Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc.c
Go to the documentation of this file.
1 /*
2  * RTC related functions
3  */
5 #include <linux/mc146818rtc.h>
6 #include <linux/acpi.h>
7 #include <linux/bcd.h>
8 #include <linux/export.h>
9 #include <linux/pnp.h>
10 #include <linux/of.h>
11 
12 #include <asm/vsyscall.h>
13 #include <asm/x86_init.h>
14 #include <asm/time.h>
15 #include <asm/mrst.h>
16 
17 #ifdef CONFIG_X86_32
18 /*
19  * This is a special lock that is owned by the CPU and holds the index
20  * register we are working with. It is required for NMI access to the
21  * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
22  */
23 volatile unsigned long cmos_lock;
24 EXPORT_SYMBOL(cmos_lock);
25 #endif /* CONFIG_X86_32 */
26 
27 /* For two digit years assume time is always after that */
28 #define CMOS_YEARS_OFFS 2000
29 
30 DEFINE_SPINLOCK(rtc_lock);
31 EXPORT_SYMBOL(rtc_lock);
32 
33 /*
34  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
35  * called 500 ms after the second nowtime has started, because when
36  * nowtime is written into the registers of the CMOS clock, it will
37  * jump to the next second precisely 500 ms later. Check the Motorola
38  * MC146818A or Dallas DS12887 data sheet for details.
39  *
40  * BUG: This routine does not handle hour overflow properly; it just
41  * sets the minutes. Usually you'll only notice that after reboot!
42  */
43 int mach_set_rtc_mmss(unsigned long nowtime)
44 {
45  int real_seconds, real_minutes, cmos_minutes;
46  unsigned char save_control, save_freq_select;
47  unsigned long flags;
48  int retval = 0;
49 
50  spin_lock_irqsave(&rtc_lock, flags);
51 
52  /* tell the clock it's being set */
53  save_control = CMOS_READ(RTC_CONTROL);
54  CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
55 
56  /* stop and reset prescaler */
57  save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
58  CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
59 
60  cmos_minutes = CMOS_READ(RTC_MINUTES);
61  if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
62  cmos_minutes = bcd2bin(cmos_minutes);
63 
64  /*
65  * since we're only adjusting minutes and seconds,
66  * don't interfere with hour overflow. This avoids
67  * messing with unknown time zones but requires your
68  * RTC not to be off by more than 15 minutes
69  */
70  real_seconds = nowtime % 60;
71  real_minutes = nowtime / 60;
72  /* correct for half hour time zone */
73  if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
74  real_minutes += 30;
75  real_minutes %= 60;
76 
77  if (abs(real_minutes - cmos_minutes) < 30) {
78  if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
79  real_seconds = bin2bcd(real_seconds);
80  real_minutes = bin2bcd(real_minutes);
81  }
82  CMOS_WRITE(real_seconds, RTC_SECONDS);
83  CMOS_WRITE(real_minutes, RTC_MINUTES);
84  } else {
86  "set_rtc_mmss: can't update from %d to %d\n",
87  cmos_minutes, real_minutes);
88  retval = -1;
89  }
90 
91  /* The following flags have to be released exactly in this order,
92  * otherwise the DS12887 (popular MC146818A clone with integrated
93  * battery and quartz) will not reset the oscillator and will not
94  * update precisely 500 ms later. You won't find this mentioned in
95  * the Dallas Semiconductor data sheets, but who believes data
96  * sheets anyway ... -- Markus Kuhn
97  */
98  CMOS_WRITE(save_control, RTC_CONTROL);
99  CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
100 
101  spin_unlock_irqrestore(&rtc_lock, flags);
102 
103  return retval;
104 }
105 
106 unsigned long mach_get_cmos_time(void)
107 {
108  unsigned int status, year, mon, day, hour, min, sec, century = 0;
109  unsigned long flags;
110 
111  spin_lock_irqsave(&rtc_lock, flags);
112 
113  /*
114  * If UIP is clear, then we have >= 244 microseconds before
115  * RTC registers will be updated. Spec sheet says that this
116  * is the reliable way to read RTC - registers. If UIP is set
117  * then the register access might be invalid.
118  */
119  while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
120  cpu_relax();
121 
122  sec = CMOS_READ(RTC_SECONDS);
123  min = CMOS_READ(RTC_MINUTES);
124  hour = CMOS_READ(RTC_HOURS);
126  mon = CMOS_READ(RTC_MONTH);
127  year = CMOS_READ(RTC_YEAR);
128 
129 #ifdef CONFIG_ACPI
130  if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
131  acpi_gbl_FADT.century)
132  century = CMOS_READ(acpi_gbl_FADT.century);
133 #endif
134 
135  status = CMOS_READ(RTC_CONTROL);
137 
138  spin_unlock_irqrestore(&rtc_lock, flags);
139 
140  if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
141  sec = bcd2bin(sec);
142  min = bcd2bin(min);
143  hour = bcd2bin(hour);
144  day = bcd2bin(day);
145  mon = bcd2bin(mon);
146  year = bcd2bin(year);
147  }
148 
149  if (century) {
150  century = bcd2bin(century);
151  year += century * 100;
152  printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
153  } else
154  year += CMOS_YEARS_OFFS;
155 
156  return mktime(year, mon, day, hour, min, sec);
157 }
158 
159 /* Routines for accessing the CMOS RAM/RTC. */
160 unsigned char rtc_cmos_read(unsigned char addr)
161 {
162  unsigned char val;
163 
164  lock_cmos_prefix(addr);
165  outb(addr, RTC_PORT(0));
166  val = inb(RTC_PORT(1));
167  lock_cmos_suffix(addr);
168 
169  return val;
170 }
172 
173 void rtc_cmos_write(unsigned char val, unsigned char addr)
174 {
175  lock_cmos_prefix(addr);
176  outb(addr, RTC_PORT(0));
177  outb(val, RTC_PORT(1));
178  lock_cmos_suffix(addr);
179 }
181 
183 {
184  return x86_platform.set_wallclock(now.tv_sec);
185 }
186 
187 /* not static: needed by APM */
189 {
190  unsigned long retval;
191 
192  retval = x86_platform.get_wallclock();
193 
194  ts->tv_sec = retval;
195  ts->tv_nsec = 0;
196 }
197 
198 unsigned long long native_read_tsc(void)
199 {
200  return __native_read_tsc();
201 }
203 
204 
205 static struct resource rtc_resources[] = {
206  [0] = {
207  .start = RTC_PORT(0),
208  .end = RTC_PORT(1),
209  .flags = IORESOURCE_IO,
210  },
211  [1] = {
212  .start = RTC_IRQ,
213  .end = RTC_IRQ,
214  .flags = IORESOURCE_IRQ,
215  }
216 };
217 
218 static struct platform_device rtc_device = {
219  .name = "rtc_cmos",
220  .id = -1,
221  .resource = rtc_resources,
222  .num_resources = ARRAY_SIZE(rtc_resources),
223 };
224 
225 static __init int add_rtc_cmos(void)
226 {
227 #ifdef CONFIG_PNP
228  static const char * const const ids[] __initconst =
229  { "PNP0b00", "PNP0b01", "PNP0b02", };
230  struct pnp_dev *dev;
231  struct pnp_id *id;
232  int i;
233 
234  pnp_for_each_dev(dev) {
235  for (id = dev->id; id; id = id->next) {
236  for (i = 0; i < ARRAY_SIZE(ids); i++) {
237  if (compare_pnp_id(id, ids[i]) != 0)
238  return 0;
239  }
240  }
241  }
242 #endif
243  if (of_have_populated_dt())
244  return 0;
245 
246  /* Intel MID platforms don't have ioport rtc */
247  if (mrst_identify_cpu())
248  return -ENODEV;
249 
250  platform_device_register(&rtc_device);
251  dev_info(&rtc_device.dev,
252  "registered platform RTC device (no PNP device found)\n");
253 
254  return 0;
255 }
256 device_initcall(add_rtc_cmos);