Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cpufreq_conservative.c
Go to the documentation of this file.
1 /*
2  * drivers/cpufreq/cpufreq_conservative.c
3  *
4  * Copyright (C) 2001 Russell King
5  * (C) 2003 Venkatesh Pallipadi <[email protected]>.
6  * Jun Nakajima <[email protected]>
7  * (C) 2009 Alexander Clouter <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO (2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
63  unsigned int down_skip;
64  unsigned int requested_freq;
65  int cpu;
66  unsigned int enable:1;
67  /*
68  * percpu mutex that serializes governor limit change with
69  * do_dbs_timer invocation. We do not want do_dbs_timer to run
70  * when user is changing the governor or limits.
71  */
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct dbs_tuners {
84  unsigned int sampling_rate;
85  unsigned int sampling_down_factor;
86  unsigned int up_threshold;
87  unsigned int down_threshold;
88  unsigned int ignore_nice;
89  unsigned int freq_step;
90 } dbs_tuners_ins = {
91  .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92  .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93  .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94  .ignore_nice = 0,
95  .freq_step = 5,
96 };
97 
98 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
99 {
100  u64 idle_time;
101  u64 cur_wall_time;
102  u64 busy_time;
103 
104  cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
105 
106  busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
107  busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108  busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
109  busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
110  busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
111  busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
112 
113  idle_time = cur_wall_time - busy_time;
114  if (wall)
115  *wall = jiffies_to_usecs(cur_wall_time);
116 
117  return jiffies_to_usecs(idle_time);
118 }
119 
120 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
121 {
122  u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
123 
124  if (idle_time == -1ULL)
125  return get_cpu_idle_time_jiffy(cpu, wall);
126  else
127  idle_time += get_cpu_iowait_time_us(cpu, wall);
128 
129  return idle_time;
130 }
131 
132 /* keep track of frequency transitions */
133 static int
134 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135  void *data)
136 {
137  struct cpufreq_freqs *freq = data;
138  struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139  freq->cpu);
140 
141  struct cpufreq_policy *policy;
142 
143  if (!this_dbs_info->enable)
144  return 0;
145 
146  policy = this_dbs_info->cur_policy;
147 
148  /*
149  * we only care if our internally tracked freq moves outside
150  * the 'valid' ranges of freqency available to us otherwise
151  * we do not change it
152  */
153  if (this_dbs_info->requested_freq > policy->max
154  || this_dbs_info->requested_freq < policy->min)
155  this_dbs_info->requested_freq = freq->new;
156 
157  return 0;
158 }
159 
160 static struct notifier_block dbs_cpufreq_notifier_block = {
161  .notifier_call = dbs_cpufreq_notifier
162 };
163 
164 /************************** sysfs interface ************************/
165 static ssize_t show_sampling_rate_min(struct kobject *kobj,
166  struct attribute *attr, char *buf)
167 {
168  return sprintf(buf, "%u\n", min_sampling_rate);
169 }
170 
171 define_one_global_ro(sampling_rate_min);
172 
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object) \
175 static ssize_t show_##file_name \
176 (struct kobject *kobj, struct attribute *attr, char *buf) \
177 { \
178  return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
179 }
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
186 
187 static ssize_t store_sampling_down_factor(struct kobject *a,
188  struct attribute *b,
189  const char *buf, size_t count)
190 {
191  unsigned int input;
192  int ret;
193  ret = sscanf(buf, "%u", &input);
194 
195  if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
196  return -EINVAL;
197 
198  dbs_tuners_ins.sampling_down_factor = input;
199  return count;
200 }
201 
202 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203  const char *buf, size_t count)
204 {
205  unsigned int input;
206  int ret;
207  ret = sscanf(buf, "%u", &input);
208 
209  if (ret != 1)
210  return -EINVAL;
211 
212  dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
213  return count;
214 }
215 
216 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217  const char *buf, size_t count)
218 {
219  unsigned int input;
220  int ret;
221  ret = sscanf(buf, "%u", &input);
222 
223  if (ret != 1 || input > 100 ||
224  input <= dbs_tuners_ins.down_threshold)
225  return -EINVAL;
226 
227  dbs_tuners_ins.up_threshold = input;
228  return count;
229 }
230 
231 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232  const char *buf, size_t count)
233 {
234  unsigned int input;
235  int ret;
236  ret = sscanf(buf, "%u", &input);
237 
238  /* cannot be lower than 11 otherwise freq will not fall */
239  if (ret != 1 || input < 11 || input > 100 ||
240  input >= dbs_tuners_ins.up_threshold)
241  return -EINVAL;
242 
243  dbs_tuners_ins.down_threshold = input;
244  return count;
245 }
246 
247 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248  const char *buf, size_t count)
249 {
250  unsigned int input;
251  int ret;
252 
253  unsigned int j;
254 
255  ret = sscanf(buf, "%u", &input);
256  if (ret != 1)
257  return -EINVAL;
258 
259  if (input > 1)
260  input = 1;
261 
262  if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
263  return count;
264 
265  dbs_tuners_ins.ignore_nice = input;
266 
267  /* we need to re-evaluate prev_cpu_idle */
269  struct cpu_dbs_info_s *dbs_info;
270  dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271  dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272  &dbs_info->prev_cpu_wall);
273  if (dbs_tuners_ins.ignore_nice)
274  dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
275  }
276  return count;
277 }
278 
279 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280  const char *buf, size_t count)
281 {
282  unsigned int input;
283  int ret;
284  ret = sscanf(buf, "%u", &input);
285 
286  if (ret != 1)
287  return -EINVAL;
288 
289  if (input > 100)
290  input = 100;
291 
292  /* no need to test here if freq_step is zero as the user might actually
293  * want this, they would be crazy though :) */
294  dbs_tuners_ins.freq_step = input;
295  return count;
296 }
297 
298 define_one_global_rw(sampling_rate);
299 define_one_global_rw(sampling_down_factor);
300 define_one_global_rw(up_threshold);
301 define_one_global_rw(down_threshold);
302 define_one_global_rw(ignore_nice_load);
303 define_one_global_rw(freq_step);
304 
305 static struct attribute *dbs_attributes[] = {
306  &sampling_rate_min.attr,
307  &sampling_rate.attr,
308  &sampling_down_factor.attr,
309  &up_threshold.attr,
310  &down_threshold.attr,
311  &ignore_nice_load.attr,
312  &freq_step.attr,
313  NULL
314 };
315 
316 static struct attribute_group dbs_attr_group = {
317  .attrs = dbs_attributes,
318  .name = "conservative",
319 };
320 
321 /************************** sysfs end ************************/
322 
323 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
324 {
325  unsigned int load = 0;
326  unsigned int max_load = 0;
327  unsigned int freq_target;
328 
329  struct cpufreq_policy *policy;
330  unsigned int j;
331 
332  policy = this_dbs_info->cur_policy;
333 
334  /*
335  * Every sampling_rate, we check, if current idle time is less
336  * than 20% (default), then we try to increase frequency
337  * Every sampling_rate*sampling_down_factor, we check, if current
338  * idle time is more than 80%, then we try to decrease frequency
339  *
340  * Any frequency increase takes it to the maximum frequency.
341  * Frequency reduction happens at minimum steps of
342  * 5% (default) of maximum frequency
343  */
344 
345  /* Get Absolute Load */
346  for_each_cpu(j, policy->cpus) {
347  struct cpu_dbs_info_s *j_dbs_info;
348  cputime64_t cur_wall_time, cur_idle_time;
349  unsigned int idle_time, wall_time;
350 
351  j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
352 
353  cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
354 
355  wall_time = (unsigned int)
356  (cur_wall_time - j_dbs_info->prev_cpu_wall);
357  j_dbs_info->prev_cpu_wall = cur_wall_time;
358 
359  idle_time = (unsigned int)
360  (cur_idle_time - j_dbs_info->prev_cpu_idle);
361  j_dbs_info->prev_cpu_idle = cur_idle_time;
362 
363  if (dbs_tuners_ins.ignore_nice) {
364  u64 cur_nice;
365  unsigned long cur_nice_jiffies;
366 
367  cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
368  j_dbs_info->prev_cpu_nice;
369  /*
370  * Assumption: nice time between sampling periods will
371  * be less than 2^32 jiffies for 32 bit sys
372  */
373  cur_nice_jiffies = (unsigned long)
374  cputime64_to_jiffies64(cur_nice);
375 
376  j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
377  idle_time += jiffies_to_usecs(cur_nice_jiffies);
378  }
379 
380  if (unlikely(!wall_time || wall_time < idle_time))
381  continue;
382 
383  load = 100 * (wall_time - idle_time) / wall_time;
384 
385  if (load > max_load)
386  max_load = load;
387  }
388 
389  /*
390  * break out if we 'cannot' reduce the speed as the user might
391  * want freq_step to be zero
392  */
393  if (dbs_tuners_ins.freq_step == 0)
394  return;
395 
396  /* Check for frequency increase */
397  if (max_load > dbs_tuners_ins.up_threshold) {
398  this_dbs_info->down_skip = 0;
399 
400  /* if we are already at full speed then break out early */
401  if (this_dbs_info->requested_freq == policy->max)
402  return;
403 
404  freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
405 
406  /* max freq cannot be less than 100. But who knows.... */
407  if (unlikely(freq_target == 0))
408  freq_target = 5;
409 
410  this_dbs_info->requested_freq += freq_target;
411  if (this_dbs_info->requested_freq > policy->max)
412  this_dbs_info->requested_freq = policy->max;
413 
414  __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
416  return;
417  }
418 
419  /*
420  * The optimal frequency is the frequency that is the lowest that
421  * can support the current CPU usage without triggering the up
422  * policy. To be safe, we focus 10 points under the threshold.
423  */
424  if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
425  freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
426 
427  this_dbs_info->requested_freq -= freq_target;
428  if (this_dbs_info->requested_freq < policy->min)
429  this_dbs_info->requested_freq = policy->min;
430 
431  /*
432  * if we cannot reduce the frequency anymore, break out early
433  */
434  if (policy->cur == policy->min)
435  return;
436 
437  __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
439  return;
440  }
441 }
442 
443 static void do_dbs_timer(struct work_struct *work)
444 {
445  struct cpu_dbs_info_s *dbs_info =
446  container_of(work, struct cpu_dbs_info_s, work.work);
447  unsigned int cpu = dbs_info->cpu;
448 
449  /* We want all CPUs to do sampling nearly on same jiffy */
450  int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
451 
452  delay -= jiffies % delay;
453 
454  mutex_lock(&dbs_info->timer_mutex);
455 
456  dbs_check_cpu(dbs_info);
457 
458  schedule_delayed_work_on(cpu, &dbs_info->work, delay);
459  mutex_unlock(&dbs_info->timer_mutex);
460 }
461 
462 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
463 {
464  /* We want all CPUs to do sampling nearly on same jiffy */
465  int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
466  delay -= jiffies % delay;
467 
468  dbs_info->enable = 1;
469  INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
470  schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
471 }
472 
473 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
474 {
475  dbs_info->enable = 0;
476  cancel_delayed_work_sync(&dbs_info->work);
477 }
478 
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480  unsigned int event)
481 {
482  unsigned int cpu = policy->cpu;
483  struct cpu_dbs_info_s *this_dbs_info;
484  unsigned int j;
485  int rc;
486 
487  this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
488 
489  switch (event) {
490  case CPUFREQ_GOV_START:
491  if ((!cpu_online(cpu)) || (!policy->cur))
492  return -EINVAL;
493 
494  mutex_lock(&dbs_mutex);
495 
496  for_each_cpu(j, policy->cpus) {
497  struct cpu_dbs_info_s *j_dbs_info;
498  j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
499  j_dbs_info->cur_policy = policy;
500 
501  j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
502  &j_dbs_info->prev_cpu_wall);
503  if (dbs_tuners_ins.ignore_nice)
504  j_dbs_info->prev_cpu_nice =
505  kcpustat_cpu(j).cpustat[CPUTIME_NICE];
506  }
507  this_dbs_info->cpu = cpu;
508  this_dbs_info->down_skip = 0;
509  this_dbs_info->requested_freq = policy->cur;
510 
511  mutex_init(&this_dbs_info->timer_mutex);
512  dbs_enable++;
513  /*
514  * Start the timerschedule work, when this governor
515  * is used for first time
516  */
517  if (dbs_enable == 1) {
518  unsigned int latency;
519  /* policy latency is in nS. Convert it to uS first */
520  latency = policy->cpuinfo.transition_latency / 1000;
521  if (latency == 0)
522  latency = 1;
523 
525  &dbs_attr_group);
526  if (rc) {
527  mutex_unlock(&dbs_mutex);
528  return rc;
529  }
530 
531  /*
532  * conservative does not implement micro like ondemand
533  * governor, thus we are bound to jiffes/HZ
534  */
535  min_sampling_rate =
537  /* Bring kernel and HW constraints together */
538  min_sampling_rate = max(min_sampling_rate,
539  MIN_LATENCY_MULTIPLIER * latency);
540  dbs_tuners_ins.sampling_rate =
541  max(min_sampling_rate,
542  latency * LATENCY_MULTIPLIER);
543 
545  &dbs_cpufreq_notifier_block,
547  }
548  mutex_unlock(&dbs_mutex);
549 
550  dbs_timer_init(this_dbs_info);
551 
552  break;
553 
554  case CPUFREQ_GOV_STOP:
555  dbs_timer_exit(this_dbs_info);
556 
557  mutex_lock(&dbs_mutex);
558  dbs_enable--;
559  mutex_destroy(&this_dbs_info->timer_mutex);
560 
561  /*
562  * Stop the timerschedule work, when this governor
563  * is used for first time
564  */
565  if (dbs_enable == 0)
567  &dbs_cpufreq_notifier_block,
569 
570  mutex_unlock(&dbs_mutex);
571  if (!dbs_enable)
573  &dbs_attr_group);
574 
575  break;
576 
577  case CPUFREQ_GOV_LIMITS:
578  mutex_lock(&this_dbs_info->timer_mutex);
579  if (policy->max < this_dbs_info->cur_policy->cur)
581  this_dbs_info->cur_policy,
582  policy->max, CPUFREQ_RELATION_H);
583  else if (policy->min > this_dbs_info->cur_policy->cur)
585  this_dbs_info->cur_policy,
586  policy->min, CPUFREQ_RELATION_L);
587  dbs_check_cpu(this_dbs_info);
588  mutex_unlock(&this_dbs_info->timer_mutex);
589 
590  break;
591  }
592  return 0;
593 }
594 
595 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 static
597 #endif
598 struct cpufreq_governor cpufreq_gov_conservative = {
599  .name = "conservative",
600  .governor = cpufreq_governor_dbs,
601  .max_transition_latency = TRANSITION_LATENCY_LIMIT,
602  .owner = THIS_MODULE,
603 };
604 
605 static int __init cpufreq_gov_dbs_init(void)
606 {
607  return cpufreq_register_governor(&cpufreq_gov_conservative);
608 }
609 
610 static void __exit cpufreq_gov_dbs_exit(void)
611 {
612  cpufreq_unregister_governor(&cpufreq_gov_conservative);
613 }
614 
615 
616 MODULE_AUTHOR("Alexander Clouter <[email protected]>");
617 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
618  "Low Latency Frequency Transition capable processors "
619  "optimised for use in a battery environment");
620 MODULE_LICENSE("GPL");
621 
622 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
623 fs_initcall(cpufreq_gov_dbs_init);
624 #else
625 module_init(cpufreq_gov_dbs_init);
626 #endif
627 module_exit(cpufreq_gov_dbs_exit);