Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cttimer.c
Go to the documentation of this file.
1 /*
2  * PCM timer handling on ctxfi
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/moduleparam.h>
12 #include <sound/core.h>
13 #include <sound/pcm.h>
14 #include "ctatc.h"
15 #include "cthardware.h"
16 #include "cttimer.h"
17 
18 static bool use_system_timer;
19 MODULE_PARM_DESC(use_system_timer, "Force to use system-timer");
20 module_param(use_system_timer, bool, S_IRUGO);
21 
22 struct ct_timer_ops {
23  void (*init)(struct ct_timer_instance *);
26  void (*stop)(struct ct_timer_instance *);
28  void (*interrupt)(struct ct_timer *);
29  void (*free_global)(struct ct_timer *);
30 };
31 
32 /* timer instance -- assigned to each PCM stream */
36  struct ct_atc_pcm *apcm;
38  struct timer_list timer;
41  unsigned int position;
42  unsigned int frag_count;
43  unsigned int running:1;
44  unsigned int need_update:1;
45 };
46 
47 /* timer instance manager */
48 struct ct_timer {
49  spinlock_t lock; /* global timer lock (for xfitimer) */
50  spinlock_t list_lock; /* lock for instance list */
51  struct ct_atc *atc;
52  struct ct_timer_ops *ops;
55  unsigned int wc; /* current wallclock */
56  unsigned int irq_handling:1; /* in IRQ handling */
57  unsigned int reprogram:1; /* need to reprogram the internval */
58  unsigned int running:1; /* global timer running */
59 };
60 
61 
62 /*
63  * system-timer-based updates
64  */
65 
66 static void ct_systimer_callback(unsigned long data)
67 {
68  struct ct_timer_instance *ti = (struct ct_timer_instance *)data;
69  struct snd_pcm_substream *substream = ti->substream;
70  struct snd_pcm_runtime *runtime = substream->runtime;
71  struct ct_atc_pcm *apcm = ti->apcm;
72  unsigned int period_size = runtime->period_size;
73  unsigned int buffer_size = runtime->buffer_size;
74  unsigned long flags;
75  unsigned int position, dist, interval;
76 
77  position = substream->ops->pointer(substream);
78  dist = (position + buffer_size - ti->position) % buffer_size;
79  if (dist >= period_size ||
80  position / period_size != ti->position / period_size) {
81  apcm->interrupt(apcm);
82  ti->position = position;
83  }
84  /* Add extra HZ*5/1000 to avoid overrun issue when recording
85  * at 8kHz in 8-bit format or at 88kHz in 24-bit format. */
86  interval = ((period_size - (position % period_size))
87  * HZ + (runtime->rate - 1)) / runtime->rate + HZ * 5 / 1000;
88  spin_lock_irqsave(&ti->lock, flags);
89  if (ti->running)
90  mod_timer(&ti->timer, jiffies + interval);
91  spin_unlock_irqrestore(&ti->lock, flags);
92 }
93 
94 static void ct_systimer_init(struct ct_timer_instance *ti)
95 {
96  setup_timer(&ti->timer, ct_systimer_callback,
97  (unsigned long)ti);
98 }
99 
100 static void ct_systimer_start(struct ct_timer_instance *ti)
101 {
102  struct snd_pcm_runtime *runtime = ti->substream->runtime;
103  unsigned long flags;
104 
105  spin_lock_irqsave(&ti->lock, flags);
106  ti->running = 1;
107  mod_timer(&ti->timer,
108  jiffies + (runtime->period_size * HZ +
109  (runtime->rate - 1)) / runtime->rate);
110  spin_unlock_irqrestore(&ti->lock, flags);
111 }
112 
113 static void ct_systimer_stop(struct ct_timer_instance *ti)
114 {
115  unsigned long flags;
116 
117  spin_lock_irqsave(&ti->lock, flags);
118  ti->running = 0;
119  del_timer(&ti->timer);
120  spin_unlock_irqrestore(&ti->lock, flags);
121 }
122 
123 static void ct_systimer_prepare(struct ct_timer_instance *ti)
124 {
125  ct_systimer_stop(ti);
127 }
128 
129 #define ct_systimer_free ct_systimer_prepare
130 
131 static struct ct_timer_ops ct_systimer_ops = {
132  .init = ct_systimer_init,
133  .free_instance = ct_systimer_free,
134  .prepare = ct_systimer_prepare,
135  .start = ct_systimer_start,
136  .stop = ct_systimer_stop,
137 };
138 
139 
140 /*
141  * Handling multiple streams using a global emu20k1 timer irq
142  */
143 
144 #define CT_TIMER_FREQ 48000
145 #define MIN_TICKS 1
146 #define MAX_TICKS ((1 << 13) - 1)
147 
148 static void ct_xfitimer_irq_rearm(struct ct_timer *atimer, int ticks)
149 {
150  struct hw *hw = atimer->atc->hw;
151  if (ticks > MAX_TICKS)
152  ticks = MAX_TICKS;
153  hw->set_timer_tick(hw, ticks);
154  if (!atimer->running)
155  hw->set_timer_irq(hw, 1);
156  atimer->running = 1;
157 }
158 
159 static void ct_xfitimer_irq_stop(struct ct_timer *atimer)
160 {
161  if (atimer->running) {
162  struct hw *hw = atimer->atc->hw;
163  hw->set_timer_irq(hw, 0);
164  hw->set_timer_tick(hw, 0);
165  atimer->running = 0;
166  }
167 }
168 
169 static inline unsigned int ct_xfitimer_get_wc(struct ct_timer *atimer)
170 {
171  struct hw *hw = atimer->atc->hw;
172  return hw->get_wc(hw);
173 }
174 
175 /*
176  * reprogram the timer interval;
177  * checks the running instance list and determines the next timer interval.
178  * also updates the each stream position, returns the number of streams
179  * to call snd_pcm_period_elapsed() appropriately
180  *
181  * call this inside the lock and irq disabled
182  */
183 static int ct_xfitimer_reprogram(struct ct_timer *atimer, int can_update)
184 {
185  struct ct_timer_instance *ti;
186  unsigned int min_intr = (unsigned int)-1;
187  int updates = 0;
188  unsigned int wc, diff;
189 
190  if (list_empty(&atimer->running_head)) {
191  ct_xfitimer_irq_stop(atimer);
192  atimer->reprogram = 0; /* clear flag */
193  return 0;
194  }
195 
196  wc = ct_xfitimer_get_wc(atimer);
197  diff = wc - atimer->wc;
198  atimer->wc = wc;
200  if (ti->frag_count > diff)
201  ti->frag_count -= diff;
202  else {
203  unsigned int pos;
204  unsigned int period_size, rate;
205 
206  period_size = ti->substream->runtime->period_size;
207  rate = ti->substream->runtime->rate;
208  pos = ti->substream->ops->pointer(ti->substream);
209  if (pos / period_size != ti->position / period_size) {
210  ti->need_update = 1;
211  ti->position = pos;
212  updates++;
213  }
214  pos %= period_size;
215  pos = period_size - pos;
216  ti->frag_count = div_u64((u64)pos * CT_TIMER_FREQ +
217  rate - 1, rate);
218  }
219  if (ti->need_update && !can_update)
220  min_intr = 0; /* pending to the next irq */
221  if (ti->frag_count < min_intr)
222  min_intr = ti->frag_count;
223  }
224 
225  if (min_intr < MIN_TICKS)
226  min_intr = MIN_TICKS;
227  ct_xfitimer_irq_rearm(atimer, min_intr);
228  atimer->reprogram = 0; /* clear flag */
229  return updates;
230 }
231 
232 /* look through the instance list and call period_elapsed if needed */
233 static void ct_xfitimer_check_period(struct ct_timer *atimer)
234 {
235  struct ct_timer_instance *ti;
236  unsigned long flags;
237 
238  spin_lock_irqsave(&atimer->list_lock, flags);
240  if (ti->running && ti->need_update) {
241  ti->need_update = 0;
242  ti->apcm->interrupt(ti->apcm);
243  }
244  }
245  spin_unlock_irqrestore(&atimer->list_lock, flags);
246 }
247 
248 /* Handle timer-interrupt */
249 static void ct_xfitimer_callback(struct ct_timer *atimer)
250 {
251  int update;
252  unsigned long flags;
253 
254  spin_lock_irqsave(&atimer->lock, flags);
255  atimer->irq_handling = 1;
256  do {
257  update = ct_xfitimer_reprogram(atimer, 1);
258  spin_unlock(&atimer->lock);
259  if (update)
260  ct_xfitimer_check_period(atimer);
261  spin_lock(&atimer->lock);
262  } while (atimer->reprogram);
263  atimer->irq_handling = 0;
264  spin_unlock_irqrestore(&atimer->lock, flags);
265 }
266 
267 static void ct_xfitimer_prepare(struct ct_timer_instance *ti)
268 {
269  ti->frag_count = ti->substream->runtime->period_size;
270  ti->running = 0;
271  ti->need_update = 0;
272 }
273 
274 
275 /* start/stop the timer */
276 static void ct_xfitimer_update(struct ct_timer *atimer)
277 {
278  unsigned long flags;
279 
280  spin_lock_irqsave(&atimer->lock, flags);
281  if (atimer->irq_handling) {
282  /* reached from IRQ handler; let it handle later */
283  atimer->reprogram = 1;
284  spin_unlock_irqrestore(&atimer->lock, flags);
285  return;
286  }
287 
288  ct_xfitimer_irq_stop(atimer);
289  ct_xfitimer_reprogram(atimer, 0);
290  spin_unlock_irqrestore(&atimer->lock, flags);
291 }
292 
293 static void ct_xfitimer_start(struct ct_timer_instance *ti)
294 {
295  struct ct_timer *atimer = ti->timer_base;
296  unsigned long flags;
297 
298  spin_lock_irqsave(&atimer->lock, flags);
299  if (list_empty(&ti->running_list))
300  atimer->wc = ct_xfitimer_get_wc(atimer);
301  ti->running = 1;
302  ti->need_update = 0;
303  list_add(&ti->running_list, &atimer->running_head);
304  spin_unlock_irqrestore(&atimer->lock, flags);
305  ct_xfitimer_update(atimer);
306 }
307 
308 static void ct_xfitimer_stop(struct ct_timer_instance *ti)
309 {
310  struct ct_timer *atimer = ti->timer_base;
311  unsigned long flags;
312 
313  spin_lock_irqsave(&atimer->lock, flags);
314  list_del_init(&ti->running_list);
315  ti->running = 0;
316  spin_unlock_irqrestore(&atimer->lock, flags);
317  ct_xfitimer_update(atimer);
318 }
319 
320 static void ct_xfitimer_free_global(struct ct_timer *atimer)
321 {
322  ct_xfitimer_irq_stop(atimer);
323 }
324 
325 static struct ct_timer_ops ct_xfitimer_ops = {
326  .prepare = ct_xfitimer_prepare,
327  .start = ct_xfitimer_start,
328  .stop = ct_xfitimer_stop,
329  .interrupt = ct_xfitimer_callback,
330  .free_global = ct_xfitimer_free_global,
331 };
332 
333 /*
334  * timer instance
335  */
336 
337 struct ct_timer_instance *
338 ct_timer_instance_new(struct ct_timer *atimer, struct ct_atc_pcm *apcm)
339 {
340  struct ct_timer_instance *ti;
341 
342  ti = kzalloc(sizeof(*ti), GFP_KERNEL);
343  if (!ti)
344  return NULL;
345  spin_lock_init(&ti->lock);
346  INIT_LIST_HEAD(&ti->instance_list);
347  INIT_LIST_HEAD(&ti->running_list);
348  ti->timer_base = atimer;
349  ti->apcm = apcm;
350  ti->substream = apcm->substream;
351  if (atimer->ops->init)
352  atimer->ops->init(ti);
353 
354  spin_lock_irq(&atimer->list_lock);
355  list_add(&ti->instance_list, &atimer->instance_head);
356  spin_unlock_irq(&atimer->list_lock);
357 
358  return ti;
359 }
360 
362 {
363  if (ti->timer_base->ops->prepare)
364  ti->timer_base->ops->prepare(ti);
365  ti->position = 0;
366  ti->running = 0;
367 }
368 
370 {
371  struct ct_timer *atimer = ti->timer_base;
372  atimer->ops->start(ti);
373 }
374 
376 {
377  struct ct_timer *atimer = ti->timer_base;
378  atimer->ops->stop(ti);
379 }
380 
382 {
383  struct ct_timer *atimer = ti->timer_base;
384 
385  atimer->ops->stop(ti); /* to be sure */
386  if (atimer->ops->free_instance)
387  atimer->ops->free_instance(ti);
388 
389  spin_lock_irq(&atimer->list_lock);
390  list_del(&ti->instance_list);
391  spin_unlock_irq(&atimer->list_lock);
392 
393  kfree(ti);
394 }
395 
396 /*
397  * timer manager
398  */
399 
400 static void ct_timer_interrupt(void *data, unsigned int status)
401 {
402  struct ct_timer *timer = data;
403 
404  /* Interval timer interrupt */
405  if ((status & IT_INT) && timer->ops->interrupt)
406  timer->ops->interrupt(timer);
407 }
408 
409 struct ct_timer *ct_timer_new(struct ct_atc *atc)
410 {
411  struct ct_timer *atimer;
412  struct hw *hw;
413 
414  atimer = kzalloc(sizeof(*atimer), GFP_KERNEL);
415  if (!atimer)
416  return NULL;
417  spin_lock_init(&atimer->lock);
418  spin_lock_init(&atimer->list_lock);
419  INIT_LIST_HEAD(&atimer->instance_head);
420  INIT_LIST_HEAD(&atimer->running_head);
421  atimer->atc = atc;
422  hw = atc->hw;
423  if (!use_system_timer && hw->set_timer_irq) {
424  snd_printd(KERN_INFO "ctxfi: Use xfi-native timer\n");
425  atimer->ops = &ct_xfitimer_ops;
426  hw->irq_callback_data = atimer;
427  hw->irq_callback = ct_timer_interrupt;
428  } else {
429  snd_printd(KERN_INFO "ctxfi: Use system timer\n");
430  atimer->ops = &ct_systimer_ops;
431  }
432  return atimer;
433 }
434 
435 void ct_timer_free(struct ct_timer *atimer)
436 {
437  struct hw *hw = atimer->atc->hw;
438  hw->irq_callback = NULL;
439  if (atimer->ops->free_global)
440  atimer->ops->free_global(atimer);
441  kfree(atimer);
442 }
443