Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
audit_tree.c
Go to the documentation of this file.
1 #include "audit.h"
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7 
8 struct audit_tree;
9 struct audit_chunk;
10 
11 struct audit_tree {
13  int goner;
14  struct audit_chunk *root;
15  struct list_head chunks;
16  struct list_head rules;
17  struct list_head list;
19  struct rcu_head head;
20  char pathname[];
21 };
22 
23 struct audit_chunk {
24  struct list_head hash;
25  struct fsnotify_mark mark;
26  struct list_head trees; /* with root here */
27  int dead;
28  int count;
30  struct rcu_head head;
31  struct node {
32  struct list_head list;
33  struct audit_tree *owner;
34  unsigned index; /* index; upper bit indicates 'will prune' */
35  } owners[];
36 };
37 
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 
41 /*
42  * One struct chunk is attached to each inode of interest.
43  * We replace struct chunk on tagging/untagging.
44  * Rules have pointer to struct audit_tree.
45  * Rules have struct list_head rlist forming a list of rules over
46  * the same tree.
47  * References to struct chunk are collected at audit_inode{,_child}()
48  * time and used in AUDIT_TREE rule matching.
49  * These references are dropped at the same time we are calling
50  * audit_free_names(), etc.
51  *
52  * Cyclic lists galore:
53  * tree.chunks anchors chunk.owners[].list hash_lock
54  * tree.rules anchors rule.rlist audit_filter_mutex
55  * chunk.trees anchors tree.same_root hash_lock
56  * chunk.hash is a hash with middle bits of watch.inode as
57  * a hash function. RCU, hash_lock
58  *
59  * tree is refcounted; one reference for "some rules on rules_list refer to
60  * it", one for each chunk with pointer to it.
61  *
62  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63  * of watch contributes 1 to .refs).
64  *
65  * node.index allows to get from node.list to containing chunk.
66  * MSB of that sucker is stolen to mark taggings that we might have to
67  * revert - several operations have very unpleasant cleanup logics and
68  * that makes a difference. Some.
69  */
70 
71 static struct fsnotify_group *audit_tree_group;
72 
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75  struct audit_tree *tree;
76 
77  tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78  if (tree) {
79  atomic_set(&tree->count, 1);
80  tree->goner = 0;
81  INIT_LIST_HEAD(&tree->chunks);
82  INIT_LIST_HEAD(&tree->rules);
83  INIT_LIST_HEAD(&tree->list);
84  INIT_LIST_HEAD(&tree->same_root);
85  tree->root = NULL;
86  strcpy(tree->pathname, s);
87  }
88  return tree;
89 }
90 
91 static inline void get_tree(struct audit_tree *tree)
92 {
93  atomic_inc(&tree->count);
94 }
95 
96 static inline void put_tree(struct audit_tree *tree)
97 {
98  if (atomic_dec_and_test(&tree->count))
99  kfree_rcu(tree, head);
100 }
101 
102 /* to avoid bringing the entire thing in audit.h */
103 const char *audit_tree_path(struct audit_tree *tree)
104 {
105  return tree->pathname;
106 }
107 
108 static void free_chunk(struct audit_chunk *chunk)
109 {
110  int i;
111 
112  for (i = 0; i < chunk->count; i++) {
113  if (chunk->owners[i].owner)
114  put_tree(chunk->owners[i].owner);
115  }
116  kfree(chunk);
117 }
118 
119 void audit_put_chunk(struct audit_chunk *chunk)
120 {
121  if (atomic_long_dec_and_test(&chunk->refs))
122  free_chunk(chunk);
123 }
124 
125 static void __put_chunk(struct rcu_head *rcu)
126 {
127  struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128  audit_put_chunk(chunk);
129 }
130 
131 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132 {
133  struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134  call_rcu(&chunk->head, __put_chunk);
135 }
136 
137 static struct audit_chunk *alloc_chunk(int count)
138 {
139  struct audit_chunk *chunk;
140  size_t size;
141  int i;
142 
143  size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144  chunk = kzalloc(size, GFP_KERNEL);
145  if (!chunk)
146  return NULL;
147 
148  INIT_LIST_HEAD(&chunk->hash);
149  INIT_LIST_HEAD(&chunk->trees);
150  chunk->count = count;
151  atomic_long_set(&chunk->refs, 1);
152  for (i = 0; i < count; i++) {
153  INIT_LIST_HEAD(&chunk->owners[i].list);
154  chunk->owners[i].index = i;
155  }
156  fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157  return chunk;
158 }
159 
160 enum {HASH_SIZE = 128};
161 static struct list_head chunk_hash_heads[HASH_SIZE];
163 
164 static inline struct list_head *chunk_hash(const struct inode *inode)
165 {
166  unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167  return chunk_hash_heads + n % HASH_SIZE;
168 }
169 
170 /* hash_lock & entry->lock is held by caller */
171 static void insert_hash(struct audit_chunk *chunk)
172 {
173  struct fsnotify_mark *entry = &chunk->mark;
174  struct list_head *list;
175 
176  if (!entry->i.inode)
177  return;
178  list = chunk_hash(entry->i.inode);
179  list_add_rcu(&chunk->hash, list);
180 }
181 
182 /* called under rcu_read_lock */
183 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184 {
185  struct list_head *list = chunk_hash(inode);
186  struct audit_chunk *p;
187 
188  list_for_each_entry_rcu(p, list, hash) {
189  /* mark.inode may have gone NULL, but who cares? */
190  if (p->mark.i.inode == inode) {
191  atomic_long_inc(&p->refs);
192  return p;
193  }
194  }
195  return NULL;
196 }
197 
198 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199 {
200  int n;
201  for (n = 0; n < chunk->count; n++)
202  if (chunk->owners[n].owner == tree)
203  return 1;
204  return 0;
205 }
206 
207 /* tagging and untagging inodes with trees */
208 
209 static struct audit_chunk *find_chunk(struct node *p)
210 {
211  int index = p->index & ~(1U<<31);
212  p -= index;
213  return container_of(p, struct audit_chunk, owners[0]);
214 }
215 
216 static void untag_chunk(struct node *p)
217 {
218  struct audit_chunk *chunk = find_chunk(p);
219  struct fsnotify_mark *entry = &chunk->mark;
220  struct audit_chunk *new = NULL;
221  struct audit_tree *owner;
222  int size = chunk->count - 1;
223  int i, j;
224 
225  fsnotify_get_mark(entry);
226 
227  spin_unlock(&hash_lock);
228 
229  if (size)
230  new = alloc_chunk(size);
231 
232  spin_lock(&entry->lock);
233  if (chunk->dead || !entry->i.inode) {
234  spin_unlock(&entry->lock);
235  if (new)
236  free_chunk(new);
237  goto out;
238  }
239 
240  owner = p->owner;
241 
242  if (!size) {
243  chunk->dead = 1;
244  spin_lock(&hash_lock);
245  list_del_init(&chunk->trees);
246  if (owner->root == chunk)
247  owner->root = NULL;
248  list_del_init(&p->list);
249  list_del_rcu(&chunk->hash);
250  spin_unlock(&hash_lock);
251  spin_unlock(&entry->lock);
252  fsnotify_destroy_mark(entry);
253  goto out;
254  }
255 
256  if (!new)
257  goto Fallback;
258 
259  fsnotify_duplicate_mark(&new->mark, entry);
260  if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261  fsnotify_put_mark(&new->mark);
262  goto Fallback;
263  }
264 
265  chunk->dead = 1;
266  spin_lock(&hash_lock);
267  list_replace_init(&chunk->trees, &new->trees);
268  if (owner->root == chunk) {
269  list_del_init(&owner->same_root);
270  owner->root = NULL;
271  }
272 
273  for (i = j = 0; j <= size; i++, j++) {
274  struct audit_tree *s;
275  if (&chunk->owners[j] == p) {
276  list_del_init(&p->list);
277  i--;
278  continue;
279  }
280  s = chunk->owners[j].owner;
281  new->owners[i].owner = s;
282  new->owners[i].index = chunk->owners[j].index - j + i;
283  if (!s) /* result of earlier fallback */
284  continue;
285  get_tree(s);
286  list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287  }
288 
289  list_replace_rcu(&chunk->hash, &new->hash);
290  list_for_each_entry(owner, &new->trees, same_root)
291  owner->root = new;
292  spin_unlock(&hash_lock);
293  spin_unlock(&entry->lock);
294  fsnotify_destroy_mark(entry);
295  fsnotify_put_mark(&new->mark); /* drop initial reference */
296  goto out;
297 
298 Fallback:
299  // do the best we can
300  spin_lock(&hash_lock);
301  if (owner->root == chunk) {
302  list_del_init(&owner->same_root);
303  owner->root = NULL;
304  }
305  list_del_init(&p->list);
306  p->owner = NULL;
307  put_tree(owner);
308  spin_unlock(&hash_lock);
309  spin_unlock(&entry->lock);
310 out:
311  fsnotify_put_mark(entry);
312  spin_lock(&hash_lock);
313 }
314 
315 static int create_chunk(struct inode *inode, struct audit_tree *tree)
316 {
317  struct fsnotify_mark *entry;
318  struct audit_chunk *chunk = alloc_chunk(1);
319  if (!chunk)
320  return -ENOMEM;
321 
322  entry = &chunk->mark;
323  if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
324  fsnotify_put_mark(entry);
325  return -ENOSPC;
326  }
327 
328  spin_lock(&entry->lock);
329  spin_lock(&hash_lock);
330  if (tree->goner) {
331  spin_unlock(&hash_lock);
332  chunk->dead = 1;
333  spin_unlock(&entry->lock);
334  fsnotify_destroy_mark(entry);
335  fsnotify_put_mark(entry);
336  return 0;
337  }
338  chunk->owners[0].index = (1U << 31);
339  chunk->owners[0].owner = tree;
340  get_tree(tree);
341  list_add(&chunk->owners[0].list, &tree->chunks);
342  if (!tree->root) {
343  tree->root = chunk;
344  list_add(&tree->same_root, &chunk->trees);
345  }
346  insert_hash(chunk);
347  spin_unlock(&hash_lock);
348  spin_unlock(&entry->lock);
349  fsnotify_put_mark(entry); /* drop initial reference */
350  return 0;
351 }
352 
353 /* the first tagged inode becomes root of tree */
354 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
355 {
356  struct fsnotify_mark *old_entry, *chunk_entry;
357  struct audit_tree *owner;
358  struct audit_chunk *chunk, *old;
359  struct node *p;
360  int n;
361 
362  old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363  if (!old_entry)
364  return create_chunk(inode, tree);
365 
366  old = container_of(old_entry, struct audit_chunk, mark);
367 
368  /* are we already there? */
369  spin_lock(&hash_lock);
370  for (n = 0; n < old->count; n++) {
371  if (old->owners[n].owner == tree) {
372  spin_unlock(&hash_lock);
373  fsnotify_put_mark(old_entry);
374  return 0;
375  }
376  }
377  spin_unlock(&hash_lock);
378 
379  chunk = alloc_chunk(old->count + 1);
380  if (!chunk) {
381  fsnotify_put_mark(old_entry);
382  return -ENOMEM;
383  }
384 
385  chunk_entry = &chunk->mark;
386 
387  spin_lock(&old_entry->lock);
388  if (!old_entry->i.inode) {
389  /* old_entry is being shot, lets just lie */
390  spin_unlock(&old_entry->lock);
391  fsnotify_put_mark(old_entry);
392  free_chunk(chunk);
393  return -ENOENT;
394  }
395 
396  fsnotify_duplicate_mark(chunk_entry, old_entry);
397  if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398  spin_unlock(&old_entry->lock);
399  fsnotify_put_mark(chunk_entry);
400  fsnotify_put_mark(old_entry);
401  return -ENOSPC;
402  }
403 
404  /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405  spin_lock(&chunk_entry->lock);
406  spin_lock(&hash_lock);
407 
408  /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409  if (tree->goner) {
410  spin_unlock(&hash_lock);
411  chunk->dead = 1;
412  spin_unlock(&chunk_entry->lock);
413  spin_unlock(&old_entry->lock);
414 
415  fsnotify_destroy_mark(chunk_entry);
416 
417  fsnotify_put_mark(chunk_entry);
418  fsnotify_put_mark(old_entry);
419  return 0;
420  }
421  list_replace_init(&old->trees, &chunk->trees);
422  for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423  struct audit_tree *s = old->owners[n].owner;
424  p->owner = s;
425  p->index = old->owners[n].index;
426  if (!s) /* result of fallback in untag */
427  continue;
428  get_tree(s);
429  list_replace_init(&old->owners[n].list, &p->list);
430  }
431  p->index = (chunk->count - 1) | (1U<<31);
432  p->owner = tree;
433  get_tree(tree);
434  list_add(&p->list, &tree->chunks);
435  list_replace_rcu(&old->hash, &chunk->hash);
436  list_for_each_entry(owner, &chunk->trees, same_root)
437  owner->root = chunk;
438  old->dead = 1;
439  if (!tree->root) {
440  tree->root = chunk;
441  list_add(&tree->same_root, &chunk->trees);
442  }
443  spin_unlock(&hash_lock);
444  spin_unlock(&chunk_entry->lock);
445  spin_unlock(&old_entry->lock);
446  fsnotify_destroy_mark(old_entry);
447  fsnotify_put_mark(chunk_entry); /* drop initial reference */
448  fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
449  return 0;
450 }
451 
452 static void kill_rules(struct audit_tree *tree)
453 {
454  struct audit_krule *rule, *next;
455  struct audit_entry *entry;
456  struct audit_buffer *ab;
457 
458  list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
459  entry = container_of(rule, struct audit_entry, rule);
460 
461  list_del_init(&rule->rlist);
462  if (rule->tree) {
463  /* not a half-baked one */
465  audit_log_format(ab, "op=");
466  audit_log_string(ab, "remove rule");
467  audit_log_format(ab, " dir=");
468  audit_log_untrustedstring(ab, rule->tree->pathname);
469  audit_log_key(ab, rule->filterkey);
470  audit_log_format(ab, " list=%d res=1", rule->listnr);
471  audit_log_end(ab);
472  rule->tree = NULL;
473  list_del_rcu(&entry->list);
474  list_del(&entry->rule.list);
475  call_rcu(&entry->rcu, audit_free_rule_rcu);
476  }
477  }
478 }
479 
480 /*
481  * finish killing struct audit_tree
482  */
483 static void prune_one(struct audit_tree *victim)
484 {
485  spin_lock(&hash_lock);
486  while (!list_empty(&victim->chunks)) {
487  struct node *p;
488 
489  p = list_entry(victim->chunks.next, struct node, list);
490 
491  untag_chunk(p);
492  }
493  spin_unlock(&hash_lock);
494  put_tree(victim);
495 }
496 
497 /* trim the uncommitted chunks from tree */
498 
499 static void trim_marked(struct audit_tree *tree)
500 {
501  struct list_head *p, *q;
502  spin_lock(&hash_lock);
503  if (tree->goner) {
504  spin_unlock(&hash_lock);
505  return;
506  }
507  /* reorder */
508  for (p = tree->chunks.next; p != &tree->chunks; p = q) {
509  struct node *node = list_entry(p, struct node, list);
510  q = p->next;
511  if (node->index & (1U<<31)) {
512  list_del_init(p);
513  list_add(p, &tree->chunks);
514  }
515  }
516 
517  while (!list_empty(&tree->chunks)) {
518  struct node *node;
519 
520  node = list_entry(tree->chunks.next, struct node, list);
521 
522  /* have we run out of marked? */
523  if (!(node->index & (1U<<31)))
524  break;
525 
526  untag_chunk(node);
527  }
528  if (!tree->root && !tree->goner) {
529  tree->goner = 1;
530  spin_unlock(&hash_lock);
531  mutex_lock(&audit_filter_mutex);
532  kill_rules(tree);
533  list_del_init(&tree->list);
534  mutex_unlock(&audit_filter_mutex);
535  prune_one(tree);
536  } else {
537  spin_unlock(&hash_lock);
538  }
539 }
540 
541 static void audit_schedule_prune(void);
542 
543 /* called with audit_filter_mutex */
545 {
546  struct audit_tree *tree;
547  tree = rule->tree;
548  if (tree) {
549  spin_lock(&hash_lock);
550  list_del_init(&rule->rlist);
551  if (list_empty(&tree->rules) && !tree->goner) {
552  tree->root = NULL;
553  list_del_init(&tree->same_root);
554  tree->goner = 1;
555  list_move(&tree->list, &prune_list);
556  rule->tree = NULL;
557  spin_unlock(&hash_lock);
558  audit_schedule_prune();
559  return 1;
560  }
561  rule->tree = NULL;
562  spin_unlock(&hash_lock);
563  return 1;
564  }
565  return 0;
566 }
567 
568 static int compare_root(struct vfsmount *mnt, void *arg)
569 {
570  return mnt->mnt_root->d_inode == arg;
571 }
572 
574 {
575  struct list_head cursor;
576 
578  list_add(&cursor, &tree_list);
579  while (cursor.next != &tree_list) {
580  struct audit_tree *tree;
581  struct path path;
582  struct vfsmount *root_mnt;
583  struct node *node;
584  int err;
585 
586  tree = container_of(cursor.next, struct audit_tree, list);
587  get_tree(tree);
588  list_del(&cursor);
589  list_add(&cursor, &tree->list);
591 
592  err = kern_path(tree->pathname, 0, &path);
593  if (err)
594  goto skip_it;
595 
596  root_mnt = collect_mounts(&path);
597  path_put(&path);
598  if (IS_ERR(root_mnt))
599  goto skip_it;
600 
601  spin_lock(&hash_lock);
602  list_for_each_entry(node, &tree->chunks, list) {
603  struct audit_chunk *chunk = find_chunk(node);
604  /* this could be NULL if the watch is dying else where... */
605  struct inode *inode = chunk->mark.i.inode;
606  node->index |= 1U<<31;
607  if (iterate_mounts(compare_root, inode, root_mnt))
608  node->index &= ~(1U<<31);
609  }
610  spin_unlock(&hash_lock);
611  trim_marked(tree);
612  put_tree(tree);
613  drop_collected_mounts(root_mnt);
614 skip_it:
616  }
617  list_del(&cursor);
619 }
620 
621 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
622 {
623 
624  if (pathname[0] != '/' ||
625  rule->listnr != AUDIT_FILTER_EXIT ||
626  op != Audit_equal ||
627  rule->inode_f || rule->watch || rule->tree)
628  return -EINVAL;
629  rule->tree = alloc_tree(pathname);
630  if (!rule->tree)
631  return -ENOMEM;
632  return 0;
633 }
634 
635 void audit_put_tree(struct audit_tree *tree)
636 {
637  put_tree(tree);
638 }
639 
640 static int tag_mount(struct vfsmount *mnt, void *arg)
641 {
642  return tag_chunk(mnt->mnt_root->d_inode, arg);
643 }
644 
645 /* called with audit_filter_mutex */
647 {
648  struct audit_tree *seed = rule->tree, *tree;
649  struct path path;
650  struct vfsmount *mnt;
651  int err;
652 
653  list_for_each_entry(tree, &tree_list, list) {
654  if (!strcmp(seed->pathname, tree->pathname)) {
655  put_tree(seed);
656  rule->tree = tree;
657  list_add(&rule->rlist, &tree->rules);
658  return 0;
659  }
660  }
661  tree = seed;
662  list_add(&tree->list, &tree_list);
663  list_add(&rule->rlist, &tree->rules);
664  /* do not set rule->tree yet */
666 
667  err = kern_path(tree->pathname, 0, &path);
668  if (err)
669  goto Err;
670  mnt = collect_mounts(&path);
671  path_put(&path);
672  if (IS_ERR(mnt)) {
673  err = PTR_ERR(mnt);
674  goto Err;
675  }
676 
677  get_tree(tree);
678  err = iterate_mounts(tag_mount, tree, mnt);
680 
681  if (!err) {
682  struct node *node;
683  spin_lock(&hash_lock);
684  list_for_each_entry(node, &tree->chunks, list)
685  node->index &= ~(1U<<31);
686  spin_unlock(&hash_lock);
687  } else {
688  trim_marked(tree);
689  goto Err;
690  }
691 
693  if (list_empty(&rule->rlist)) {
694  put_tree(tree);
695  return -ENOENT;
696  }
697  rule->tree = tree;
698  put_tree(tree);
699 
700  return 0;
701 Err:
703  list_del_init(&tree->list);
704  list_del_init(&tree->rules);
705  put_tree(tree);
706  return err;
707 }
708 
709 int audit_tag_tree(char *old, char *new)
710 {
711  struct list_head cursor, barrier;
712  int failed = 0;
713  struct path path1, path2;
714  struct vfsmount *tagged;
715  int err;
716 
717  err = kern_path(new, 0, &path2);
718  if (err)
719  return err;
720  tagged = collect_mounts(&path2);
721  path_put(&path2);
722  if (IS_ERR(tagged))
723  return PTR_ERR(tagged);
724 
725  err = kern_path(old, 0, &path1);
726  if (err) {
727  drop_collected_mounts(tagged);
728  return err;
729  }
730 
732  list_add(&barrier, &tree_list);
733  list_add(&cursor, &barrier);
734 
735  while (cursor.next != &tree_list) {
736  struct audit_tree *tree;
737  int good_one = 0;
738 
739  tree = container_of(cursor.next, struct audit_tree, list);
740  get_tree(tree);
741  list_del(&cursor);
742  list_add(&cursor, &tree->list);
744 
745  err = kern_path(tree->pathname, 0, &path2);
746  if (!err) {
747  good_one = path_is_under(&path1, &path2);
748  path_put(&path2);
749  }
750 
751  if (!good_one) {
752  put_tree(tree);
754  continue;
755  }
756 
757  failed = iterate_mounts(tag_mount, tree, tagged);
758  if (failed) {
759  put_tree(tree);
761  break;
762  }
763 
765  spin_lock(&hash_lock);
766  if (!tree->goner) {
767  list_del(&tree->list);
768  list_add(&tree->list, &tree_list);
769  }
770  spin_unlock(&hash_lock);
771  put_tree(tree);
772  }
773 
774  while (barrier.prev != &tree_list) {
775  struct audit_tree *tree;
776 
777  tree = container_of(barrier.prev, struct audit_tree, list);
778  get_tree(tree);
779  list_del(&tree->list);
780  list_add(&tree->list, &barrier);
782 
783  if (!failed) {
784  struct node *node;
785  spin_lock(&hash_lock);
786  list_for_each_entry(node, &tree->chunks, list)
787  node->index &= ~(1U<<31);
788  spin_unlock(&hash_lock);
789  } else {
790  trim_marked(tree);
791  }
792 
793  put_tree(tree);
795  }
796  list_del(&barrier);
797  list_del(&cursor);
799  path_put(&path1);
800  drop_collected_mounts(tagged);
801  return failed;
802 }
803 
804 /*
805  * That gets run when evict_chunk() ends up needing to kill audit_tree.
806  * Runs from a separate thread.
807  */
808 static int prune_tree_thread(void *unused)
809 {
810  mutex_lock(&audit_cmd_mutex);
811  mutex_lock(&audit_filter_mutex);
812 
813  while (!list_empty(&prune_list)) {
814  struct audit_tree *victim;
815 
816  victim = list_entry(prune_list.next, struct audit_tree, list);
817  list_del_init(&victim->list);
818 
819  mutex_unlock(&audit_filter_mutex);
820 
821  prune_one(victim);
822 
823  mutex_lock(&audit_filter_mutex);
824  }
825 
826  mutex_unlock(&audit_filter_mutex);
827  mutex_unlock(&audit_cmd_mutex);
828  return 0;
829 }
830 
831 static void audit_schedule_prune(void)
832 {
833  kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
834 }
835 
836 /*
837  * ... and that one is done if evict_chunk() decides to delay until the end
838  * of syscall. Runs synchronously.
839  */
840 void audit_kill_trees(struct list_head *list)
841 {
844 
845  while (!list_empty(list)) {
846  struct audit_tree *victim;
847 
848  victim = list_entry(list->next, struct audit_tree, list);
849  kill_rules(victim);
850  list_del_init(&victim->list);
851 
853 
854  prune_one(victim);
855 
857  }
858 
861 }
862 
863 /*
864  * Here comes the stuff asynchronous to auditctl operations
865  */
866 
867 static void evict_chunk(struct audit_chunk *chunk)
868 {
869  struct audit_tree *owner;
870  struct list_head *postponed = audit_killed_trees();
871  int need_prune = 0;
872  int n;
873 
874  if (chunk->dead)
875  return;
876 
877  chunk->dead = 1;
878  mutex_lock(&audit_filter_mutex);
879  spin_lock(&hash_lock);
880  while (!list_empty(&chunk->trees)) {
881  owner = list_entry(chunk->trees.next,
882  struct audit_tree, same_root);
883  owner->goner = 1;
884  owner->root = NULL;
885  list_del_init(&owner->same_root);
886  spin_unlock(&hash_lock);
887  if (!postponed) {
888  kill_rules(owner);
889  list_move(&owner->list, &prune_list);
890  need_prune = 1;
891  } else {
892  list_move(&owner->list, postponed);
893  }
894  spin_lock(&hash_lock);
895  }
896  list_del_rcu(&chunk->hash);
897  for (n = 0; n < chunk->count; n++)
898  list_del_init(&chunk->owners[n].list);
899  spin_unlock(&hash_lock);
900  if (need_prune)
901  audit_schedule_prune();
902  mutex_unlock(&audit_filter_mutex);
903 }
904 
905 static int audit_tree_handle_event(struct fsnotify_group *group,
906  struct fsnotify_mark *inode_mark,
907  struct fsnotify_mark *vfsmonut_mark,
908  struct fsnotify_event *event)
909 {
910  BUG();
911  return -EOPNOTSUPP;
912 }
913 
914 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
915 {
916  struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
917 
918  evict_chunk(chunk);
919 
920  /*
921  * We are guaranteed to have at least one reference to the mark from
922  * either the inode or the caller of fsnotify_destroy_mark().
923  */
924  BUG_ON(atomic_read(&entry->refcnt) < 1);
925 }
926 
927 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
928  struct fsnotify_mark *inode_mark,
929  struct fsnotify_mark *vfsmount_mark,
930  __u32 mask, void *data, int data_type)
931 {
932  return false;
933 }
934 
935 static const struct fsnotify_ops audit_tree_ops = {
936  .handle_event = audit_tree_handle_event,
937  .should_send_event = audit_tree_send_event,
938  .free_group_priv = NULL,
939  .free_event_priv = NULL,
940  .freeing_mark = audit_tree_freeing_mark,
941 };
942 
943 static int __init audit_tree_init(void)
944 {
945  int i;
946 
947  audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
948  if (IS_ERR(audit_tree_group))
949  audit_panic("cannot initialize fsnotify group for rectree watches");
950 
951  for (i = 0; i < HASH_SIZE; i++)
952  INIT_LIST_HEAD(&chunk_hash_heads[i]);
953 
954  return 0;
955 }
956 __initcall(audit_tree_init);