Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
compression.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008 Oracle. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
47  /* number of bios pending for this compressed extent */
49 
50  /* the pages with the compressed data on them */
52 
53  /* inode that owns this data */
54  struct inode *inode;
55 
56  /* starting offset in the inode for our pages */
58 
59  /* number of bytes in the inode we're working on */
60  unsigned long len;
61 
62  /* number of bytes on disk */
63  unsigned long compressed_len;
64 
65  /* the compression algorithm for this bio */
67 
68  /* number of compressed pages in the array */
69  unsigned long nr_pages;
70 
71  /* IO errors */
72  int errors;
74 
75  /* for reads, this is the bio we are copying the data into */
76  struct bio *orig_bio;
77 
78  /*
79  * the start of a variable length array of checksums only
80  * used by reads
81  */
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86  unsigned long disk_size)
87 {
88  u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
89 
90  return sizeof(struct compressed_bio) +
91  ((disk_size + root->sectorsize - 1) / root->sectorsize) *
92  csum_size;
93 }
94 
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96  u64 first_byte, gfp_t gfp_flags)
97 {
98  int nr_vecs;
99 
100  nr_vecs = bio_get_nr_vecs(bdev);
101  return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
102 }
103 
104 static int check_compressed_csum(struct inode *inode,
105  struct compressed_bio *cb,
106  u64 disk_start)
107 {
108  int ret;
109  struct btrfs_root *root = BTRFS_I(inode)->root;
110  struct page *page;
111  unsigned long i;
112  char *kaddr;
113  u32 csum;
114  u32 *cb_sum = &cb->sums;
115 
116  if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
117  return 0;
118 
119  for (i = 0; i < cb->nr_pages; i++) {
120  page = cb->compressed_pages[i];
121  csum = ~(u32)0;
122 
123  kaddr = kmap_atomic(page);
124  csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125  btrfs_csum_final(csum, (char *)&csum);
126  kunmap_atomic(kaddr);
127 
128  if (csum != *cb_sum) {
129  printk(KERN_INFO "btrfs csum failed ino %llu "
130  "extent %llu csum %u "
131  "wanted %u mirror %d\n",
132  (unsigned long long)btrfs_ino(inode),
133  (unsigned long long)disk_start,
134  csum, *cb_sum, cb->mirror_num);
135  ret = -EIO;
136  goto fail;
137  }
138  cb_sum++;
139 
140  }
141  ret = 0;
142 fail:
143  return ret;
144 }
145 
146 /* when we finish reading compressed pages from the disk, we
147  * decompress them and then run the bio end_io routines on the
148  * decompressed pages (in the inode address space).
149  *
150  * This allows the checksumming and other IO error handling routines
151  * to work normally
152  *
153  * The compressed pages are freed here, and it must be run
154  * in process context
155  */
156 static void end_compressed_bio_read(struct bio *bio, int err)
157 {
158  struct compressed_bio *cb = bio->bi_private;
159  struct inode *inode;
160  struct page *page;
161  unsigned long index;
162  int ret;
163 
164  if (err)
165  cb->errors = 1;
166 
167  /* if there are more bios still pending for this compressed
168  * extent, just exit
169  */
171  goto out;
172 
173  inode = cb->inode;
174  ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175  if (ret)
176  goto csum_failed;
177 
178  /* ok, we're the last bio for this extent, lets start
179  * the decompression.
180  */
182  cb->compressed_pages,
183  cb->start,
184  cb->orig_bio->bi_io_vec,
185  cb->orig_bio->bi_vcnt,
186  cb->compressed_len);
187 csum_failed:
188  if (ret)
189  cb->errors = 1;
190 
191  /* release the compressed pages */
192  index = 0;
193  for (index = 0; index < cb->nr_pages; index++) {
194  page = cb->compressed_pages[index];
195  page->mapping = NULL;
196  page_cache_release(page);
197  }
198 
199  /* do io completion on the original bio */
200  if (cb->errors) {
201  bio_io_error(cb->orig_bio);
202  } else {
203  int bio_index = 0;
204  struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
205 
206  /*
207  * we have verified the checksum already, set page
208  * checked so the end_io handlers know about it
209  */
210  while (bio_index < cb->orig_bio->bi_vcnt) {
211  SetPageChecked(bvec->bv_page);
212  bvec++;
213  bio_index++;
214  }
215  bio_endio(cb->orig_bio, 0);
216  }
217 
218  /* finally free the cb struct */
219  kfree(cb->compressed_pages);
220  kfree(cb);
221 out:
222  bio_put(bio);
223 }
224 
225 /*
226  * Clear the writeback bits on all of the file
227  * pages for a compressed write
228  */
229 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
230  unsigned long ram_size)
231 {
232  unsigned long index = start >> PAGE_CACHE_SHIFT;
233  unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234  struct page *pages[16];
235  unsigned long nr_pages = end_index - index + 1;
236  int i;
237  int ret;
238 
239  while (nr_pages > 0) {
240  ret = find_get_pages_contig(inode->i_mapping, index,
241  min_t(unsigned long,
242  nr_pages, ARRAY_SIZE(pages)), pages);
243  if (ret == 0) {
244  nr_pages -= 1;
245  index += 1;
246  continue;
247  }
248  for (i = 0; i < ret; i++) {
249  end_page_writeback(pages[i]);
250  page_cache_release(pages[i]);
251  }
252  nr_pages -= ret;
253  index += ret;
254  }
255  /* the inode may be gone now */
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268  struct extent_io_tree *tree;
269  struct compressed_bio *cb = bio->bi_private;
270  struct inode *inode;
271  struct page *page;
272  unsigned long index;
273 
274  if (err)
275  cb->errors = 1;
276 
277  /* if there are more bios still pending for this compressed
278  * extent, just exit
279  */
281  goto out;
282 
283  /* ok, we're the last bio for this extent, step one is to
284  * call back into the FS and do all the end_io operations
285  */
286  inode = cb->inode;
287  tree = &BTRFS_I(inode)->io_tree;
288  cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289  tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290  cb->start,
291  cb->start + cb->len - 1,
292  NULL, 1);
293  cb->compressed_pages[0]->mapping = NULL;
294 
295  end_compressed_writeback(inode, cb->start, cb->len);
296  /* note, our inode could be gone now */
297 
298  /*
299  * release the compressed pages, these came from alloc_page and
300  * are not attached to the inode at all
301  */
302  index = 0;
303  for (index = 0; index < cb->nr_pages; index++) {
304  page = cb->compressed_pages[index];
305  page->mapping = NULL;
306  page_cache_release(page);
307  }
308 
309  /* finally free the cb struct */
310  kfree(cb->compressed_pages);
311  kfree(cb);
312 out:
313  bio_put(bio);
314 }
315 
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326  unsigned long len, u64 disk_start,
327  unsigned long compressed_len,
328  struct page **compressed_pages,
329  unsigned long nr_pages)
330 {
331  struct bio *bio = NULL;
332  struct btrfs_root *root = BTRFS_I(inode)->root;
333  struct compressed_bio *cb;
334  unsigned long bytes_left;
335  struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336  int pg_index = 0;
337  struct page *page;
338  u64 first_byte = disk_start;
339  struct block_device *bdev;
340  int ret;
341  int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342 
343  WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344  cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345  if (!cb)
346  return -ENOMEM;
347  atomic_set(&cb->pending_bios, 0);
348  cb->errors = 0;
349  cb->inode = inode;
350  cb->start = start;
351  cb->len = len;
352  cb->mirror_num = 0;
353  cb->compressed_pages = compressed_pages;
354  cb->compressed_len = compressed_len;
355  cb->orig_bio = NULL;
356  cb->nr_pages = nr_pages;
357 
358  bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359 
360  bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361  if(!bio) {
362  kfree(cb);
363  return -ENOMEM;
364  }
365  bio->bi_private = cb;
366  bio->bi_end_io = end_compressed_bio_write;
367  atomic_inc(&cb->pending_bios);
368 
369  /* create and submit bios for the compressed pages */
370  bytes_left = compressed_len;
371  for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372  page = compressed_pages[pg_index];
373  page->mapping = inode->i_mapping;
374  if (bio->bi_size)
375  ret = io_tree->ops->merge_bio_hook(page, 0,
377  bio, 0);
378  else
379  ret = 0;
380 
381  page->mapping = NULL;
382  if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383  PAGE_CACHE_SIZE) {
384  bio_get(bio);
385 
386  /*
387  * inc the count before we submit the bio so
388  * we know the end IO handler won't happen before
389  * we inc the count. Otherwise, the cb might get
390  * freed before we're done setting it up
391  */
392  atomic_inc(&cb->pending_bios);
393  ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394  BUG_ON(ret); /* -ENOMEM */
395 
396  if (!skip_sum) {
397  ret = btrfs_csum_one_bio(root, inode, bio,
398  start, 1);
399  BUG_ON(ret); /* -ENOMEM */
400  }
401 
402  ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403  BUG_ON(ret); /* -ENOMEM */
404 
405  bio_put(bio);
406 
407  bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408  BUG_ON(!bio);
409  bio->bi_private = cb;
410  bio->bi_end_io = end_compressed_bio_write;
411  bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
412  }
413  if (bytes_left < PAGE_CACHE_SIZE) {
414  printk("bytes left %lu compress len %lu nr %lu\n",
415  bytes_left, cb->compressed_len, cb->nr_pages);
416  }
417  bytes_left -= PAGE_CACHE_SIZE;
418  first_byte += PAGE_CACHE_SIZE;
419  cond_resched();
420  }
421  bio_get(bio);
422 
423  ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424  BUG_ON(ret); /* -ENOMEM */
425 
426  if (!skip_sum) {
427  ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428  BUG_ON(ret); /* -ENOMEM */
429  }
430 
431  ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432  BUG_ON(ret); /* -ENOMEM */
433 
434  bio_put(bio);
435  return 0;
436 }
437 
438 static noinline int add_ra_bio_pages(struct inode *inode,
439  u64 compressed_end,
440  struct compressed_bio *cb)
441 {
442  unsigned long end_index;
443  unsigned long pg_index;
444  u64 last_offset;
445  u64 isize = i_size_read(inode);
446  int ret;
447  struct page *page;
448  unsigned long nr_pages = 0;
449  struct extent_map *em;
450  struct address_space *mapping = inode->i_mapping;
451  struct extent_map_tree *em_tree;
452  struct extent_io_tree *tree;
453  u64 end;
454  int misses = 0;
455 
456  page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457  last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458  em_tree = &BTRFS_I(inode)->extent_tree;
459  tree = &BTRFS_I(inode)->io_tree;
460 
461  if (isize == 0)
462  return 0;
463 
464  end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465 
466  while (last_offset < compressed_end) {
467  pg_index = last_offset >> PAGE_CACHE_SHIFT;
468 
469  if (pg_index > end_index)
470  break;
471 
472  rcu_read_lock();
473  page = radix_tree_lookup(&mapping->page_tree, pg_index);
474  rcu_read_unlock();
475  if (page) {
476  misses++;
477  if (misses > 4)
478  break;
479  goto next;
480  }
481 
482  page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483  ~__GFP_FS);
484  if (!page)
485  break;
486 
487  if (add_to_page_cache_lru(page, mapping, pg_index,
488  GFP_NOFS)) {
489  page_cache_release(page);
490  goto next;
491  }
492 
493  end = last_offset + PAGE_CACHE_SIZE - 1;
494  /*
495  * at this point, we have a locked page in the page cache
496  * for these bytes in the file. But, we have to make
497  * sure they map to this compressed extent on disk.
498  */
500  lock_extent(tree, last_offset, end);
501  read_lock(&em_tree->lock);
502  em = lookup_extent_mapping(em_tree, last_offset,
503  PAGE_CACHE_SIZE);
504  read_unlock(&em_tree->lock);
505 
506  if (!em || last_offset < em->start ||
507  (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508  (em->block_start >> 9) != cb->orig_bio->bi_sector) {
509  free_extent_map(em);
510  unlock_extent(tree, last_offset, end);
511  unlock_page(page);
512  page_cache_release(page);
513  break;
514  }
515  free_extent_map(em);
516 
517  if (page->index == end_index) {
518  char *userpage;
519  size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520 
521  if (zero_offset) {
522  int zeros;
523  zeros = PAGE_CACHE_SIZE - zero_offset;
524  userpage = kmap_atomic(page);
525  memset(userpage + zero_offset, 0, zeros);
526  flush_dcache_page(page);
527  kunmap_atomic(userpage);
528  }
529  }
530 
531  ret = bio_add_page(cb->orig_bio, page,
532  PAGE_CACHE_SIZE, 0);
533 
534  if (ret == PAGE_CACHE_SIZE) {
535  nr_pages++;
536  page_cache_release(page);
537  } else {
538  unlock_extent(tree, last_offset, end);
539  unlock_page(page);
540  page_cache_release(page);
541  break;
542  }
543 next:
544  last_offset += PAGE_CACHE_SIZE;
545  }
546  return 0;
547 }
548 
549 /*
550  * for a compressed read, the bio we get passed has all the inode pages
551  * in it. We don't actually do IO on those pages but allocate new ones
552  * to hold the compressed pages on disk.
553  *
554  * bio->bi_sector points to the compressed extent on disk
555  * bio->bi_io_vec points to all of the inode pages
556  * bio->bi_vcnt is a count of pages
557  *
558  * After the compressed pages are read, we copy the bytes into the
559  * bio we were passed and then call the bio end_io calls
560  */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562  int mirror_num, unsigned long bio_flags)
563 {
564  struct extent_io_tree *tree;
565  struct extent_map_tree *em_tree;
566  struct compressed_bio *cb;
567  struct btrfs_root *root = BTRFS_I(inode)->root;
568  unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569  unsigned long compressed_len;
570  unsigned long nr_pages;
571  unsigned long pg_index;
572  struct page *page;
573  struct block_device *bdev;
574  struct bio *comp_bio;
575  u64 cur_disk_byte = (u64)bio->bi_sector << 9;
576  u64 em_len;
577  u64 em_start;
578  struct extent_map *em;
579  int ret = -ENOMEM;
580  int faili = 0;
581  u32 *sums;
582 
583  tree = &BTRFS_I(inode)->io_tree;
584  em_tree = &BTRFS_I(inode)->extent_tree;
585 
586  /* we need the actual starting offset of this extent in the file */
587  read_lock(&em_tree->lock);
588  em = lookup_extent_mapping(em_tree,
589  page_offset(bio->bi_io_vec->bv_page),
590  PAGE_CACHE_SIZE);
591  read_unlock(&em_tree->lock);
592  if (!em)
593  return -EIO;
594 
595  compressed_len = em->block_len;
596  cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
597  if (!cb)
598  goto out;
599 
600  atomic_set(&cb->pending_bios, 0);
601  cb->errors = 0;
602  cb->inode = inode;
603  cb->mirror_num = mirror_num;
604  sums = &cb->sums;
605 
606  cb->start = em->orig_start;
607  em_len = em->len;
608  em_start = em->start;
609 
610  free_extent_map(em);
611  em = NULL;
612 
613  cb->len = uncompressed_len;
614  cb->compressed_len = compressed_len;
615  cb->compress_type = extent_compress_type(bio_flags);
616  cb->orig_bio = bio;
617 
618  nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
619  PAGE_CACHE_SIZE;
620  cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
621  GFP_NOFS);
622  if (!cb->compressed_pages)
623  goto fail1;
624 
625  bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
626 
627  for (pg_index = 0; pg_index < nr_pages; pg_index++) {
628  cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
629  __GFP_HIGHMEM);
630  if (!cb->compressed_pages[pg_index]) {
631  faili = pg_index - 1;
632  ret = -ENOMEM;
633  goto fail2;
634  }
635  }
636  faili = nr_pages - 1;
637  cb->nr_pages = nr_pages;
638 
639  add_ra_bio_pages(inode, em_start + em_len, cb);
640 
641  /* include any pages we added in add_ra-bio_pages */
642  uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
643  cb->len = uncompressed_len;
644 
645  comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
646  if (!comp_bio)
647  goto fail2;
648  comp_bio->bi_private = cb;
649  comp_bio->bi_end_io = end_compressed_bio_read;
650  atomic_inc(&cb->pending_bios);
651 
652  for (pg_index = 0; pg_index < nr_pages; pg_index++) {
653  page = cb->compressed_pages[pg_index];
654  page->mapping = inode->i_mapping;
655  page->index = em_start >> PAGE_CACHE_SHIFT;
656 
657  if (comp_bio->bi_size)
658  ret = tree->ops->merge_bio_hook(page, 0,
659  PAGE_CACHE_SIZE,
660  comp_bio, 0);
661  else
662  ret = 0;
663 
664  page->mapping = NULL;
665  if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
666  PAGE_CACHE_SIZE) {
667  bio_get(comp_bio);
668 
669  ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
670  BUG_ON(ret); /* -ENOMEM */
671 
672  /*
673  * inc the count before we submit the bio so
674  * we know the end IO handler won't happen before
675  * we inc the count. Otherwise, the cb might get
676  * freed before we're done setting it up
677  */
678  atomic_inc(&cb->pending_bios);
679 
680  if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
681  ret = btrfs_lookup_bio_sums(root, inode,
682  comp_bio, sums);
683  BUG_ON(ret); /* -ENOMEM */
684  }
685  sums += (comp_bio->bi_size + root->sectorsize - 1) /
686  root->sectorsize;
687 
688  ret = btrfs_map_bio(root, READ, comp_bio,
689  mirror_num, 0);
690  BUG_ON(ret); /* -ENOMEM */
691 
692  bio_put(comp_bio);
693 
694  comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
695  GFP_NOFS);
696  BUG_ON(!comp_bio);
697  comp_bio->bi_private = cb;
698  comp_bio->bi_end_io = end_compressed_bio_read;
699 
700  bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
701  }
702  cur_disk_byte += PAGE_CACHE_SIZE;
703  }
704  bio_get(comp_bio);
705 
706  ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
707  BUG_ON(ret); /* -ENOMEM */
708 
709  if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
710  ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
711  BUG_ON(ret); /* -ENOMEM */
712  }
713 
714  ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
715  BUG_ON(ret); /* -ENOMEM */
716 
717  bio_put(comp_bio);
718  return 0;
719 
720 fail2:
721  while (faili >= 0) {
722  __free_page(cb->compressed_pages[faili]);
723  faili--;
724  }
725 
726  kfree(cb->compressed_pages);
727 fail1:
728  kfree(cb);
729 out:
730  free_extent_map(em);
731  return ret;
732 }
733 
734 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
735 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
736 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
737 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
738 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
739 
743 };
744 
746 {
747  int i;
748 
749  for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
750  INIT_LIST_HEAD(&comp_idle_workspace[i]);
751  spin_lock_init(&comp_workspace_lock[i]);
752  atomic_set(&comp_alloc_workspace[i], 0);
753  init_waitqueue_head(&comp_workspace_wait[i]);
754  }
755 }
756 
757 /*
758  * this finds an available workspace or allocates a new one
759  * ERR_PTR is returned if things go bad.
760  */
761 static struct list_head *find_workspace(int type)
762 {
763  struct list_head *workspace;
764  int cpus = num_online_cpus();
765  int idx = type - 1;
766 
767  struct list_head *idle_workspace = &comp_idle_workspace[idx];
768  spinlock_t *workspace_lock = &comp_workspace_lock[idx];
769  atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
770  wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
771  int *num_workspace = &comp_num_workspace[idx];
772 again:
773  spin_lock(workspace_lock);
774  if (!list_empty(idle_workspace)) {
775  workspace = idle_workspace->next;
776  list_del(workspace);
777  (*num_workspace)--;
778  spin_unlock(workspace_lock);
779  return workspace;
780 
781  }
782  if (atomic_read(alloc_workspace) > cpus) {
783  DEFINE_WAIT(wait);
784 
785  spin_unlock(workspace_lock);
786  prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
787  if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
788  schedule();
789  finish_wait(workspace_wait, &wait);
790  goto again;
791  }
792  atomic_inc(alloc_workspace);
793  spin_unlock(workspace_lock);
794 
795  workspace = btrfs_compress_op[idx]->alloc_workspace();
796  if (IS_ERR(workspace)) {
797  atomic_dec(alloc_workspace);
798  wake_up(workspace_wait);
799  }
800  return workspace;
801 }
802 
803 /*
804  * put a workspace struct back on the list or free it if we have enough
805  * idle ones sitting around
806  */
807 static void free_workspace(int type, struct list_head *workspace)
808 {
809  int idx = type - 1;
810  struct list_head *idle_workspace = &comp_idle_workspace[idx];
811  spinlock_t *workspace_lock = &comp_workspace_lock[idx];
812  atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
813  wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
814  int *num_workspace = &comp_num_workspace[idx];
815 
816  spin_lock(workspace_lock);
817  if (*num_workspace < num_online_cpus()) {
818  list_add_tail(workspace, idle_workspace);
819  (*num_workspace)++;
820  spin_unlock(workspace_lock);
821  goto wake;
822  }
823  spin_unlock(workspace_lock);
824 
825  btrfs_compress_op[idx]->free_workspace(workspace);
826  atomic_dec(alloc_workspace);
827 wake:
828  smp_mb();
829  if (waitqueue_active(workspace_wait))
830  wake_up(workspace_wait);
831 }
832 
833 /*
834  * cleanup function for module exit
835  */
836 static void free_workspaces(void)
837 {
838  struct list_head *workspace;
839  int i;
840 
841  for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
842  while (!list_empty(&comp_idle_workspace[i])) {
843  workspace = comp_idle_workspace[i].next;
844  list_del(workspace);
845  btrfs_compress_op[i]->free_workspace(workspace);
846  atomic_dec(&comp_alloc_workspace[i]);
847  }
848  }
849 }
850 
851 /*
852  * given an address space and start/len, compress the bytes.
853  *
854  * pages are allocated to hold the compressed result and stored
855  * in 'pages'
856  *
857  * out_pages is used to return the number of pages allocated. There
858  * may be pages allocated even if we return an error
859  *
860  * total_in is used to return the number of bytes actually read. It
861  * may be smaller then len if we had to exit early because we
862  * ran out of room in the pages array or because we cross the
863  * max_out threshold.
864  *
865  * total_out is used to return the total number of compressed bytes
866  *
867  * max_out tells us the max number of bytes that we're allowed to
868  * stuff into pages
869  */
870 int btrfs_compress_pages(int type, struct address_space *mapping,
871  u64 start, unsigned long len,
872  struct page **pages,
873  unsigned long nr_dest_pages,
874  unsigned long *out_pages,
875  unsigned long *total_in,
876  unsigned long *total_out,
877  unsigned long max_out)
878 {
879  struct list_head *workspace;
880  int ret;
881 
882  workspace = find_workspace(type);
883  if (IS_ERR(workspace))
884  return -1;
885 
886  ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
887  start, len, pages,
888  nr_dest_pages, out_pages,
889  total_in, total_out,
890  max_out);
891  free_workspace(type, workspace);
892  return ret;
893 }
894 
895 /*
896  * pages_in is an array of pages with compressed data.
897  *
898  * disk_start is the starting logical offset of this array in the file
899  *
900  * bvec is a bio_vec of pages from the file that we want to decompress into
901  *
902  * vcnt is the count of pages in the biovec
903  *
904  * srclen is the number of bytes in pages_in
905  *
906  * The basic idea is that we have a bio that was created by readpages.
907  * The pages in the bio are for the uncompressed data, and they may not
908  * be contiguous. They all correspond to the range of bytes covered by
909  * the compressed extent.
910  */
911 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
912  struct bio_vec *bvec, int vcnt, size_t srclen)
913 {
914  struct list_head *workspace;
915  int ret;
916 
917  workspace = find_workspace(type);
918  if (IS_ERR(workspace))
919  return -ENOMEM;
920 
921  ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
922  disk_start,
923  bvec, vcnt, srclen);
924  free_workspace(type, workspace);
925  return ret;
926 }
927 
928 /*
929  * a less complex decompression routine. Our compressed data fits in a
930  * single page, and we want to read a single page out of it.
931  * start_byte tells us the offset into the compressed data we're interested in
932  */
933 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
934  unsigned long start_byte, size_t srclen, size_t destlen)
935 {
936  struct list_head *workspace;
937  int ret;
938 
939  workspace = find_workspace(type);
940  if (IS_ERR(workspace))
941  return -ENOMEM;
942 
943  ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
944  dest_page, start_byte,
945  srclen, destlen);
946 
947  free_workspace(type, workspace);
948  return ret;
949 }
950 
952 {
953  free_workspaces();
954 }
955 
956 /*
957  * Copy uncompressed data from working buffer to pages.
958  *
959  * buf_start is the byte offset we're of the start of our workspace buffer.
960  *
961  * total_out is the last byte of the buffer
962  */
963 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
964  unsigned long total_out, u64 disk_start,
965  struct bio_vec *bvec, int vcnt,
966  unsigned long *pg_index,
967  unsigned long *pg_offset)
968 {
969  unsigned long buf_offset;
970  unsigned long current_buf_start;
971  unsigned long start_byte;
972  unsigned long working_bytes = total_out - buf_start;
973  unsigned long bytes;
974  char *kaddr;
975  struct page *page_out = bvec[*pg_index].bv_page;
976 
977  /*
978  * start byte is the first byte of the page we're currently
979  * copying into relative to the start of the compressed data.
980  */
981  start_byte = page_offset(page_out) - disk_start;
982 
983  /* we haven't yet hit data corresponding to this page */
984  if (total_out <= start_byte)
985  return 1;
986 
987  /*
988  * the start of the data we care about is offset into
989  * the middle of our working buffer
990  */
991  if (total_out > start_byte && buf_start < start_byte) {
992  buf_offset = start_byte - buf_start;
993  working_bytes -= buf_offset;
994  } else {
995  buf_offset = 0;
996  }
997  current_buf_start = buf_start;
998 
999  /* copy bytes from the working buffer into the pages */
1000  while (working_bytes > 0) {
1001  bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1002  PAGE_CACHE_SIZE - buf_offset);
1003  bytes = min(bytes, working_bytes);
1004  kaddr = kmap_atomic(page_out);
1005  memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1006  kunmap_atomic(kaddr);
1007  flush_dcache_page(page_out);
1008 
1009  *pg_offset += bytes;
1010  buf_offset += bytes;
1011  working_bytes -= bytes;
1012  current_buf_start += bytes;
1013 
1014  /* check if we need to pick another page */
1015  if (*pg_offset == PAGE_CACHE_SIZE) {
1016  (*pg_index)++;
1017  if (*pg_index >= vcnt)
1018  return 0;
1019 
1020  page_out = bvec[*pg_index].bv_page;
1021  *pg_offset = 0;
1022  start_byte = page_offset(page_out) - disk_start;
1023 
1024  /*
1025  * make sure our new page is covered by this
1026  * working buffer
1027  */
1028  if (total_out <= start_byte)
1029  return 1;
1030 
1031  /*
1032  * the next page in the biovec might not be adjacent
1033  * to the last page, but it might still be found
1034  * inside this working buffer. bump our offset pointer
1035  */
1036  if (total_out > start_byte &&
1037  current_buf_start < start_byte) {
1038  buf_offset = start_byte - buf_start;
1039  working_bytes = total_out - start_byte;
1040  current_buf_start = buf_start + buf_offset;
1041  }
1042  }
1043  }
1044 
1045  return 1;
1046 }