  prepare_page_table();
429  map_lowmem();
430  devicemaps_init();
431 
432  top_pmd = pmd_off_k(0xffff0000);
433 
434  /* allocate the zero page. */
435  zero_page = early_alloc(PAGE_SIZE);
436 
437  bootmem_init();
438 
439  empty_zero_page = virt_to_page(zero_page);
440  __flush_dcache_page(NULL, empty_zero_page);
441 }
442 
443 /*
444  * In order to soft-boot, we need to insert a 1:1 mapping in place of
445  * the user-mode pages. This will then ensure that we have predictable
446  * results when turning the mmu off
447  */
449 {
450  unsigned long base_pmdval;
451  pgd_t *pgd;
452  int i;
453 
454  /*
455  * We need to access to user-mode page tables here. For kernel threads
456  * we don't have any user-mode mappings so we use the context that we
457  * "borrowed".
458  */
459  pgd = current->active_mm->pgd;
460 
461  base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
462 
463  for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
464  unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
465  pmd_t *pmd;
466 
467  pmd = pmd_off(pgd, i << PGDIR_SHIFT);
468  set_pmd(pmd, __pmd(pmdval));
469  flush_pmd_entry(pmd);
470  }
471 
473 }
474 
475 /*
476  * Take care of architecture specific things when placing a new PTE into
477  * a page table, or changing an existing PTE. Basically, there are two
478  * things that we need to take care of:
479  *
480  * 1. If PG_dcache_clean is not set for the page, we need to ensure
481  * that any cache entries for the kernels virtual memory
482  * range are written back to the page.
483  * 2. If we have multiple shared mappings of the same space in
484  * an object, we need to deal with the cache aliasing issues.
485  *
486  * Note that the pte lock will be held.
487  */
488 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
489  pte_t *ptep)
490 {
491  unsigned long pfn = pte_pfn(*ptep);
492  struct address_space *mapping;
493  struct page *page;
494 
495  if (!pfn_valid(pfn))
496  return;
497 
498  /*
499  * The zero page is never written to, so never has any dirty
500  * cache lines, and therefore never needs to be flushed.
501  */
502  page = pfn_to_page(pfn);
503  if (page == ZERO_PAGE(0))
504  return;
505 
506  mapping = page_mapping(page);
507  if (!test_and_set_bit(PG_dcache_clean, &page->flags))
508  __flush_dcache_page(mapping, page);
509  if (mapping)
510  if (vma->vm_flags & VM_EXEC)
511  __flush_icache_all();
512 }