Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
blk-throttle.c
Go to the documentation of this file.
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <[email protected]>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29  unsigned long delay);
30 
32  struct rb_root rb;
33  struct rb_node *left;
34  unsigned int count;
35  unsigned long min_disptime;
36 };
37 
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39  .count = 0, .min_disptime = 0}
40 
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
42 
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45  /* total bytes transferred */
46  struct blkg_rwstat service_bytes;
47  /* total IOs serviced, post merge */
48  struct blkg_rwstat serviced;
49 };
50 
51 struct throtl_grp {
52  /* must be the first member */
54 
55  /* active throtl group service_tree member */
56  struct rb_node rb_node;
57 
58  /*
59  * Dispatch time in jiffies. This is the estimated time when group
60  * will unthrottle and is ready to dispatch more bio. It is used as
61  * key to sort active groups in service tree.
62  */
63  unsigned long disptime;
64 
65  unsigned int flags;
66 
67  /* Two lists for READ and WRITE */
68  struct bio_list bio_lists[2];
69 
70  /* Number of queued bios on READ and WRITE lists */
71  unsigned int nr_queued[2];
72 
73  /* bytes per second rate limits */
75 
76  /* IOPS limits */
77  unsigned int iops[2];
78 
79  /* Number of bytes disptached in current slice */
81  /* Number of bio's dispatched in current slice */
82  unsigned int io_disp[2];
83 
84  /* When did we start a new slice */
85  unsigned long slice_start[2];
86  unsigned long slice_end[2];
87 
88  /* Some throttle limits got updated for the group */
90 
91  /* Per cpu stats pointer */
93 
94  /* List of tgs waiting for per cpu stats memory to be allocated */
96 };
97 
99 {
100  /* service tree for active throtl groups */
102 
104 
105  /* Total Number of queued bios on READ and WRITE lists */
106  unsigned int nr_queued[2];
107 
108  /*
109  * number of total undestroyed groups
110  */
111  unsigned int nr_undestroyed_grps;
112 
113  /* Work for dispatching throttled bios */
115 
117 };
118 
119 /* list and work item to allocate percpu group stats */
120 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
121 static LIST_HEAD(tg_stats_alloc_list);
122 
123 static void tg_stats_alloc_fn(struct work_struct *);
124 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
125 
126 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
127 {
128  return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
129 }
130 
131 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
132 {
133  return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
134 }
135 
136 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
137 {
138  return pd_to_blkg(&tg->pd);
139 }
140 
141 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
142 {
143  return blkg_to_tg(td->queue->root_blkg);
144 }
145 
147  THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
148 };
149 
150 #define THROTL_TG_FNS(name) \
151 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
152 { \
153  (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
154 } \
155 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
156 { \
157  (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
158 } \
159 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
160 { \
161  return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
162 }
163 
164 THROTL_TG_FNS(on_rr);
165 
166 #define throtl_log_tg(td, tg, fmt, args...) do { \
167  char __pbuf[128]; \
168  \
169  blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \
170  blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
171 } while (0)
172 
173 #define throtl_log(td, fmt, args...) \
174  blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
175 
176 static inline unsigned int total_nr_queued(struct throtl_data *td)
177 {
178  return td->nr_queued[0] + td->nr_queued[1];
179 }
180 
181 /*
182  * Worker for allocating per cpu stat for tgs. This is scheduled on the
183  * system_wq once there are some groups on the alloc_list waiting for
184  * allocation.
185  */
186 static void tg_stats_alloc_fn(struct work_struct *work)
187 {
188  static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
189  struct delayed_work *dwork = to_delayed_work(work);
190  bool empty = false;
191 
192 alloc_stats:
193  if (!stats_cpu) {
194  stats_cpu = alloc_percpu(struct tg_stats_cpu);
195  if (!stats_cpu) {
196  /* allocation failed, try again after some time */
198  return;
199  }
200  }
201 
202  spin_lock_irq(&tg_stats_alloc_lock);
203 
204  if (!list_empty(&tg_stats_alloc_list)) {
205  struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
206  struct throtl_grp,
208  swap(tg->stats_cpu, stats_cpu);
209  list_del_init(&tg->stats_alloc_node);
210  }
211 
212  empty = list_empty(&tg_stats_alloc_list);
213  spin_unlock_irq(&tg_stats_alloc_lock);
214  if (!empty)
215  goto alloc_stats;
216 }
217 
218 static void throtl_pd_init(struct blkcg_gq *blkg)
219 {
220  struct throtl_grp *tg = blkg_to_tg(blkg);
221  unsigned long flags;
222 
223  RB_CLEAR_NODE(&tg->rb_node);
224  bio_list_init(&tg->bio_lists[0]);
225  bio_list_init(&tg->bio_lists[1]);
226  tg->limits_changed = false;
227 
228  tg->bps[READ] = -1;
229  tg->bps[WRITE] = -1;
230  tg->iops[READ] = -1;
231  tg->iops[WRITE] = -1;
232 
233  /*
234  * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
235  * but percpu allocator can't be called from IO path. Queue tg on
236  * tg_stats_alloc_list and allocate from work item.
237  */
238  spin_lock_irqsave(&tg_stats_alloc_lock, flags);
239  list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
240  schedule_delayed_work(&tg_stats_alloc_work, 0);
241  spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
242 }
243 
244 static void throtl_pd_exit(struct blkcg_gq *blkg)
245 {
246  struct throtl_grp *tg = blkg_to_tg(blkg);
247  unsigned long flags;
248 
249  spin_lock_irqsave(&tg_stats_alloc_lock, flags);
250  list_del_init(&tg->stats_alloc_node);
251  spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
252 
253  free_percpu(tg->stats_cpu);
254 }
255 
256 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
257 {
258  struct throtl_grp *tg = blkg_to_tg(blkg);
259  int cpu;
260 
261  if (tg->stats_cpu == NULL)
262  return;
263 
264  for_each_possible_cpu(cpu) {
265  struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
266 
267  blkg_rwstat_reset(&sc->service_bytes);
268  blkg_rwstat_reset(&sc->serviced);
269  }
270 }
271 
272 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
273  struct blkcg *blkcg)
274 {
275  /*
276  * This is the common case when there are no blkcgs. Avoid lookup
277  * in this case
278  */
279  if (blkcg == &blkcg_root)
280  return td_root_tg(td);
281 
282  return blkg_to_tg(blkg_lookup(blkcg, td->queue));
283 }
284 
285 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
286  struct blkcg *blkcg)
287 {
288  struct request_queue *q = td->queue;
289  struct throtl_grp *tg = NULL;
290 
291  /*
292  * This is the common case when there are no blkcgs. Avoid lookup
293  * in this case
294  */
295  if (blkcg == &blkcg_root) {
296  tg = td_root_tg(td);
297  } else {
298  struct blkcg_gq *blkg;
299 
300  blkg = blkg_lookup_create(blkcg, q);
301 
302  /* if %NULL and @q is alive, fall back to root_tg */
303  if (!IS_ERR(blkg))
304  tg = blkg_to_tg(blkg);
305  else if (!blk_queue_dead(q))
306  tg = td_root_tg(td);
307  }
308 
309  return tg;
310 }
311 
312 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
313 {
314  /* Service tree is empty */
315  if (!root->count)
316  return NULL;
317 
318  if (!root->left)
319  root->left = rb_first(&root->rb);
320 
321  if (root->left)
322  return rb_entry_tg(root->left);
323 
324  return NULL;
325 }
326 
327 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
328 {
329  rb_erase(n, root);
330  RB_CLEAR_NODE(n);
331 }
332 
333 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
334 {
335  if (root->left == n)
336  root->left = NULL;
337  rb_erase_init(n, &root->rb);
338  --root->count;
339 }
340 
341 static void update_min_dispatch_time(struct throtl_rb_root *st)
342 {
343  struct throtl_grp *tg;
344 
345  tg = throtl_rb_first(st);
346  if (!tg)
347  return;
348 
349  st->min_disptime = tg->disptime;
350 }
351 
352 static void
353 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
354 {
355  struct rb_node **node = &st->rb.rb_node;
356  struct rb_node *parent = NULL;
357  struct throtl_grp *__tg;
358  unsigned long key = tg->disptime;
359  int left = 1;
360 
361  while (*node != NULL) {
362  parent = *node;
363  __tg = rb_entry_tg(parent);
364 
365  if (time_before(key, __tg->disptime))
366  node = &parent->rb_left;
367  else {
368  node = &parent->rb_right;
369  left = 0;
370  }
371  }
372 
373  if (left)
374  st->left = &tg->rb_node;
375 
376  rb_link_node(&tg->rb_node, parent, node);
377  rb_insert_color(&tg->rb_node, &st->rb);
378 }
379 
380 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
381 {
382  struct throtl_rb_root *st = &td->tg_service_tree;
383 
384  tg_service_tree_add(st, tg);
385  throtl_mark_tg_on_rr(tg);
386  st->count++;
387 }
388 
389 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
390 {
391  if (!throtl_tg_on_rr(tg))
392  __throtl_enqueue_tg(td, tg);
393 }
394 
395 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
396 {
397  throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
398  throtl_clear_tg_on_rr(tg);
399 }
400 
401 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
402 {
403  if (throtl_tg_on_rr(tg))
404  __throtl_dequeue_tg(td, tg);
405 }
406 
407 static void throtl_schedule_next_dispatch(struct throtl_data *td)
408 {
409  struct throtl_rb_root *st = &td->tg_service_tree;
410 
411  /*
412  * If there are more bios pending, schedule more work.
413  */
414  if (!total_nr_queued(td))
415  return;
416 
417  BUG_ON(!st->count);
418 
419  update_min_dispatch_time(st);
420 
421  if (time_before_eq(st->min_disptime, jiffies))
422  throtl_schedule_delayed_work(td, 0);
423  else
424  throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
425 }
426 
427 static inline void
428 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
429 {
430  tg->bytes_disp[rw] = 0;
431  tg->io_disp[rw] = 0;
432  tg->slice_start[rw] = jiffies;
433  tg->slice_end[rw] = jiffies + throtl_slice;
434  throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
435  rw == READ ? 'R' : 'W', tg->slice_start[rw],
436  tg->slice_end[rw], jiffies);
437 }
438 
439 static inline void throtl_set_slice_end(struct throtl_data *td,
440  struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
441 {
442  tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
443 }
444 
445 static inline void throtl_extend_slice(struct throtl_data *td,
446  struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
447 {
448  tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
449  throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
450  rw == READ ? 'R' : 'W', tg->slice_start[rw],
451  tg->slice_end[rw], jiffies);
452 }
453 
454 /* Determine if previously allocated or extended slice is complete or not */
455 static bool
456 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
457 {
458  if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
459  return 0;
460 
461  return 1;
462 }
463 
464 /* Trim the used slices and adjust slice start accordingly */
465 static inline void
466 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
467 {
468  unsigned long nr_slices, time_elapsed, io_trim;
469  u64 bytes_trim, tmp;
470 
471  BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
472 
473  /*
474  * If bps are unlimited (-1), then time slice don't get
475  * renewed. Don't try to trim the slice if slice is used. A new
476  * slice will start when appropriate.
477  */
478  if (throtl_slice_used(td, tg, rw))
479  return;
480 
481  /*
482  * A bio has been dispatched. Also adjust slice_end. It might happen
483  * that initially cgroup limit was very low resulting in high
484  * slice_end, but later limit was bumped up and bio was dispached
485  * sooner, then we need to reduce slice_end. A high bogus slice_end
486  * is bad because it does not allow new slice to start.
487  */
488 
489  throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
490 
491  time_elapsed = jiffies - tg->slice_start[rw];
492 
493  nr_slices = time_elapsed / throtl_slice;
494 
495  if (!nr_slices)
496  return;
497  tmp = tg->bps[rw] * throtl_slice * nr_slices;
498  do_div(tmp, HZ);
499  bytes_trim = tmp;
500 
501  io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
502 
503  if (!bytes_trim && !io_trim)
504  return;
505 
506  if (tg->bytes_disp[rw] >= bytes_trim)
507  tg->bytes_disp[rw] -= bytes_trim;
508  else
509  tg->bytes_disp[rw] = 0;
510 
511  if (tg->io_disp[rw] >= io_trim)
512  tg->io_disp[rw] -= io_trim;
513  else
514  tg->io_disp[rw] = 0;
515 
516  tg->slice_start[rw] += nr_slices * throtl_slice;
517 
518  throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
519  " start=%lu end=%lu jiffies=%lu",
520  rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
521  tg->slice_start[rw], tg->slice_end[rw], jiffies);
522 }
523 
524 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
525  struct bio *bio, unsigned long *wait)
526 {
527  bool rw = bio_data_dir(bio);
528  unsigned int io_allowed;
529  unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
530  u64 tmp;
531 
532  jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
533 
534  /* Slice has just started. Consider one slice interval */
535  if (!jiffy_elapsed)
536  jiffy_elapsed_rnd = throtl_slice;
537 
538  jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
539 
540  /*
541  * jiffy_elapsed_rnd should not be a big value as minimum iops can be
542  * 1 then at max jiffy elapsed should be equivalent of 1 second as we
543  * will allow dispatch after 1 second and after that slice should
544  * have been trimmed.
545  */
546 
547  tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
548  do_div(tmp, HZ);
549 
550  if (tmp > UINT_MAX)
551  io_allowed = UINT_MAX;
552  else
553  io_allowed = tmp;
554 
555  if (tg->io_disp[rw] + 1 <= io_allowed) {
556  if (wait)
557  *wait = 0;
558  return 1;
559  }
560 
561  /* Calc approx time to dispatch */
562  jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
563 
564  if (jiffy_wait > jiffy_elapsed)
565  jiffy_wait = jiffy_wait - jiffy_elapsed;
566  else
567  jiffy_wait = 1;
568 
569  if (wait)
570  *wait = jiffy_wait;
571  return 0;
572 }
573 
574 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
575  struct bio *bio, unsigned long *wait)
576 {
577  bool rw = bio_data_dir(bio);
578  u64 bytes_allowed, extra_bytes, tmp;
579  unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
580 
581  jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
582 
583  /* Slice has just started. Consider one slice interval */
584  if (!jiffy_elapsed)
585  jiffy_elapsed_rnd = throtl_slice;
586 
587  jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
588 
589  tmp = tg->bps[rw] * jiffy_elapsed_rnd;
590  do_div(tmp, HZ);
591  bytes_allowed = tmp;
592 
593  if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
594  if (wait)
595  *wait = 0;
596  return 1;
597  }
598 
599  /* Calc approx time to dispatch */
600  extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
601  jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
602 
603  if (!jiffy_wait)
604  jiffy_wait = 1;
605 
606  /*
607  * This wait time is without taking into consideration the rounding
608  * up we did. Add that time also.
609  */
610  jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
611  if (wait)
612  *wait = jiffy_wait;
613  return 0;
614 }
615 
616 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
617  if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
618  return 1;
619  return 0;
620 }
621 
622 /*
623  * Returns whether one can dispatch a bio or not. Also returns approx number
624  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
625  */
626 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
627  struct bio *bio, unsigned long *wait)
628 {
629  bool rw = bio_data_dir(bio);
630  unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
631 
632  /*
633  * Currently whole state machine of group depends on first bio
634  * queued in the group bio list. So one should not be calling
635  * this function with a different bio if there are other bios
636  * queued.
637  */
638  BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
639 
640  /* If tg->bps = -1, then BW is unlimited */
641  if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
642  if (wait)
643  *wait = 0;
644  return 1;
645  }
646 
647  /*
648  * If previous slice expired, start a new one otherwise renew/extend
649  * existing slice to make sure it is at least throtl_slice interval
650  * long since now.
651  */
652  if (throtl_slice_used(td, tg, rw))
653  throtl_start_new_slice(td, tg, rw);
654  else {
655  if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
656  throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
657  }
658 
659  if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
660  && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
661  if (wait)
662  *wait = 0;
663  return 1;
664  }
665 
666  max_wait = max(bps_wait, iops_wait);
667 
668  if (wait)
669  *wait = max_wait;
670 
671  if (time_before(tg->slice_end[rw], jiffies + max_wait))
672  throtl_extend_slice(td, tg, rw, jiffies + max_wait);
673 
674  return 0;
675 }
676 
677 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
678  int rw)
679 {
680  struct throtl_grp *tg = blkg_to_tg(blkg);
681  struct tg_stats_cpu *stats_cpu;
682  unsigned long flags;
683 
684  /* If per cpu stats are not allocated yet, don't do any accounting. */
685  if (tg->stats_cpu == NULL)
686  return;
687 
688  /*
689  * Disabling interrupts to provide mutual exclusion between two
690  * writes on same cpu. It probably is not needed for 64bit. Not
691  * optimizing that case yet.
692  */
693  local_irq_save(flags);
694 
695  stats_cpu = this_cpu_ptr(tg->stats_cpu);
696 
697  blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
698  blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
699 
700  local_irq_restore(flags);
701 }
702 
703 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
704 {
705  bool rw = bio_data_dir(bio);
706 
707  /* Charge the bio to the group */
708  tg->bytes_disp[rw] += bio->bi_size;
709  tg->io_disp[rw]++;
710 
711  throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
712 }
713 
714 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
715  struct bio *bio)
716 {
717  bool rw = bio_data_dir(bio);
718 
719  bio_list_add(&tg->bio_lists[rw], bio);
720  /* Take a bio reference on tg */
721  blkg_get(tg_to_blkg(tg));
722  tg->nr_queued[rw]++;
723  td->nr_queued[rw]++;
724  throtl_enqueue_tg(td, tg);
725 }
726 
727 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
728 {
729  unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
730  struct bio *bio;
731 
732  if ((bio = bio_list_peek(&tg->bio_lists[READ])))
733  tg_may_dispatch(td, tg, bio, &read_wait);
734 
735  if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
736  tg_may_dispatch(td, tg, bio, &write_wait);
737 
738  min_wait = min(read_wait, write_wait);
739  disptime = jiffies + min_wait;
740 
741  /* Update dispatch time */
742  throtl_dequeue_tg(td, tg);
743  tg->disptime = disptime;
744  throtl_enqueue_tg(td, tg);
745 }
746 
747 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
748  bool rw, struct bio_list *bl)
749 {
750  struct bio *bio;
751 
752  bio = bio_list_pop(&tg->bio_lists[rw]);
753  tg->nr_queued[rw]--;
754  /* Drop bio reference on blkg */
755  blkg_put(tg_to_blkg(tg));
756 
757  BUG_ON(td->nr_queued[rw] <= 0);
758  td->nr_queued[rw]--;
759 
760  throtl_charge_bio(tg, bio);
761  bio_list_add(bl, bio);
762  bio->bi_rw |= REQ_THROTTLED;
763 
764  throtl_trim_slice(td, tg, rw);
765 }
766 
767 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
768  struct bio_list *bl)
769 {
770  unsigned int nr_reads = 0, nr_writes = 0;
771  unsigned int max_nr_reads = throtl_grp_quantum*3/4;
772  unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
773  struct bio *bio;
774 
775  /* Try to dispatch 75% READS and 25% WRITES */
776 
777  while ((bio = bio_list_peek(&tg->bio_lists[READ]))
778  && tg_may_dispatch(td, tg, bio, NULL)) {
779 
780  tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
781  nr_reads++;
782 
783  if (nr_reads >= max_nr_reads)
784  break;
785  }
786 
787  while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
788  && tg_may_dispatch(td, tg, bio, NULL)) {
789 
790  tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
791  nr_writes++;
792 
793  if (nr_writes >= max_nr_writes)
794  break;
795  }
796 
797  return nr_reads + nr_writes;
798 }
799 
800 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
801 {
802  unsigned int nr_disp = 0;
803  struct throtl_grp *tg;
804  struct throtl_rb_root *st = &td->tg_service_tree;
805 
806  while (1) {
807  tg = throtl_rb_first(st);
808 
809  if (!tg)
810  break;
811 
812  if (time_before(jiffies, tg->disptime))
813  break;
814 
815  throtl_dequeue_tg(td, tg);
816 
817  nr_disp += throtl_dispatch_tg(td, tg, bl);
818 
819  if (tg->nr_queued[0] || tg->nr_queued[1]) {
820  tg_update_disptime(td, tg);
821  throtl_enqueue_tg(td, tg);
822  }
823 
824  if (nr_disp >= throtl_quantum)
825  break;
826  }
827 
828  return nr_disp;
829 }
830 
831 static void throtl_process_limit_change(struct throtl_data *td)
832 {
833  struct request_queue *q = td->queue;
834  struct blkcg_gq *blkg, *n;
835 
836  if (!td->limits_changed)
837  return;
838 
839  xchg(&td->limits_changed, false);
840 
841  throtl_log(td, "limits changed");
842 
843  list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
844  struct throtl_grp *tg = blkg_to_tg(blkg);
845 
846  if (!tg->limits_changed)
847  continue;
848 
849  if (!xchg(&tg->limits_changed, false))
850  continue;
851 
852  throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
853  " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
854  tg->iops[READ], tg->iops[WRITE]);
855 
856  /*
857  * Restart the slices for both READ and WRITES. It
858  * might happen that a group's limit are dropped
859  * suddenly and we don't want to account recently
860  * dispatched IO with new low rate
861  */
862  throtl_start_new_slice(td, tg, 0);
863  throtl_start_new_slice(td, tg, 1);
864 
865  if (throtl_tg_on_rr(tg))
866  tg_update_disptime(td, tg);
867  }
868 }
869 
870 /* Dispatch throttled bios. Should be called without queue lock held. */
871 static int throtl_dispatch(struct request_queue *q)
872 {
873  struct throtl_data *td = q->td;
874  unsigned int nr_disp = 0;
875  struct bio_list bio_list_on_stack;
876  struct bio *bio;
877  struct blk_plug plug;
878 
879  spin_lock_irq(q->queue_lock);
880 
881  throtl_process_limit_change(td);
882 
883  if (!total_nr_queued(td))
884  goto out;
885 
886  bio_list_init(&bio_list_on_stack);
887 
888  throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
889  total_nr_queued(td), td->nr_queued[READ],
890  td->nr_queued[WRITE]);
891 
892  nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
893 
894  if (nr_disp)
895  throtl_log(td, "bios disp=%u", nr_disp);
896 
897  throtl_schedule_next_dispatch(td);
898 out:
899  spin_unlock_irq(q->queue_lock);
900 
901  /*
902  * If we dispatched some requests, unplug the queue to make sure
903  * immediate dispatch
904  */
905  if (nr_disp) {
906  blk_start_plug(&plug);
907  while((bio = bio_list_pop(&bio_list_on_stack)))
909  blk_finish_plug(&plug);
910  }
911  return nr_disp;
912 }
913 
914 void blk_throtl_work(struct work_struct *work)
915 {
916  struct throtl_data *td = container_of(work, struct throtl_data,
917  throtl_work.work);
918  struct request_queue *q = td->queue;
919 
920  throtl_dispatch(q);
921 }
922 
923 /* Call with queue lock held */
924 static void
925 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
926 {
927 
928  struct delayed_work *dwork = &td->throtl_work;
929 
930  /* schedule work if limits changed even if no bio is queued */
931  if (total_nr_queued(td) || td->limits_changed) {
932  mod_delayed_work(kthrotld_workqueue, dwork, delay);
933  throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
934  delay, jiffies);
935  }
936 }
937 
938 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
939  struct blkg_policy_data *pd, int off)
940 {
941  struct throtl_grp *tg = pd_to_tg(pd);
942  struct blkg_rwstat rwstat = { }, tmp;
943  int i, cpu;
944 
945  for_each_possible_cpu(cpu) {
946  struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
947 
948  tmp = blkg_rwstat_read((void *)sc + off);
949  for (i = 0; i < BLKG_RWSTAT_NR; i++)
950  rwstat.cnt[i] += tmp.cnt[i];
951  }
952 
953  return __blkg_prfill_rwstat(sf, pd, &rwstat);
954 }
955 
956 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
957  struct seq_file *sf)
958 {
959  struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
960 
961  blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
962  cft->private, true);
963  return 0;
964 }
965 
966 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
967  int off)
968 {
969  struct throtl_grp *tg = pd_to_tg(pd);
970  u64 v = *(u64 *)((void *)tg + off);
971 
972  if (v == -1)
973  return 0;
974  return __blkg_prfill_u64(sf, pd, v);
975 }
976 
977 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
978  int off)
979 {
980  struct throtl_grp *tg = pd_to_tg(pd);
981  unsigned int v = *(unsigned int *)((void *)tg + off);
982 
983  if (v == -1)
984  return 0;
985  return __blkg_prfill_u64(sf, pd, v);
986 }
987 
988 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
989  struct seq_file *sf)
990 {
991  blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
992  &blkcg_policy_throtl, cft->private, false);
993  return 0;
994 }
995 
996 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
997  struct seq_file *sf)
998 {
999  blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1000  &blkcg_policy_throtl, cft->private, false);
1001  return 0;
1002 }
1003 
1004 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1005  bool is_u64)
1006 {
1007  struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1008  struct blkg_conf_ctx ctx;
1009  struct throtl_grp *tg;
1010  struct throtl_data *td;
1011  int ret;
1012 
1013  ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1014  if (ret)
1015  return ret;
1016 
1017  tg = blkg_to_tg(ctx.blkg);
1018  td = ctx.blkg->q->td;
1019 
1020  if (!ctx.v)
1021  ctx.v = -1;
1022 
1023  if (is_u64)
1024  *(u64 *)((void *)tg + cft->private) = ctx.v;
1025  else
1026  *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1027 
1028  /* XXX: we don't need the following deferred processing */
1029  xchg(&tg->limits_changed, true);
1030  xchg(&td->limits_changed, true);
1031  throtl_schedule_delayed_work(td, 0);
1032 
1034  return 0;
1035 }
1036 
1037 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1038  const char *buf)
1039 {
1040  return tg_set_conf(cgrp, cft, buf, true);
1041 }
1042 
1043 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1044  const char *buf)
1045 {
1046  return tg_set_conf(cgrp, cft, buf, false);
1047 }
1048 
1049 static struct cftype throtl_files[] = {
1050  {
1051  .name = "throttle.read_bps_device",
1052  .private = offsetof(struct throtl_grp, bps[READ]),
1053  .read_seq_string = tg_print_conf_u64,
1054  .write_string = tg_set_conf_u64,
1055  .max_write_len = 256,
1056  },
1057  {
1058  .name = "throttle.write_bps_device",
1059  .private = offsetof(struct throtl_grp, bps[WRITE]),
1060  .read_seq_string = tg_print_conf_u64,
1061  .write_string = tg_set_conf_u64,
1062  .max_write_len = 256,
1063  },
1064  {
1065  .name = "throttle.read_iops_device",
1066  .private = offsetof(struct throtl_grp, iops[READ]),
1067  .read_seq_string = tg_print_conf_uint,
1068  .write_string = tg_set_conf_uint,
1069  .max_write_len = 256,
1070  },
1071  {
1072  .name = "throttle.write_iops_device",
1073  .private = offsetof(struct throtl_grp, iops[WRITE]),
1074  .read_seq_string = tg_print_conf_uint,
1075  .write_string = tg_set_conf_uint,
1076  .max_write_len = 256,
1077  },
1078  {
1079  .name = "throttle.io_service_bytes",
1080  .private = offsetof(struct tg_stats_cpu, service_bytes),
1081  .read_seq_string = tg_print_cpu_rwstat,
1082  },
1083  {
1084  .name = "throttle.io_serviced",
1085  .private = offsetof(struct tg_stats_cpu, serviced),
1086  .read_seq_string = tg_print_cpu_rwstat,
1087  },
1088  { } /* terminate */
1089 };
1090 
1091 static void throtl_shutdown_wq(struct request_queue *q)
1092 {
1093  struct throtl_data *td = q->td;
1094 
1096 }
1097 
1098 static struct blkcg_policy blkcg_policy_throtl = {
1099  .pd_size = sizeof(struct throtl_grp),
1100  .cftypes = throtl_files,
1101 
1102  .pd_init_fn = throtl_pd_init,
1103  .pd_exit_fn = throtl_pd_exit,
1104  .pd_reset_stats_fn = throtl_pd_reset_stats,
1105 };
1106 
1107 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1108 {
1109  struct throtl_data *td = q->td;
1110  struct throtl_grp *tg;
1111  bool rw = bio_data_dir(bio), update_disptime = true;
1112  struct blkcg *blkcg;
1113  bool throttled = false;
1114 
1115  if (bio->bi_rw & REQ_THROTTLED) {
1116  bio->bi_rw &= ~REQ_THROTTLED;
1117  goto out;
1118  }
1119 
1120  /*
1121  * A throtl_grp pointer retrieved under rcu can be used to access
1122  * basic fields like stats and io rates. If a group has no rules,
1123  * just update the dispatch stats in lockless manner and return.
1124  */
1125  rcu_read_lock();
1126  blkcg = bio_blkcg(bio);
1127  tg = throtl_lookup_tg(td, blkcg);
1128  if (tg) {
1129  if (tg_no_rule_group(tg, rw)) {
1130  throtl_update_dispatch_stats(tg_to_blkg(tg),
1131  bio->bi_size, bio->bi_rw);
1132  goto out_unlock_rcu;
1133  }
1134  }
1135 
1136  /*
1137  * Either group has not been allocated yet or it is not an unlimited
1138  * IO group
1139  */
1140  spin_lock_irq(q->queue_lock);
1141  tg = throtl_lookup_create_tg(td, blkcg);
1142  if (unlikely(!tg))
1143  goto out_unlock;
1144 
1145  if (tg->nr_queued[rw]) {
1146  /*
1147  * There is already another bio queued in same dir. No
1148  * need to update dispatch time.
1149  */
1150  update_disptime = false;
1151  goto queue_bio;
1152 
1153  }
1154 
1155  /* Bio is with-in rate limit of group */
1156  if (tg_may_dispatch(td, tg, bio, NULL)) {
1157  throtl_charge_bio(tg, bio);
1158 
1159  /*
1160  * We need to trim slice even when bios are not being queued
1161  * otherwise it might happen that a bio is not queued for
1162  * a long time and slice keeps on extending and trim is not
1163  * called for a long time. Now if limits are reduced suddenly
1164  * we take into account all the IO dispatched so far at new
1165  * low rate and * newly queued IO gets a really long dispatch
1166  * time.
1167  *
1168  * So keep on trimming slice even if bio is not queued.
1169  */
1170  throtl_trim_slice(td, tg, rw);
1171  goto out_unlock;
1172  }
1173 
1174 queue_bio:
1175  throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1176  " iodisp=%u iops=%u queued=%d/%d",
1177  rw == READ ? 'R' : 'W',
1178  tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1179  tg->io_disp[rw], tg->iops[rw],
1180  tg->nr_queued[READ], tg->nr_queued[WRITE]);
1181 
1182  bio_associate_current(bio);
1183  throtl_add_bio_tg(q->td, tg, bio);
1184  throttled = true;
1185 
1186  if (update_disptime) {
1187  tg_update_disptime(td, tg);
1188  throtl_schedule_next_dispatch(td);
1189  }
1190 
1191 out_unlock:
1192  spin_unlock_irq(q->queue_lock);
1193 out_unlock_rcu:
1194  rcu_read_unlock();
1195 out:
1196  return throttled;
1197 }
1198 
1206  __releases(q->queue_lock) __acquires(q->queue_lock)
1207 {
1208  struct throtl_data *td = q->td;
1209  struct throtl_rb_root *st = &td->tg_service_tree;
1210  struct throtl_grp *tg;
1211  struct bio_list bl;
1212  struct bio *bio;
1213 
1214  queue_lockdep_assert_held(q);
1215 
1216  bio_list_init(&bl);
1217 
1218  while ((tg = throtl_rb_first(st))) {
1219  throtl_dequeue_tg(td, tg);
1220 
1221  while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1222  tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1223  while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1224  tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1225  }
1226  spin_unlock_irq(q->queue_lock);
1227 
1228  while ((bio = bio_list_pop(&bl)))
1229  generic_make_request(bio);
1230 
1231  spin_lock_irq(q->queue_lock);
1232 }
1233 
1235 {
1236  struct throtl_data *td;
1237  int ret;
1238 
1239  td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1240  if (!td)
1241  return -ENOMEM;
1242 
1244  td->limits_changed = false;
1246 
1247  q->td = td;
1248  td->queue = q;
1249 
1250  /* activate policy */
1251  ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1252  if (ret)
1253  kfree(td);
1254  return ret;
1255 }
1256 
1258 {
1259  BUG_ON(!q->td);
1260  throtl_shutdown_wq(q);
1261  blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1262  kfree(q->td);
1263 }
1264 
1265 static int __init throtl_init(void)
1266 {
1267  kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1268  if (!kthrotld_workqueue)
1269  panic("Failed to create kthrotld\n");
1270 
1271  return blkcg_policy_register(&blkcg_policy_throtl);
1272 }
1273 
1274 module_init(throtl_init);