Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cafe-driver.c
Go to the documentation of this file.
1 /*
2  * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3  * multifunction chip. Currently works with the Omnivision OV7670
4  * sensor.
5  *
6  * The data sheet for this device can be found at:
7  * http://www.marvell.com/products/pc_connectivity/88alp01/
8  *
9  * Copyright 2006-11 One Laptop Per Child Association, Inc.
10  * Copyright 2006-11 Jonathan Corbet <[email protected]>
11  *
12  * Written by Jonathan Corbet, [email protected].
13  *
14  * v4l2_device/v4l2_subdev conversion by:
15  * Copyright (C) 2009 Hans Verkuil <[email protected]>
16  *
17  * This file may be distributed under the terms of the GNU General
18  * Public License, version 2.
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/i2c.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/videodev2.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-chip-ident.h>
31 #include <linux/device.h>
32 #include <linux/wait.h>
33 #include <linux/delay.h>
34 #include <linux/io.h>
35 
36 #include "mcam-core.h"
37 
38 #define CAFE_VERSION 0x000002
39 
40 
41 /*
42  * Parameters.
43  */
44 MODULE_AUTHOR("Jonathan Corbet <[email protected]>");
45 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
46 MODULE_LICENSE("GPL");
48 
49 
50 
51 
52 struct cafe_camera {
53  int registered; /* Fully initialized? */
54  struct mcam_camera mcam;
55  struct pci_dev *pdev;
56  wait_queue_head_t smbus_wait; /* Waiting on i2c events */
57 };
58 
59 /*
60  * Most of the camera controller registers are defined in mcam-core.h,
61  * but the Cafe platform has some additional registers of its own;
62  * they are described here.
63  */
64 
65 /*
66  * "General purpose register" has a couple of GPIOs used for sensor
67  * power and reset on OLPC XO 1.0 systems.
68  */
69 #define REG_GPR 0xb4
70 #define GPR_C1EN 0x00000020 /* Pad 1 (power down) enable */
71 #define GPR_C0EN 0x00000010 /* Pad 0 (reset) enable */
72 #define GPR_C1 0x00000002 /* Control 1 value */
73 /*
74  * Control 0 is wired to reset on OLPC machines. For ov7x sensors,
75  * it is active low.
76  */
77 #define GPR_C0 0x00000001 /* Control 0 value */
78 
79 /*
80  * These registers control the SMBUS module for communicating
81  * with the sensor.
82  */
83 #define REG_TWSIC0 0xb8 /* TWSI (smbus) control 0 */
84 #define TWSIC0_EN 0x00000001 /* TWSI enable */
85 #define TWSIC0_MODE 0x00000002 /* 1 = 16-bit, 0 = 8-bit */
86 #define TWSIC0_SID 0x000003fc /* Slave ID */
87 /*
88  * Subtle trickery: the slave ID field starts with bit 2. But the
89  * Linux i2c stack wants to treat the bottommost bit as a separate
90  * read/write bit, which is why slave ID's are usually presented
91  * >>1. For consistency with that behavior, we shift over three
92  * bits instead of two.
93  */
94 #define TWSIC0_SID_SHIFT 3
95 #define TWSIC0_CLKDIV 0x0007fc00 /* Clock divider */
96 #define TWSIC0_MASKACK 0x00400000 /* Mask ack from sensor */
97 #define TWSIC0_OVMAGIC 0x00800000 /* Make it work on OV sensors */
98 
99 #define REG_TWSIC1 0xbc /* TWSI control 1 */
100 #define TWSIC1_DATA 0x0000ffff /* Data to/from camchip */
101 #define TWSIC1_ADDR 0x00ff0000 /* Address (register) */
102 #define TWSIC1_ADDR_SHIFT 16
103 #define TWSIC1_READ 0x01000000 /* Set for read op */
104 #define TWSIC1_WSTAT 0x02000000 /* Write status */
105 #define TWSIC1_RVALID 0x04000000 /* Read data valid */
106 #define TWSIC1_ERROR 0x08000000 /* Something screwed up */
107 
108 /*
109  * Here's the weird global control registers
110  */
111 #define REG_GL_CSR 0x3004 /* Control/status register */
112 #define GCSR_SRS 0x00000001 /* SW Reset set */
113 #define GCSR_SRC 0x00000002 /* SW Reset clear */
114 #define GCSR_MRS 0x00000004 /* Master reset set */
115 #define GCSR_MRC 0x00000008 /* HW Reset clear */
116 #define GCSR_CCIC_EN 0x00004000 /* CCIC Clock enable */
117 #define REG_GL_IMASK 0x300c /* Interrupt mask register */
118 #define GIMSK_CCIC_EN 0x00000004 /* CCIC Interrupt enable */
119 
120 #define REG_GL_FCR 0x3038 /* GPIO functional control register */
121 #define GFCR_GPIO_ON 0x08 /* Camera GPIO enabled */
122 #define REG_GL_GPIOR 0x315c /* GPIO register */
123 #define GGPIO_OUT 0x80000 /* GPIO output */
124 #define GGPIO_VAL 0x00008 /* Output pin value */
125 
126 #define REG_LEN (REG_GL_IMASK + 4)
127 
128 
129 /*
130  * Debugging and related.
131  */
132 #define cam_err(cam, fmt, arg...) \
133  dev_err(&(cam)->pdev->dev, fmt, ##arg);
134 #define cam_warn(cam, fmt, arg...) \
135  dev_warn(&(cam)->pdev->dev, fmt, ##arg);
136 
137 /* -------------------------------------------------------------------- */
138 /*
139  * The I2C/SMBUS interface to the camera itself starts here. The
140  * controller handles SMBUS itself, presenting a relatively simple register
141  * interface; all we have to do is to tell it where to route the data.
142  */
143 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
144 
145 static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
146 {
147  struct mcam_camera *m = container_of(dev, struct mcam_camera, v4l2_dev);
148  return container_of(m, struct cafe_camera, mcam);
149 }
150 
151 
152 static int cafe_smbus_write_done(struct mcam_camera *mcam)
153 {
154  unsigned long flags;
155  int c1;
156 
157  /*
158  * We must delay after the interrupt, or the controller gets confused
159  * and never does give us good status. Fortunately, we don't do this
160  * often.
161  */
162  udelay(20);
163  spin_lock_irqsave(&mcam->dev_lock, flags);
164  c1 = mcam_reg_read(mcam, REG_TWSIC1);
165  spin_unlock_irqrestore(&mcam->dev_lock, flags);
166  return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
167 }
168 
169 static int cafe_smbus_write_data(struct cafe_camera *cam,
171 {
172  unsigned int rval;
173  unsigned long flags;
174  struct mcam_camera *mcam = &cam->mcam;
175 
176  spin_lock_irqsave(&mcam->dev_lock, flags);
177  rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
178  rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
179  /*
180  * Marvell sez set clkdiv to all 1's for now.
181  */
182  rval |= TWSIC0_CLKDIV;
183  mcam_reg_write(mcam, REG_TWSIC0, rval);
184  (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */
185  rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
186  mcam_reg_write(mcam, REG_TWSIC1, rval);
187  spin_unlock_irqrestore(&mcam->dev_lock, flags);
188 
189  /* Unfortunately, reading TWSIC1 too soon after sending a command
190  * causes the device to die.
191  * Use a busy-wait because we often send a large quantity of small
192  * commands at-once; using msleep() would cause a lot of context
193  * switches which take longer than 2ms, resulting in a noticeable
194  * boot-time and capture-start delays.
195  */
196  mdelay(2);
197 
198  /*
199  * Another sad fact is that sometimes, commands silently complete but
200  * cafe_smbus_write_done() never becomes aware of this.
201  * This happens at random and appears to possible occur with any
202  * command.
203  * We don't understand why this is. We work around this issue
204  * with the timeout in the wait below, assuming that all commands
205  * complete within the timeout.
206  */
207  wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(mcam),
209 
210  spin_lock_irqsave(&mcam->dev_lock, flags);
211  rval = mcam_reg_read(mcam, REG_TWSIC1);
212  spin_unlock_irqrestore(&mcam->dev_lock, flags);
213 
214  if (rval & TWSIC1_WSTAT) {
215  cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
216  command, value);
217  return -EIO;
218  }
219  if (rval & TWSIC1_ERROR) {
220  cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
221  command, value);
222  return -EIO;
223  }
224  return 0;
225 }
226 
227 
228 
229 static int cafe_smbus_read_done(struct mcam_camera *mcam)
230 {
231  unsigned long flags;
232  int c1;
233 
234  /*
235  * We must delay after the interrupt, or the controller gets confused
236  * and never does give us good status. Fortunately, we don't do this
237  * often.
238  */
239  udelay(20);
240  spin_lock_irqsave(&mcam->dev_lock, flags);
241  c1 = mcam_reg_read(mcam, REG_TWSIC1);
242  spin_unlock_irqrestore(&mcam->dev_lock, flags);
243  return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
244 }
245 
246 
247 
248 static int cafe_smbus_read_data(struct cafe_camera *cam,
249  u16 addr, u8 command, u8 *value)
250 {
251  unsigned int rval;
252  unsigned long flags;
253  struct mcam_camera *mcam = &cam->mcam;
254 
255  spin_lock_irqsave(&mcam->dev_lock, flags);
256  rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
257  rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
258  /*
259  * Marvel sez set clkdiv to all 1's for now.
260  */
261  rval |= TWSIC0_CLKDIV;
262  mcam_reg_write(mcam, REG_TWSIC0, rval);
263  (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */
264  rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
265  mcam_reg_write(mcam, REG_TWSIC1, rval);
266  spin_unlock_irqrestore(&mcam->dev_lock, flags);
267 
269  cafe_smbus_read_done(mcam), CAFE_SMBUS_TIMEOUT);
270  spin_lock_irqsave(&mcam->dev_lock, flags);
271  rval = mcam_reg_read(mcam, REG_TWSIC1);
272  spin_unlock_irqrestore(&mcam->dev_lock, flags);
273 
274  if (rval & TWSIC1_ERROR) {
275  cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
276  return -EIO;
277  }
278  if (!(rval & TWSIC1_RVALID)) {
279  cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
280  command);
281  return -EIO;
282  }
283  *value = rval & 0xff;
284  return 0;
285 }
286 
287 /*
288  * Perform a transfer over SMBUS. This thing is called under
289  * the i2c bus lock, so we shouldn't race with ourselves...
290  */
291 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
292  unsigned short flags, char rw, u8 command,
293  int size, union i2c_smbus_data *data)
294 {
295  struct cafe_camera *cam = i2c_get_adapdata(adapter);
296  int ret = -EINVAL;
297 
298  /*
299  * This interface would appear to only do byte data ops. OK
300  * it can do word too, but the cam chip has no use for that.
301  */
302  if (size != I2C_SMBUS_BYTE_DATA) {
303  cam_err(cam, "funky xfer size %d\n", size);
304  return -EINVAL;
305  }
306 
307  if (rw == I2C_SMBUS_WRITE)
308  ret = cafe_smbus_write_data(cam, addr, command, data->byte);
309  else if (rw == I2C_SMBUS_READ)
310  ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
311  return ret;
312 }
313 
314 
315 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
316 {
317  unsigned long flags;
318 
319  spin_lock_irqsave(&cam->mcam.dev_lock, flags);
320  mcam_reg_set_bit(&cam->mcam, REG_IRQMASK, TWSIIRQS);
321  spin_unlock_irqrestore(&cam->mcam.dev_lock, flags);
322 }
323 
324 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
325 {
328 }
329 
330 static struct i2c_algorithm cafe_smbus_algo = {
331  .smbus_xfer = cafe_smbus_xfer,
332  .functionality = cafe_smbus_func
333 };
334 
335 static int cafe_smbus_setup(struct cafe_camera *cam)
336 {
337  struct i2c_adapter *adap;
338  int ret;
339 
340  adap = kzalloc(sizeof(*adap), GFP_KERNEL);
341  if (adap == NULL)
342  return -ENOMEM;
343  cam->mcam.i2c_adapter = adap;
344  cafe_smbus_enable_irq(cam);
345  adap->owner = THIS_MODULE;
346  adap->algo = &cafe_smbus_algo;
347  strcpy(adap->name, "cafe_ccic");
348  adap->dev.parent = &cam->pdev->dev;
349  i2c_set_adapdata(adap, cam);
350  ret = i2c_add_adapter(adap);
351  if (ret)
352  printk(KERN_ERR "Unable to register cafe i2c adapter\n");
353  return ret;
354 }
355 
356 static void cafe_smbus_shutdown(struct cafe_camera *cam)
357 {
358  i2c_del_adapter(cam->mcam.i2c_adapter);
359  kfree(cam->mcam.i2c_adapter);
360 }
361 
362 
363 /*
364  * Controller-level stuff
365  */
366 
367 static void cafe_ctlr_init(struct mcam_camera *mcam)
368 {
369  unsigned long flags;
370 
371  spin_lock_irqsave(&mcam->dev_lock, flags);
372  /*
373  * Added magic to bring up the hardware on the B-Test board
374  */
375  mcam_reg_write(mcam, 0x3038, 0x8);
376  mcam_reg_write(mcam, 0x315c, 0x80008);
377  /*
378  * Go through the dance needed to wake the device up.
379  * Note that these registers are global and shared
380  * with the NAND and SD devices. Interaction between the
381  * three still needs to be examined.
382  */
383  mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
384  mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
385  mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
386  /*
387  * Here we must wait a bit for the controller to come around.
388  */
389  spin_unlock_irqrestore(&mcam->dev_lock, flags);
390  msleep(5);
391  spin_lock_irqsave(&mcam->dev_lock, flags);
392 
393  mcam_reg_write(mcam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
394  mcam_reg_set_bit(mcam, REG_GL_IMASK, GIMSK_CCIC_EN);
395  /*
396  * Mask all interrupts.
397  */
398  mcam_reg_write(mcam, REG_IRQMASK, 0);
399  spin_unlock_irqrestore(&mcam->dev_lock, flags);
400 }
401 
402 
403 static void cafe_ctlr_power_up(struct mcam_camera *mcam)
404 {
405  /*
406  * Part one of the sensor dance: turn the global
407  * GPIO signal on.
408  */
409  mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON);
410  mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
411  /*
412  * Put the sensor into operational mode (assumes OLPC-style
413  * wiring). Control 0 is reset - set to 1 to operate.
414  * Control 1 is power down, set to 0 to operate.
415  */
416  mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
417  mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
418 }
419 
420 static void cafe_ctlr_power_down(struct mcam_camera *mcam)
421 {
422  mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
423  mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON);
424  mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT);
425 }
426 
427 
428 
429 /*
430  * The platform interrupt handler.
431  */
432 static irqreturn_t cafe_irq(int irq, void *data)
433 {
434  struct cafe_camera *cam = data;
435  struct mcam_camera *mcam = &cam->mcam;
436  unsigned int irqs, handled;
437 
438  spin_lock(&mcam->dev_lock);
439  irqs = mcam_reg_read(mcam, REG_IRQSTAT);
440  handled = cam->registered && mccic_irq(mcam, irqs);
441  if (irqs & TWSIIRQS) {
442  mcam_reg_write(mcam, REG_IRQSTAT, TWSIIRQS);
443  wake_up(&cam->smbus_wait);
444  handled = 1;
445  }
446  spin_unlock(&mcam->dev_lock);
447  return IRQ_RETVAL(handled);
448 }
449 
450 
451 /* -------------------------------------------------------------------------- */
452 /*
453  * PCI interface stuff.
454  */
455 
456 static int cafe_pci_probe(struct pci_dev *pdev,
457  const struct pci_device_id *id)
458 {
459  int ret;
460  struct cafe_camera *cam;
461  struct mcam_camera *mcam;
462 
463  /*
464  * Start putting together one of our big camera structures.
465  */
466  ret = -ENOMEM;
467  cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
468  if (cam == NULL)
469  goto out;
470  cam->pdev = pdev;
471  mcam = &cam->mcam;
472  mcam->chip_id = V4L2_IDENT_CAFE;
473  spin_lock_init(&mcam->dev_lock);
475  mcam->plat_power_up = cafe_ctlr_power_up;
476  mcam->plat_power_down = cafe_ctlr_power_down;
477  mcam->dev = &pdev->dev;
478  /*
479  * Set the clock speed for the XO 1; I don't believe this
480  * driver has ever run anywhere else.
481  */
482  mcam->clock_speed = 45;
483  mcam->use_smbus = 1;
484  /*
485  * Vmalloc mode for buffers is traditional with this driver.
486  * We *might* be able to run DMA_contig, especially on a system
487  * with CMA in it.
488  */
489  mcam->buffer_mode = B_vmalloc;
490  /*
491  * Get set up on the PCI bus.
492  */
493  ret = pci_enable_device(pdev);
494  if (ret)
495  goto out_free;
496  pci_set_master(pdev);
497 
498  ret = -EIO;
499  mcam->regs = pci_iomap(pdev, 0, 0);
500  if (!mcam->regs) {
501  printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
502  goto out_disable;
503  }
504  ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
505  if (ret)
506  goto out_iounmap;
507 
508  /*
509  * Initialize the controller and leave it powered up. It will
510  * stay that way until the sensor driver shows up.
511  */
512  cafe_ctlr_init(mcam);
513  cafe_ctlr_power_up(mcam);
514  /*
515  * Set up I2C/SMBUS communications. We have to drop the mutex here
516  * because the sensor could attach in this call chain, leading to
517  * unsightly deadlocks.
518  */
519  ret = cafe_smbus_setup(cam);
520  if (ret)
521  goto out_pdown;
522 
523  ret = mccic_register(mcam);
524  if (ret == 0) {
525  cam->registered = 1;
526  return 0;
527  }
528 
529  cafe_smbus_shutdown(cam);
530 out_pdown:
531  cafe_ctlr_power_down(mcam);
532  free_irq(pdev->irq, cam);
533 out_iounmap:
534  pci_iounmap(pdev, mcam->regs);
535 out_disable:
536  pci_disable_device(pdev);
537 out_free:
538  kfree(cam);
539 out:
540  return ret;
541 }
542 
543 
544 /*
545  * Shut down an initialized device
546  */
547 static void cafe_shutdown(struct cafe_camera *cam)
548 {
549  mccic_shutdown(&cam->mcam);
550  cafe_smbus_shutdown(cam);
551  free_irq(cam->pdev->irq, cam);
552  pci_iounmap(cam->pdev, cam->mcam.regs);
553 }
554 
555 
556 static void cafe_pci_remove(struct pci_dev *pdev)
557 {
558  struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
559  struct cafe_camera *cam = to_cam(v4l2_dev);
560 
561  if (cam == NULL) {
562  printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
563  return;
564  }
565  cafe_shutdown(cam);
566  kfree(cam);
567 }
568 
569 
570 #ifdef CONFIG_PM
571 /*
572  * Basic power management.
573  */
574 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
575 {
576  struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
577  struct cafe_camera *cam = to_cam(v4l2_dev);
578  int ret;
579 
580  ret = pci_save_state(pdev);
581  if (ret)
582  return ret;
583  mccic_suspend(&cam->mcam);
584  pci_disable_device(pdev);
585  return 0;
586 }
587 
588 
589 static int cafe_pci_resume(struct pci_dev *pdev)
590 {
591  struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
592  struct cafe_camera *cam = to_cam(v4l2_dev);
593  int ret = 0;
594 
595  pci_restore_state(pdev);
596  ret = pci_enable_device(pdev);
597 
598  if (ret) {
599  cam_warn(cam, "Unable to re-enable device on resume!\n");
600  return ret;
601  }
602  cafe_ctlr_init(&cam->mcam);
603  return mccic_resume(&cam->mcam);
604 }
605 
606 #endif /* CONFIG_PM */
607 
608 static struct pci_device_id cafe_ids[] = {
611  { 0, }
612 };
613 
614 MODULE_DEVICE_TABLE(pci, cafe_ids);
615 
616 static struct pci_driver cafe_pci_driver = {
617  .name = "cafe1000-ccic",
618  .id_table = cafe_ids,
619  .probe = cafe_pci_probe,
620  .remove = cafe_pci_remove,
621 #ifdef CONFIG_PM
622  .suspend = cafe_pci_suspend,
623  .resume = cafe_pci_resume,
624 #endif
625 };
626 
627 
628 
629 
630 static int __init cafe_init(void)
631 {
632  int ret;
633 
634  printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
635  CAFE_VERSION);
636  ret = pci_register_driver(&cafe_pci_driver);
637  if (ret) {
638  printk(KERN_ERR "Unable to register cafe_ccic driver\n");
639  goto out;
640  }
641  ret = 0;
642 
643 out:
644  return ret;
645 }
646 
647 
648 static void __exit cafe_exit(void)
649 {
650  pci_unregister_driver(&cafe_pci_driver);
651 }
652 
653 module_init(cafe_init);
654 module_exit(cafe_exit);