Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-btree-remove.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
10 
11 #include <linux/export.h>
12 
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling. When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1. We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  * case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  * ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  * ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  * ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  * ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree. For this reason this rebalancing
46  * is performed on the children of the current node. This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes. Or delete the entry for leaf nodes.
51  */
52 
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct node *n, int shift)
57 {
58  uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59  uint32_t value_size = le32_to_cpu(n->header.value_size);
60 
61  if (shift < 0) {
62  shift = -shift;
63  BUG_ON(shift > nr_entries);
64  BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65  memmove(key_ptr(n, 0),
66  key_ptr(n, shift),
67  (nr_entries - shift) * sizeof(__le64));
68  memmove(value_ptr(n, 0),
69  value_ptr(n, shift),
70  (nr_entries - shift) * value_size);
71  } else {
72  BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73  memmove(key_ptr(n, shift),
74  key_ptr(n, 0),
75  nr_entries * sizeof(__le64));
76  memmove(value_ptr(n, shift),
77  value_ptr(n, 0),
78  nr_entries * value_size);
79  }
80 }
81 
82 static void node_copy(struct node *left, struct node *right, int shift)
83 {
84  uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85  uint32_t value_size = le32_to_cpu(left->header.value_size);
86  BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87 
88  if (shift < 0) {
89  shift = -shift;
90  BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91  memcpy(key_ptr(left, nr_left),
92  key_ptr(right, 0),
93  shift * sizeof(__le64));
94  memcpy(value_ptr(left, nr_left),
95  value_ptr(right, 0),
96  shift * value_size);
97  } else {
98  BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99  memcpy(key_ptr(right, 0),
100  key_ptr(left, nr_left - shift),
101  shift * sizeof(__le64));
102  memcpy(value_ptr(right, 0),
103  value_ptr(left, nr_left - shift),
104  shift * value_size);
105  }
106 }
107 
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct node *n, unsigned index)
112 {
113  unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114  unsigned nr_to_copy = nr_entries - (index + 1);
115  uint32_t value_size = le32_to_cpu(n->header.value_size);
116  BUG_ON(index >= nr_entries);
117 
118  if (nr_to_copy) {
119  memmove(key_ptr(n, index),
120  key_ptr(n, index + 1),
121  nr_to_copy * sizeof(__le64));
122 
123  memmove(value_ptr(n, index),
124  value_ptr(n, index + 1),
125  nr_to_copy * value_size);
126  }
127 
128  n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130 
131 static unsigned merge_threshold(struct node *n)
132 {
133  return le32_to_cpu(n->header.max_entries) / 3;
134 }
135 
136 struct child {
137  unsigned index;
138  struct dm_block *block;
139  struct node *n;
140 };
141 
142 static struct dm_btree_value_type le64_type = {
143  .context = NULL,
144  .size = sizeof(__le64),
145  .inc = NULL,
146  .dec = NULL,
147  .equal = NULL
148 };
149 
150 static int init_child(struct dm_btree_info *info, struct node *parent,
151  unsigned index, struct child *result)
152 {
153  int r, inc;
155 
156  result->index = index;
157  root = value64(parent, index);
158 
159  r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
160  &result->block, &inc);
161  if (r)
162  return r;
163 
164  result->n = dm_block_data(result->block);
165 
166  if (inc)
167  inc_children(info->tm, result->n, &le64_type);
168 
169  *((__le64 *) value_ptr(parent, index)) =
171 
172  return 0;
173 }
174 
175 static int exit_child(struct dm_btree_info *info, struct child *c)
176 {
177  return dm_tm_unlock(info->tm, c->block);
178 }
179 
180 static void shift(struct node *left, struct node *right, int count)
181 {
182  uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
183  uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
184  uint32_t max_entries = le32_to_cpu(left->header.max_entries);
185  uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
186 
187  BUG_ON(max_entries != r_max_entries);
188  BUG_ON(nr_left - count > max_entries);
189  BUG_ON(nr_right + count > max_entries);
190 
191  if (!count)
192  return;
193 
194  if (count > 0) {
195  node_shift(right, count);
196  node_copy(left, right, count);
197  } else {
198  node_copy(left, right, count);
199  node_shift(right, count);
200  }
201 
202  left->header.nr_entries = cpu_to_le32(nr_left - count);
203  right->header.nr_entries = cpu_to_le32(nr_right + count);
204 }
205 
206 static void __rebalance2(struct dm_btree_info *info, struct node *parent,
207  struct child *l, struct child *r)
208 {
209  struct node *left = l->n;
210  struct node *right = r->n;
211  uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
212  uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
213  unsigned threshold = 2 * merge_threshold(left) + 1;
214 
215  if (nr_left + nr_right < threshold) {
216  /*
217  * Merge
218  */
219  node_copy(left, right, -nr_right);
220  left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
221  delete_at(parent, r->index);
222 
223  /*
224  * We need to decrement the right block, but not it's
225  * children, since they're still referenced by left.
226  */
227  dm_tm_dec(info->tm, dm_block_location(r->block));
228  } else {
229  /*
230  * Rebalance.
231  */
232  unsigned target_left = (nr_left + nr_right) / 2;
233  shift(left, right, nr_left - target_left);
234  *key_ptr(parent, r->index) = right->keys[0];
235  }
236 }
237 
238 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
239  unsigned left_index)
240 {
241  int r;
242  struct node *parent;
243  struct child left, right;
244 
245  parent = dm_block_data(shadow_current(s));
246 
247  r = init_child(info, parent, left_index, &left);
248  if (r)
249  return r;
250 
251  r = init_child(info, parent, left_index + 1, &right);
252  if (r) {
253  exit_child(info, &left);
254  return r;
255  }
256 
257  __rebalance2(info, parent, &left, &right);
258 
259  r = exit_child(info, &left);
260  if (r) {
261  exit_child(info, &right);
262  return r;
263  }
264 
265  return exit_child(info, &right);
266 }
267 
268 /*
269  * We dump as many entries from center as possible into left, then the rest
270  * in right, then rebalance2. This wastes some cpu, but I want something
271  * simple atm.
272  */
273 static void delete_center_node(struct dm_btree_info *info, struct node *parent,
274  struct child *l, struct child *c, struct child *r,
275  struct node *left, struct node *center, struct node *right,
276  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
277 {
278  uint32_t max_entries = le32_to_cpu(left->header.max_entries);
279  unsigned shift = min(max_entries - nr_left, nr_center);
280 
281  BUG_ON(nr_left + shift > max_entries);
282  node_copy(left, center, -shift);
283  left->header.nr_entries = cpu_to_le32(nr_left + shift);
284 
285  if (shift != nr_center) {
286  shift = nr_center - shift;
287  BUG_ON((nr_right + shift) > max_entries);
288  node_shift(right, shift);
289  node_copy(center, right, shift);
290  right->header.nr_entries = cpu_to_le32(nr_right + shift);
291  }
292  *key_ptr(parent, r->index) = right->keys[0];
293 
294  delete_at(parent, c->index);
295  r->index--;
296 
297  dm_tm_dec(info->tm, dm_block_location(c->block));
298  __rebalance2(info, parent, l, r);
299 }
300 
301 /*
302  * Redistributes entries among 3 sibling nodes.
303  */
304 static void redistribute3(struct dm_btree_info *info, struct node *parent,
305  struct child *l, struct child *c, struct child *r,
306  struct node *left, struct node *center, struct node *right,
307  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
308 {
309  int s;
310  uint32_t max_entries = le32_to_cpu(left->header.max_entries);
311  unsigned target = (nr_left + nr_center + nr_right) / 3;
312  BUG_ON(target > max_entries);
313 
314  if (nr_left < nr_right) {
315  s = nr_left - target;
316 
317  if (s < 0 && nr_center < -s) {
318  /* not enough in central node */
319  shift(left, center, nr_center);
320  s = nr_center - target;
321  shift(left, right, s);
322  nr_right += s;
323  } else
324  shift(left, center, s);
325 
326  shift(center, right, target - nr_right);
327 
328  } else {
329  s = target - nr_right;
330  if (s > 0 && nr_center < s) {
331  /* not enough in central node */
332  shift(center, right, nr_center);
333  s = target - nr_center;
334  shift(left, right, s);
335  nr_left -= s;
336  } else
337  shift(center, right, s);
338 
339  shift(left, center, nr_left - target);
340  }
341 
342  *key_ptr(parent, c->index) = center->keys[0];
343  *key_ptr(parent, r->index) = right->keys[0];
344 }
345 
346 static void __rebalance3(struct dm_btree_info *info, struct node *parent,
347  struct child *l, struct child *c, struct child *r)
348 {
349  struct node *left = l->n;
350  struct node *center = c->n;
351  struct node *right = r->n;
352 
353  uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
354  uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
355  uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
356 
357  unsigned threshold = merge_threshold(left) * 4 + 1;
358 
359  BUG_ON(left->header.max_entries != center->header.max_entries);
360  BUG_ON(center->header.max_entries != right->header.max_entries);
361 
362  if ((nr_left + nr_center + nr_right) < threshold)
363  delete_center_node(info, parent, l, c, r, left, center, right,
364  nr_left, nr_center, nr_right);
365  else
366  redistribute3(info, parent, l, c, r, left, center, right,
367  nr_left, nr_center, nr_right);
368 }
369 
370 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
371  unsigned left_index)
372 {
373  int r;
374  struct node *parent = dm_block_data(shadow_current(s));
375  struct child left, center, right;
376 
377  /*
378  * FIXME: fill out an array?
379  */
380  r = init_child(info, parent, left_index, &left);
381  if (r)
382  return r;
383 
384  r = init_child(info, parent, left_index + 1, &center);
385  if (r) {
386  exit_child(info, &left);
387  return r;
388  }
389 
390  r = init_child(info, parent, left_index + 2, &right);
391  if (r) {
392  exit_child(info, &left);
393  exit_child(info, &center);
394  return r;
395  }
396 
397  __rebalance3(info, parent, &left, &center, &right);
398 
399  r = exit_child(info, &left);
400  if (r) {
401  exit_child(info, &center);
402  exit_child(info, &right);
403  return r;
404  }
405 
406  r = exit_child(info, &center);
407  if (r) {
408  exit_child(info, &right);
409  return r;
410  }
411 
412  r = exit_child(info, &right);
413  if (r)
414  return r;
415 
416  return 0;
417 }
418 
419 static int get_nr_entries(struct dm_transaction_manager *tm,
420  dm_block_t b, uint32_t *result)
421 {
422  int r;
423  struct dm_block *block;
424  struct node *n;
425 
426  r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
427  if (r)
428  return r;
429 
430  n = dm_block_data(block);
431  *result = le32_to_cpu(n->header.nr_entries);
432 
433  return dm_tm_unlock(tm, block);
434 }
435 
436 static int rebalance_children(struct shadow_spine *s,
437  struct dm_btree_info *info, uint64_t key)
438 {
439  int i, r, has_left_sibling, has_right_sibling;
440  uint32_t child_entries;
441  struct node *n;
442 
444 
445  if (le32_to_cpu(n->header.nr_entries) == 1) {
446  struct dm_block *child;
447  dm_block_t b = value64(n, 0);
448 
449  r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
450  if (r)
451  return r;
452 
453  memcpy(n, dm_block_data(child),
455  r = dm_tm_unlock(info->tm, child);
456  if (r)
457  return r;
458 
459  dm_tm_dec(info->tm, dm_block_location(child));
460  return 0;
461  }
462 
463  i = lower_bound(n, key);
464  if (i < 0)
465  return -ENODATA;
466 
467  r = get_nr_entries(info->tm, value64(n, i), &child_entries);
468  if (r)
469  return r;
470 
471  has_left_sibling = i > 0;
472  has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
473 
474  if (!has_left_sibling)
475  r = rebalance2(s, info, i);
476 
477  else if (!has_right_sibling)
478  r = rebalance2(s, info, i - 1);
479 
480  else
481  r = rebalance3(s, info, i - 1);
482 
483  return r;
484 }
485 
486 static int do_leaf(struct node *n, uint64_t key, unsigned *index)
487 {
488  int i = lower_bound(n, key);
489 
490  if ((i < 0) ||
491  (i >= le32_to_cpu(n->header.nr_entries)) ||
492  (le64_to_cpu(n->keys[i]) != key))
493  return -ENODATA;
494 
495  *index = i;
496 
497  return 0;
498 }
499 
500 /*
501  * Prepares for removal from one level of the hierarchy. The caller must
502  * call delete_at() to remove the entry at index.
503  */
504 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
505  struct dm_btree_value_type *vt, dm_block_t root,
506  uint64_t key, unsigned *index)
507 {
508  int i = *index, r;
509  struct node *n;
510 
511  for (;;) {
512  r = shadow_step(s, root, vt);
513  if (r < 0)
514  break;
515 
516  /*
517  * We have to patch up the parent node, ugly, but I don't
518  * see a way to do this automatically as part of the spine
519  * op.
520  */
521  if (shadow_has_parent(s)) {
523  memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
524  &location, sizeof(__le64));
525  }
526 
528 
529  if (le32_to_cpu(n->header.flags) & LEAF_NODE)
530  return do_leaf(n, key, index);
531 
532  r = rebalance_children(s, info, key);
533  if (r)
534  break;
535 
537  if (le32_to_cpu(n->header.flags) & LEAF_NODE)
538  return do_leaf(n, key, index);
539 
540  i = lower_bound(n, key);
541 
542  /*
543  * We know the key is present, or else
544  * rebalance_children would have returned
545  * -ENODATA
546  */
547  root = value64(n, i);
548  }
549 
550  return r;
551 }
552 
553 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
554  uint64_t *keys, dm_block_t *new_root)
555 {
556  unsigned level, last_level = info->levels - 1;
557  int index = 0, r = 0;
558  struct shadow_spine spine;
559  struct node *n;
560 
561  init_shadow_spine(&spine, info);
562  for (level = 0; level < info->levels; level++) {
563  r = remove_raw(&spine, info,
564  (level == last_level ?
565  &info->value_type : &le64_type),
566  root, keys[level], (unsigned *)&index);
567  if (r < 0)
568  break;
569 
570  n = dm_block_data(shadow_current(&spine));
571  if (level != last_level) {
572  root = value64(n, index);
573  continue;
574  }
575 
576  BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
577 
578  if (info->value_type.dec)
579  info->value_type.dec(info->value_type.context,
580  value_ptr(n, index));
581 
582  delete_at(n, index);
583  }
584 
585  *new_root = shadow_root(&spine);
586  exit_shadow_spine(&spine);
587 
588  return r;
589 }