Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
chmc.c
Go to the documentation of this file.
1 /* chmc.c: Driver for UltraSPARC-III memory controller.
2  *
3  * Copyright (C) 2001, 2007, 2008 David S. Miller ([email protected])
4  */
5 
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/list.h>
11 #include <linux/string.h>
12 #include <linux/sched.h>
13 #include <linux/smp.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <asm/spitfire.h>
19 #include <asm/chmctrl.h>
20 #include <asm/cpudata.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23 #include <asm/head.h>
24 #include <asm/io.h>
25 #include <asm/memctrl.h>
26 
27 #define DRV_MODULE_NAME "chmc"
28 #define PFX DRV_MODULE_NAME ": "
29 #define DRV_MODULE_VERSION "0.2"
30 
31 MODULE_AUTHOR("David S. Miller ([email protected])");
32 MODULE_DESCRIPTION("UltraSPARC-III memory controller driver");
33 MODULE_LICENSE("GPL");
35 
36 static int mc_type;
37 #define MC_TYPE_SAFARI 1
38 #define MC_TYPE_JBUS 2
39 
40 static dimm_printer_t us3mc_dimm_printer;
41 
42 #define CHMCTRL_NDGRPS 2
43 #define CHMCTRL_NDIMMS 4
44 
45 #define CHMC_DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS)
46 
47 /* OBP memory-layout property format. */
48 struct chmc_obp_map {
49  unsigned char dimm_map[144];
50  unsigned char pin_map[576];
51 };
52 
53 #define DIMM_LABEL_SZ 8
54 
56  /* One max 8-byte string label per DIMM. Usually
57  * this matches the label on the motherboard where
58  * that DIMM resides.
59  */
61 
62  /* If symmetric use map[0], else it is
63  * asymmetric and map[1] should be used.
64  */
65  char symmetric;
66 
67  struct chmc_obp_map map[2];
68 };
69 
70 #define CHMCTRL_NBANKS 4
71 
73  struct chmc *p;
74  int bank_id;
75 
77  int valid;
78  int uk;
79  int um;
80  int lk;
81  int lm;
83  unsigned long base;
84  unsigned long size;
85 };
86 
87 struct chmc {
88  struct list_head list;
89  int portid;
90 
93 
94  void __iomem *regs;
95 
101 
103 };
104 
105 #define JBUSMC_REGS_SIZE 8
106 
107 #define JB_MC_REG1_DIMM2_BANK3 0x8000000000000000UL
108 #define JB_MC_REG1_DIMM1_BANK1 0x4000000000000000UL
109 #define JB_MC_REG1_DIMM2_BANK2 0x2000000000000000UL
110 #define JB_MC_REG1_DIMM1_BANK0 0x1000000000000000UL
111 #define JB_MC_REG1_XOR 0x0000010000000000UL
112 #define JB_MC_REG1_ADDR_GEN_2 0x000000e000000000UL
113 #define JB_MC_REG1_ADDR_GEN_2_SHIFT 37
114 #define JB_MC_REG1_ADDR_GEN_1 0x0000001c00000000UL
115 #define JB_MC_REG1_ADDR_GEN_1_SHIFT 34
116 #define JB_MC_REG1_INTERLEAVE 0x0000000001800000UL
117 #define JB_MC_REG1_INTERLEAVE_SHIFT 23
118 #define JB_MC_REG1_DIMM2_PTYPE 0x0000000000200000UL
119 #define JB_MC_REG1_DIMM2_PTYPE_SHIFT 21
120 #define JB_MC_REG1_DIMM1_PTYPE 0x0000000000100000UL
121 #define JB_MC_REG1_DIMM1_PTYPE_SHIFT 20
122 
123 #define PART_TYPE_X8 0
124 #define PART_TYPE_X4 1
125 
126 #define INTERLEAVE_NONE 0
127 #define INTERLEAVE_SAME 1
128 #define INTERLEAVE_INTERNAL 2
129 #define INTERLEAVE_BOTH 3
130 
131 #define ADDR_GEN_128MB 0
132 #define ADDR_GEN_256MB 1
133 #define ADDR_GEN_512MB 2
134 #define ADDR_GEN_1GB 3
135 
136 #define JB_NUM_DIMM_GROUPS 2
137 #define JB_NUM_DIMMS_PER_GROUP 2
138 #define JB_NUM_DIMMS (JB_NUM_DIMM_GROUPS * JB_NUM_DIMMS_PER_GROUP)
139 
141  unsigned char dimm_map[18];
142  unsigned char pin_map[144];
143 };
144 
146  /* One max 8-byte string label per DIMM. Usually
147  * this matches the label on the motherboard where
148  * that DIMM resides.
149  */
151 
152  /* If symmetric use map[0], else it is
153  * asymmetric and map[1] should be used.
154  */
155  char symmetric;
156 
158 
159  char _pad;
160 };
161 
164  int index;
167 };
168 
169 struct jbusmc {
170  void __iomem *regs;
177  struct list_head list;
178 };
179 
180 static DEFINE_SPINLOCK(mctrl_list_lock);
181 static LIST_HEAD(mctrl_list);
182 
183 static void mc_list_add(struct list_head *list)
184 {
185  spin_lock(&mctrl_list_lock);
186  list_add(list, &mctrl_list);
187  spin_unlock(&mctrl_list_lock);
188 }
189 
190 static void mc_list_del(struct list_head *list)
191 {
192  spin_lock(&mctrl_list_lock);
193  list_del_init(list);
194  spin_unlock(&mctrl_list_lock);
195 }
196 
197 #define SYNDROME_MIN -1
198 #define SYNDROME_MAX 144
199 
200 /* Covert syndrome code into the way the bits are positioned
201  * on the bus.
202  */
203 static int syndrome_to_qword_code(int syndrome_code)
204 {
205  if (syndrome_code < 128)
206  syndrome_code += 16;
207  else if (syndrome_code < 128 + 9)
208  syndrome_code -= (128 - 7);
209  else if (syndrome_code < (128 + 9 + 3))
210  syndrome_code -= (128 + 9 - 4);
211  else
212  syndrome_code -= (128 + 9 + 3);
213  return syndrome_code;
214 }
215 
216 /* All this magic has to do with how a cache line comes over the wire
217  * on Safari and JBUS. A 64-bit line comes over in 1 or more quadword
218  * cycles, each of which transmit ECC/MTAG info as well as the actual
219  * data.
220  */
221 #define L2_LINE_SIZE 64
222 #define L2_LINE_ADDR_MSK (L2_LINE_SIZE - 1)
223 #define QW_PER_LINE 4
224 #define QW_BYTES (L2_LINE_SIZE / QW_PER_LINE)
225 #define QW_BITS 144
226 #define SAFARI_LAST_BIT (576 - 1)
227 #define JBUS_LAST_BIT (144 - 1)
228 
229 static void get_pin_and_dimm_str(int syndrome_code, unsigned long paddr,
230  int *pin_p, char **dimm_str_p, void *_prop,
231  int base_dimm_offset)
232 {
233  int qword_code = syndrome_to_qword_code(syndrome_code);
234  int cache_line_offset;
235  int offset_inverse;
236  int dimm_map_index;
237  int map_val;
238 
239  if (mc_type == MC_TYPE_JBUS) {
240  struct jbusmc_obp_mem_layout *p = _prop;
241 
242  /* JBUS */
243  cache_line_offset = qword_code;
244  offset_inverse = (JBUS_LAST_BIT - cache_line_offset);
245  dimm_map_index = offset_inverse / 8;
246  map_val = p->map.dimm_map[dimm_map_index];
247  map_val = ((map_val >> ((7 - (offset_inverse & 7)))) & 1);
248  *dimm_str_p = p->dimm_labels[base_dimm_offset + map_val];
249  *pin_p = p->map.pin_map[cache_line_offset];
250  } else {
251  struct chmc_obp_mem_layout *p = _prop;
252  struct chmc_obp_map *mp;
253  int qword;
254 
255  /* Safari */
256  if (p->symmetric)
257  mp = &p->map[0];
258  else
259  mp = &p->map[1];
260 
261  qword = (paddr & L2_LINE_ADDR_MSK) / QW_BYTES;
262  cache_line_offset = ((3 - qword) * QW_BITS) + qword_code;
263  offset_inverse = (SAFARI_LAST_BIT - cache_line_offset);
264  dimm_map_index = offset_inverse >> 2;
265  map_val = mp->dimm_map[dimm_map_index];
266  map_val = ((map_val >> ((3 - (offset_inverse & 3)) << 1)) & 0x3);
267  *dimm_str_p = p->dimm_labels[base_dimm_offset + map_val];
268  *pin_p = mp->pin_map[cache_line_offset];
269  }
270 }
271 
272 static struct jbusmc_dimm_group *jbusmc_find_dimm_group(unsigned long phys_addr)
273 {
274  struct jbusmc *p;
275 
276  list_for_each_entry(p, &mctrl_list, list) {
277  int i;
278 
279  for (i = 0; i < p->num_dimm_groups; i++) {
280  struct jbusmc_dimm_group *dp = &p->dimm_groups[i];
281 
283  (dp->base_addr + dp->size) <= phys_addr)
284  continue;
285 
286  return dp;
287  }
288  }
289  return NULL;
290 }
291 
292 static int jbusmc_print_dimm(int syndrome_code,
293  unsigned long phys_addr,
294  char *buf, int buflen)
295 {
296  struct jbusmc_obp_mem_layout *prop;
297  struct jbusmc_dimm_group *dp;
298  struct jbusmc *p;
299  int first_dimm;
300 
301  dp = jbusmc_find_dimm_group(phys_addr);
302  if (dp == NULL ||
303  syndrome_code < SYNDROME_MIN ||
304  syndrome_code > SYNDROME_MAX) {
305  buf[0] = '?';
306  buf[1] = '?';
307  buf[2] = '?';
308  buf[3] = '\0';
309  return 0;
310  }
311  p = dp->controller;
312  prop = &p->layout;
313 
314  first_dimm = dp->index * JB_NUM_DIMMS_PER_GROUP;
315 
316  if (syndrome_code != SYNDROME_MIN) {
317  char *dimm_str;
318  int pin;
319 
320  get_pin_and_dimm_str(syndrome_code, phys_addr, &pin,
321  &dimm_str, prop, first_dimm);
322  sprintf(buf, "%s, pin %3d", dimm_str, pin);
323  } else {
324  int dimm;
325 
326  /* Multi-bit error, we just dump out all the
327  * dimm labels associated with this dimm group.
328  */
329  for (dimm = 0; dimm < JB_NUM_DIMMS_PER_GROUP; dimm++) {
330  sprintf(buf, "%s ",
331  prop->dimm_labels[first_dimm + dimm]);
332  buf += strlen(buf);
333  }
334  }
335 
336  return 0;
337 }
338 
339 static u64 __devinit jbusmc_dimm_group_size(u64 base,
340  const struct linux_prom64_registers *mem_regs,
341  int num_mem_regs)
342 {
343  u64 max = base + (8UL * 1024 * 1024 * 1024);
344  u64 max_seen = base;
345  int i;
346 
347  for (i = 0; i < num_mem_regs; i++) {
348  const struct linux_prom64_registers *ent;
349  u64 this_base;
350  u64 this_end;
351 
352  ent = &mem_regs[i];
353  this_base = ent->phys_addr;
354  this_end = this_base + ent->reg_size;
355  if (base < this_base || base >= this_end)
356  continue;
357  if (this_end > max)
358  this_end = max;
359  if (this_end > max_seen)
360  max_seen = this_end;
361  }
362 
363  return max_seen - base;
364 }
365 
366 static void __devinit jbusmc_construct_one_dimm_group(struct jbusmc *p,
367  unsigned long index,
368  const struct linux_prom64_registers *mem_regs,
369  int num_mem_regs)
370 {
371  struct jbusmc_dimm_group *dp = &p->dimm_groups[index];
372 
373  dp->controller = p;
374  dp->index = index;
375 
376  dp->base_addr = (p->portid * (64UL * 1024 * 1024 * 1024));
377  dp->base_addr += (index * (8UL * 1024 * 1024 * 1024));
378  dp->size = jbusmc_dimm_group_size(dp->base_addr, mem_regs, num_mem_regs);
379 }
380 
381 static void __devinit jbusmc_construct_dimm_groups(struct jbusmc *p,
382  const struct linux_prom64_registers *mem_regs,
383  int num_mem_regs)
384 {
385  if (p->mc_reg_1 & JB_MC_REG1_DIMM1_BANK0) {
386  jbusmc_construct_one_dimm_group(p, 0, mem_regs, num_mem_regs);
387  p->num_dimm_groups++;
388  }
389  if (p->mc_reg_1 & JB_MC_REG1_DIMM2_BANK2) {
390  jbusmc_construct_one_dimm_group(p, 1, mem_regs, num_mem_regs);
391  p->num_dimm_groups++;
392  }
393 }
394 
395 static int __devinit jbusmc_probe(struct platform_device *op)
396 {
397  const struct linux_prom64_registers *mem_regs;
398  struct device_node *mem_node;
399  int err, len, num_mem_regs;
400  struct jbusmc *p;
401  const u32 *prop;
402  const void *ml;
403 
404  err = -ENODEV;
405  mem_node = of_find_node_by_path("/memory");
406  if (!mem_node) {
407  printk(KERN_ERR PFX "Cannot find /memory node.\n");
408  goto out;
409  }
410  mem_regs = of_get_property(mem_node, "reg", &len);
411  if (!mem_regs) {
412  printk(KERN_ERR PFX "Cannot get reg property of /memory node.\n");
413  goto out;
414  }
415  num_mem_regs = len / sizeof(*mem_regs);
416 
417  err = -ENOMEM;
418  p = kzalloc(sizeof(*p), GFP_KERNEL);
419  if (!p) {
420  printk(KERN_ERR PFX "Cannot allocate struct jbusmc.\n");
421  goto out;
422  }
423 
424  INIT_LIST_HEAD(&p->list);
425 
426  err = -ENODEV;
427  prop = of_get_property(op->dev.of_node, "portid", &len);
428  if (!prop || len != 4) {
429  printk(KERN_ERR PFX "Cannot find portid.\n");
430  goto out_free;
431  }
432 
433  p->portid = *prop;
434 
435  prop = of_get_property(op->dev.of_node, "memory-control-register-1", &len);
436  if (!prop || len != 8) {
437  printk(KERN_ERR PFX "Cannot get memory control register 1.\n");
438  goto out_free;
439  }
440 
441  p->mc_reg_1 = ((u64)prop[0] << 32) | (u64) prop[1];
442 
443  err = -ENOMEM;
444  p->regs = of_ioremap(&op->resource[0], 0, JBUSMC_REGS_SIZE, "jbusmc");
445  if (!p->regs) {
446  printk(KERN_ERR PFX "Cannot map jbusmc regs.\n");
447  goto out_free;
448  }
449 
450  err = -ENODEV;
451  ml = of_get_property(op->dev.of_node, "memory-layout", &p->layout_len);
452  if (!ml) {
453  printk(KERN_ERR PFX "Cannot get memory layout property.\n");
454  goto out_iounmap;
455  }
456  if (p->layout_len > sizeof(p->layout)) {
457  printk(KERN_ERR PFX "Unexpected memory-layout size %d\n",
458  p->layout_len);
459  goto out_iounmap;
460  }
461  memcpy(&p->layout, ml, p->layout_len);
462 
463  jbusmc_construct_dimm_groups(p, mem_regs, num_mem_regs);
464 
465  mc_list_add(&p->list);
466 
467  printk(KERN_INFO PFX "UltraSPARC-IIIi memory controller at %s\n",
468  op->dev.of_node->full_name);
469 
470  dev_set_drvdata(&op->dev, p);
471 
472  err = 0;
473 
474 out:
475  return err;
476 
477 out_iounmap:
479 
480 out_free:
481  kfree(p);
482  goto out;
483 }
484 
485 /* Does BANK decode PHYS_ADDR? */
486 static int chmc_bank_match(struct chmc_bank_info *bp, unsigned long phys_addr)
487 {
488  unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT;
489  unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT;
490 
491  /* Bank must be enabled to match. */
492  if (bp->valid == 0)
493  return 0;
494 
495  /* Would BANK match upper bits? */
496  upper_bits ^= bp->um; /* What bits are different? */
497  upper_bits = ~upper_bits; /* Invert. */
498  upper_bits |= bp->uk; /* What bits don't matter for matching? */
499  upper_bits = ~upper_bits; /* Invert. */
500 
501  if (upper_bits)
502  return 0;
503 
504  /* Would BANK match lower bits? */
505  lower_bits ^= bp->lm; /* What bits are different? */
506  lower_bits = ~lower_bits; /* Invert. */
507  lower_bits |= bp->lk; /* What bits don't matter for matching? */
508  lower_bits = ~lower_bits; /* Invert. */
509 
510  if (lower_bits)
511  return 0;
512 
513  /* I always knew you'd be the one. */
514  return 1;
515 }
516 
517 /* Given PHYS_ADDR, search memory controller banks for a match. */
518 static struct chmc_bank_info *chmc_find_bank(unsigned long phys_addr)
519 {
520  struct chmc *p;
521 
522  list_for_each_entry(p, &mctrl_list, list) {
523  int bank_no;
524 
525  for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) {
526  struct chmc_bank_info *bp;
527 
528  bp = &p->logical_banks[bank_no];
529  if (chmc_bank_match(bp, phys_addr))
530  return bp;
531  }
532  }
533 
534  return NULL;
535 }
536 
537 /* This is the main purpose of this driver. */
538 static int chmc_print_dimm(int syndrome_code,
539  unsigned long phys_addr,
540  char *buf, int buflen)
541 {
542  struct chmc_bank_info *bp;
543  struct chmc_obp_mem_layout *prop;
544  int bank_in_controller, first_dimm;
545 
546  bp = chmc_find_bank(phys_addr);
547  if (bp == NULL ||
548  syndrome_code < SYNDROME_MIN ||
549  syndrome_code > SYNDROME_MAX) {
550  buf[0] = '?';
551  buf[1] = '?';
552  buf[2] = '?';
553  buf[3] = '\0';
554  return 0;
555  }
556 
557  prop = &bp->p->layout_prop;
558  bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1);
559  first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1));
560  first_dimm *= CHMCTRL_NDIMMS;
561 
562  if (syndrome_code != SYNDROME_MIN) {
563  char *dimm_str;
564  int pin;
565 
566  get_pin_and_dimm_str(syndrome_code, phys_addr, &pin,
567  &dimm_str, prop, first_dimm);
568  sprintf(buf, "%s, pin %3d", dimm_str, pin);
569  } else {
570  int dimm;
571 
572  /* Multi-bit error, we just dump out all the
573  * dimm labels associated with this bank.
574  */
575  for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) {
576  sprintf(buf, "%s ",
577  prop->dimm_labels[first_dimm + dimm]);
578  buf += strlen(buf);
579  }
580  }
581  return 0;
582 }
583 
584 /* Accessing the registers is slightly complicated. If you want
585  * to get at the memory controller which is on the same processor
586  * the code is executing, you must use special ASI load/store else
587  * you go through the global mapping.
588  */
589 static u64 chmc_read_mcreg(struct chmc *p, unsigned long offset)
590 {
591  unsigned long ret, this_cpu;
592 
593  preempt_disable();
594 
595  this_cpu = real_hard_smp_processor_id();
596 
597  if (p->portid == this_cpu) {
598  __asm__ __volatile__("ldxa [%1] %2, %0"
599  : "=r" (ret)
600  : "r" (offset), "i" (ASI_MCU_CTRL_REG));
601  } else {
602  __asm__ __volatile__("ldxa [%1] %2, %0"
603  : "=r" (ret)
604  : "r" (p->regs + offset),
605  "i" (ASI_PHYS_BYPASS_EC_E));
606  }
607 
608  preempt_enable();
609 
610  return ret;
611 }
612 
613 #if 0 /* currently unused */
614 static void chmc_write_mcreg(struct chmc *p, unsigned long offset, u64 val)
615 {
616  if (p->portid == smp_processor_id()) {
617  __asm__ __volatile__("stxa %0, [%1] %2"
618  : : "r" (val),
619  "r" (offset), "i" (ASI_MCU_CTRL_REG));
620  } else {
621  __asm__ __volatile__("ldxa %0, [%1] %2"
622  : : "r" (val),
623  "r" (p->regs + offset),
624  "i" (ASI_PHYS_BYPASS_EC_E));
625  }
626 }
627 #endif
628 
629 static void chmc_interpret_one_decode_reg(struct chmc *p, int which_bank, u64 val)
630 {
631  struct chmc_bank_info *bp = &p->logical_banks[which_bank];
632 
633  bp->p = p;
634  bp->bank_id = (CHMCTRL_NBANKS * p->portid) + which_bank;
635  bp->raw_reg = val;
637  bp->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT;
638  bp->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT;
639  bp->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT;
640  bp->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT;
641 
642  bp->base = (bp->um);
643  bp->base &= ~(bp->uk);
644  bp->base <<= PA_UPPER_BITS_SHIFT;
645 
646  switch(bp->lk) {
647  case 0xf:
648  default:
649  bp->interleave = 1;
650  break;
651 
652  case 0xe:
653  bp->interleave = 2;
654  break;
655 
656  case 0xc:
657  bp->interleave = 4;
658  break;
659 
660  case 0x8:
661  bp->interleave = 8;
662  break;
663 
664  case 0x0:
665  bp->interleave = 16;
666  break;
667  }
668 
669  /* UK[10] is reserved, and UK[11] is not set for the SDRAM
670  * bank size definition.
671  */
672  bp->size = (((unsigned long)bp->uk &
673  ((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT;
674  bp->size /= bp->interleave;
675 }
676 
677 static void chmc_fetch_decode_regs(struct chmc *p)
678 {
679  if (p->layout_size == 0)
680  return;
681 
682  chmc_interpret_one_decode_reg(p, 0,
683  chmc_read_mcreg(p, CHMCTRL_DECODE1));
684  chmc_interpret_one_decode_reg(p, 1,
685  chmc_read_mcreg(p, CHMCTRL_DECODE2));
686  chmc_interpret_one_decode_reg(p, 2,
687  chmc_read_mcreg(p, CHMCTRL_DECODE3));
688  chmc_interpret_one_decode_reg(p, 3,
689  chmc_read_mcreg(p, CHMCTRL_DECODE4));
690 }
691 
692 static int __devinit chmc_probe(struct platform_device *op)
693 {
694  struct device_node *dp = op->dev.of_node;
695  unsigned long ver;
696  const void *pval;
697  int len, portid;
698  struct chmc *p;
699  int err;
700 
701  err = -ENODEV;
702  __asm__ ("rdpr %%ver, %0" : "=r" (ver));
703  if ((ver >> 32UL) == __JALAPENO_ID ||
704  (ver >> 32UL) == __SERRANO_ID)
705  goto out;
706 
707  portid = of_getintprop_default(dp, "portid", -1);
708  if (portid == -1)
709  goto out;
710 
711  pval = of_get_property(dp, "memory-layout", &len);
712  if (pval && len > sizeof(p->layout_prop)) {
713  printk(KERN_ERR PFX "Unexpected memory-layout property "
714  "size %d.\n", len);
715  goto out;
716  }
717 
718  err = -ENOMEM;
719  p = kzalloc(sizeof(*p), GFP_KERNEL);
720  if (!p) {
721  printk(KERN_ERR PFX "Could not allocate struct chmc.\n");
722  goto out;
723  }
724 
725  p->portid = portid;
726  p->layout_size = len;
727  if (!pval)
728  p->layout_size = 0;
729  else
730  memcpy(&p->layout_prop, pval, len);
731 
732  p->regs = of_ioremap(&op->resource[0], 0, 0x48, "chmc");
733  if (!p->regs) {
734  printk(KERN_ERR PFX "Could not map registers.\n");
735  goto out_free;
736  }
737 
738  if (p->layout_size != 0UL) {
739  p->timing_control1 = chmc_read_mcreg(p, CHMCTRL_TCTRL1);
740  p->timing_control2 = chmc_read_mcreg(p, CHMCTRL_TCTRL2);
741  p->timing_control3 = chmc_read_mcreg(p, CHMCTRL_TCTRL3);
742  p->timing_control4 = chmc_read_mcreg(p, CHMCTRL_TCTRL4);
743  p->memaddr_control = chmc_read_mcreg(p, CHMCTRL_MACTRL);
744  }
745 
746  chmc_fetch_decode_regs(p);
747 
748  mc_list_add(&p->list);
749 
750  printk(KERN_INFO PFX "UltraSPARC-III memory controller at %s [%s]\n",
751  dp->full_name,
752  (p->layout_size ? "ACTIVE" : "INACTIVE"));
753 
754  dev_set_drvdata(&op->dev, p);
755 
756  err = 0;
757 
758 out:
759  return err;
760 
761 out_free:
762  kfree(p);
763  goto out;
764 }
765 
766 static int __devinit us3mc_probe(struct platform_device *op)
767 {
768  if (mc_type == MC_TYPE_SAFARI)
769  return chmc_probe(op);
770  else if (mc_type == MC_TYPE_JBUS)
771  return jbusmc_probe(op);
772  return -ENODEV;
773 }
774 
775 static void __devexit chmc_destroy(struct platform_device *op, struct chmc *p)
776 {
777  list_del(&p->list);
778  of_iounmap(&op->resource[0], p->regs, 0x48);
779  kfree(p);
780 }
781 
782 static void __devexit jbusmc_destroy(struct platform_device *op, struct jbusmc *p)
783 {
784  mc_list_del(&p->list);
786  kfree(p);
787 }
788 
789 static int __devexit us3mc_remove(struct platform_device *op)
790 {
791  void *p = dev_get_drvdata(&op->dev);
792 
793  if (p) {
794  if (mc_type == MC_TYPE_SAFARI)
795  chmc_destroy(op, p);
796  else if (mc_type == MC_TYPE_JBUS)
797  jbusmc_destroy(op, p);
798  }
799  return 0;
800 }
801 
802 static const struct of_device_id us3mc_match[] = {
803  {
804  .name = "memory-controller",
805  },
806  {},
807 };
808 MODULE_DEVICE_TABLE(of, us3mc_match);
809 
810 static struct platform_driver us3mc_driver = {
811  .driver = {
812  .name = "us3mc",
813  .owner = THIS_MODULE,
814  .of_match_table = us3mc_match,
815  },
816  .probe = us3mc_probe,
817  .remove = __devexit_p(us3mc_remove),
818 };
819 
820 static inline bool us3mc_platform(void)
821 {
822  if (tlb_type == cheetah || tlb_type == cheetah_plus)
823  return true;
824  return false;
825 }
826 
827 static int __init us3mc_init(void)
828 {
829  unsigned long ver;
830  int ret;
831 
832  if (!us3mc_platform())
833  return -ENODEV;
834 
835  __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
836  if ((ver >> 32UL) == __JALAPENO_ID ||
837  (ver >> 32UL) == __SERRANO_ID) {
838  mc_type = MC_TYPE_JBUS;
839  us3mc_dimm_printer = jbusmc_print_dimm;
840  } else {
841  mc_type = MC_TYPE_SAFARI;
842  us3mc_dimm_printer = chmc_print_dimm;
843  }
844 
845  ret = register_dimm_printer(us3mc_dimm_printer);
846 
847  if (!ret) {
848  ret = platform_driver_register(&us3mc_driver);
849  if (ret)
850  unregister_dimm_printer(us3mc_dimm_printer);
851  }
852  return ret;
853 }
854 
855 static void __exit us3mc_cleanup(void)
856 {
857  if (us3mc_platform()) {
858  unregister_dimm_printer(us3mc_dimm_printer);
859  platform_driver_unregister(&us3mc_driver);
860  }
861 }
862 
863 module_init(us3mc_init);
864 module_exit(us3mc_cleanup);