Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-raid.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16 
17 #include <linux/device-mapper.h>
18 
19 #define DM_MSG_PREFIX "raid"
20 
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10 /* rdev flag */
26 
27 struct raid_dev {
28  /*
29  * Two DM devices, one to hold metadata and one to hold the
30  * actual data/parity. The reason for this is to not confuse
31  * ti->len and give more flexibility in altering size and
32  * characteristics.
33  *
34  * While it is possible for this device to be associated
35  * with a different physical device than the data_dev, it
36  * is intended for it to be the same.
37  * |--------- Physical Device ---------|
38  * |- meta_dev -|------ data_dev ------|
39  */
40  struct dm_dev *meta_dev;
41  struct dm_dev *data_dev;
42  struct md_rdev rdev;
43 };
44 
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC 0x1
49 #define DMPF_NOSYNC 0x2
50 #define DMPF_REBUILD 0x4
51 #define DMPF_DAEMON_SLEEP 0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND 0x40
55 #define DMPF_STRIPE_CACHE 0x80
56 #define DMPF_REGION_SIZE 0x100
57 #define DMPF_RAID10_COPIES 0x200
58 #define DMPF_RAID10_FORMAT 0x400
59 
60 struct raid_set {
61  struct dm_target *ti;
62 
65 
66  struct mddev md;
69 
70  struct raid_dev dev[0];
71 };
72 
73 /* Supported raid types and properties. */
74 static struct raid_type {
75  const char *name; /* RAID algorithm. */
76  const char *descr; /* Descriptor text for logging. */
77  const unsigned parity_devs; /* # of parity devices. */
78  const unsigned minimal_devs; /* minimal # of devices in set. */
79  const unsigned level; /* RAID level. */
80  const unsigned algorithm; /* RAID algorithm. */
81 } raid_types[] = {
82  {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */},
83  {"raid10", "RAID10 (striped mirrors)", 0, 2, 10, UINT_MAX /* Varies */},
84  {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0},
85  {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86  {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87  {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88  {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89  {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90  {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91  {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93 
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96  return layout & 0xFF;
97 }
98 
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101  /* 1 "far" copy, and 'copies' "near" copies */
102  return (1 << 8) | (copies & 0xFF);
103 }
104 
105 static struct raid_type *get_raid_type(char *name)
106 {
107  int i;
108 
109  for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110  if (!strcmp(raid_types[i].name, name))
111  return &raid_types[i];
112 
113  return NULL;
114 }
115 
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118  unsigned i;
119  struct raid_set *rs;
120 
121  if (raid_devs <= raid_type->parity_devs) {
122  ti->error = "Insufficient number of devices";
123  return ERR_PTR(-EINVAL);
124  }
125 
126  rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127  if (!rs) {
128  ti->error = "Cannot allocate raid context";
129  return ERR_PTR(-ENOMEM);
130  }
131 
132  mddev_init(&rs->md);
133 
134  rs->ti = ti;
135  rs->raid_type = raid_type;
136  rs->md.raid_disks = raid_devs;
137  rs->md.level = raid_type->level;
138  rs->md.new_level = rs->md.level;
139  rs->md.layout = raid_type->algorithm;
140  rs->md.new_layout = rs->md.layout;
141  rs->md.delta_disks = 0;
142  rs->md.recovery_cp = 0;
143 
144  for (i = 0; i < raid_devs; i++)
145  md_rdev_init(&rs->dev[i].rdev);
146 
147  /*
148  * Remaining items to be initialized by further RAID params:
149  * rs->md.persistent
150  * rs->md.external
151  * rs->md.chunk_sectors
152  * rs->md.new_chunk_sectors
153  * rs->md.dev_sectors
154  */
155 
156  return rs;
157 }
158 
159 static void context_free(struct raid_set *rs)
160 {
161  int i;
162 
163  for (i = 0; i < rs->md.raid_disks; i++) {
164  if (rs->dev[i].meta_dev)
165  dm_put_device(rs->ti, rs->dev[i].meta_dev);
166  md_rdev_clear(&rs->dev[i].rdev);
167  if (rs->dev[i].data_dev)
168  dm_put_device(rs->ti, rs->dev[i].data_dev);
169  }
170 
171  kfree(rs);
172 }
173 
174 /*
175  * For every device we have two words
176  * <meta_dev>: meta device name or '-' if missing
177  * <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  * - -
181  * - <data_dev>
182  * <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  * <meta_dev> -
186  *
187  * This code parses those words. If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192  int i;
193  int rebuild = 0;
194  int metadata_available = 0;
195  int ret = 0;
196 
197  for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198  rs->dev[i].rdev.raid_disk = i;
199 
200  rs->dev[i].meta_dev = NULL;
201  rs->dev[i].data_dev = NULL;
202 
203  /*
204  * There are no offsets, since there is a separate device
205  * for data and metadata.
206  */
207  rs->dev[i].rdev.data_offset = 0;
208  rs->dev[i].rdev.mddev = &rs->md;
209 
210  if (strcmp(argv[0], "-")) {
211  ret = dm_get_device(rs->ti, argv[0],
212  dm_table_get_mode(rs->ti->table),
213  &rs->dev[i].meta_dev);
214  rs->ti->error = "RAID metadata device lookup failure";
215  if (ret)
216  return ret;
217 
218  rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219  if (!rs->dev[i].rdev.sb_page)
220  return -ENOMEM;
221  }
222 
223  if (!strcmp(argv[1], "-")) {
224  if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225  (!rs->dev[i].rdev.recovery_offset)) {
226  rs->ti->error = "Drive designated for rebuild not specified";
227  return -EINVAL;
228  }
229 
230  rs->ti->error = "No data device supplied with metadata device";
231  if (rs->dev[i].meta_dev)
232  return -EINVAL;
233 
234  continue;
235  }
236 
237  ret = dm_get_device(rs->ti, argv[1],
238  dm_table_get_mode(rs->ti->table),
239  &rs->dev[i].data_dev);
240  if (ret) {
241  rs->ti->error = "RAID device lookup failure";
242  return ret;
243  }
244 
245  if (rs->dev[i].meta_dev) {
246  metadata_available = 1;
247  rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248  }
249  rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250  list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251  if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252  rebuild++;
253  }
254 
255  if (metadata_available) {
256  rs->md.external = 0;
257  rs->md.persistent = 1;
258  rs->md.major_version = 2;
259  } else if (rebuild && !rs->md.recovery_cp) {
260  /*
261  * Without metadata, we will not be able to tell if the array
262  * is in-sync or not - we must assume it is not. Therefore,
263  * it is impossible to rebuild a drive.
264  *
265  * Even if there is metadata, the on-disk information may
266  * indicate that the array is not in-sync and it will then
267  * fail at that time.
268  *
269  * User could specify 'nosync' option if desperate.
270  */
271  DMERR("Unable to rebuild drive while array is not in-sync");
272  rs->ti->error = "RAID device lookup failure";
273  return -EINVAL;
274  }
275 
276  return 0;
277 }
278 
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size: region size in sectors. If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291  unsigned long min_region_size = rs->ti->len / (1 << 21);
292 
293  if (!region_size) {
294  /*
295  * Choose a reasonable default. All figures in sectors.
296  */
297  if (min_region_size > (1 << 13)) {
298  DMINFO("Choosing default region size of %lu sectors",
299  region_size);
300  region_size = min_region_size;
301  } else {
302  DMINFO("Choosing default region size of 4MiB");
303  region_size = 1 << 13; /* sectors */
304  }
305  } else {
306  /*
307  * Validate user-supplied value.
308  */
309  if (region_size > rs->ti->len) {
310  rs->ti->error = "Supplied region size is too large";
311  return -EINVAL;
312  }
313 
314  if (region_size < min_region_size) {
315  DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
316  region_size, min_region_size);
317  rs->ti->error = "Supplied region size is too small";
318  return -EINVAL;
319  }
320 
321  if (!is_power_of_2(region_size)) {
322  rs->ti->error = "Region size is not a power of 2";
323  return -EINVAL;
324  }
325 
326  if (region_size < rs->md.chunk_sectors) {
327  rs->ti->error = "Region size is smaller than the chunk size";
328  return -EINVAL;
329  }
330  }
331 
332  /*
333  * Convert sectors to bytes.
334  */
335  rs->md.bitmap_info.chunksize = (region_size << 9);
336 
337  return 0;
338 }
339 
340 /*
341  * validate_rebuild_devices
342  * @rs
343  *
344  * Determine if the devices specified for rebuild can result in a valid
345  * usable array that is capable of rebuilding the given devices.
346  *
347  * Returns: 0 on success, -EINVAL on failure.
348  */
349 static int validate_rebuild_devices(struct raid_set *rs)
350 {
351  unsigned i, rebuild_cnt = 0;
352  unsigned rebuilds_per_group, copies, d;
353 
354  if (!(rs->print_flags & DMPF_REBUILD))
355  return 0;
356 
357  for (i = 0; i < rs->md.raid_disks; i++)
358  if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
359  rebuild_cnt++;
360 
361  switch (rs->raid_type->level) {
362  case 1:
363  if (rebuild_cnt >= rs->md.raid_disks)
364  goto too_many;
365  break;
366  case 4:
367  case 5:
368  case 6:
369  if (rebuild_cnt > rs->raid_type->parity_devs)
370  goto too_many;
371  break;
372  case 10:
373  copies = raid10_md_layout_to_copies(rs->md.layout);
374  if (rebuild_cnt < copies)
375  break;
376 
377  /*
378  * It is possible to have a higher rebuild count for RAID10,
379  * as long as the failed devices occur in different mirror
380  * groups (i.e. different stripes).
381  *
382  * Right now, we only allow for "near" copies. When other
383  * formats are added, we will have to check those too.
384  *
385  * When checking "near" format, make sure no adjacent devices
386  * have failed beyond what can be handled. In addition to the
387  * simple case where the number of devices is a multiple of the
388  * number of copies, we must also handle cases where the number
389  * of devices is not a multiple of the number of copies.
390  * E.g. dev1 dev2 dev3 dev4 dev5
391  * A A B B C
392  * C D D E E
393  */
394  rebuilds_per_group = 0;
395  for (i = 0; i < rs->md.raid_disks * copies; i++) {
396  d = i % rs->md.raid_disks;
397  if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
398  (++rebuilds_per_group >= copies))
399  goto too_many;
400  if (!((i + 1) % copies))
401  rebuilds_per_group = 0;
402  }
403  break;
404  default:
405  DMERR("The rebuild parameter is not supported for %s",
406  rs->raid_type->name);
407  rs->ti->error = "Rebuild not supported for this RAID type";
408  return -EINVAL;
409  }
410 
411  return 0;
412 
413 too_many:
414  rs->ti->error = "Too many rebuild devices specified";
415  return -EINVAL;
416 }
417 
418 /*
419  * Possible arguments are...
420  * <chunk_size> [optional_args]
421  *
422  * Argument definitions
423  * <chunk_size> The number of sectors per disk that
424  * will form the "stripe"
425  * [[no]sync] Force or prevent recovery of the
426  * entire array
427  * [rebuild <idx>] Rebuild the drive indicated by the index
428  * [daemon_sleep <ms>] Time between bitmap daemon work to
429  * clear bits
430  * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
431  * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
432  * [write_mostly <idx>] Indicate a write mostly drive via index
433  * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
434  * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
435  * [region_size <sectors>] Defines granularity of bitmap
436  *
437  * RAID10-only options:
438  * [raid10_copies <# copies>] Number of copies. (Default: 2)
439  * [raid10_format <near>] Layout algorithm. (Default: near)
440  */
441 static int parse_raid_params(struct raid_set *rs, char **argv,
442  unsigned num_raid_params)
443 {
444  char *raid10_format = "near";
445  unsigned raid10_copies = 2;
446  unsigned i;
447  unsigned long value, region_size = 0;
448  sector_t sectors_per_dev = rs->ti->len;
449  sector_t max_io_len;
450  char *key;
451 
452  /*
453  * First, parse the in-order required arguments
454  * "chunk_size" is the only argument of this type.
455  */
456  if ((strict_strtoul(argv[0], 10, &value) < 0)) {
457  rs->ti->error = "Bad chunk size";
458  return -EINVAL;
459  } else if (rs->raid_type->level == 1) {
460  if (value)
461  DMERR("Ignoring chunk size parameter for RAID 1");
462  value = 0;
463  } else if (!is_power_of_2(value)) {
464  rs->ti->error = "Chunk size must be a power of 2";
465  return -EINVAL;
466  } else if (value < 8) {
467  rs->ti->error = "Chunk size value is too small";
468  return -EINVAL;
469  }
470 
471  rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
472  argv++;
473  num_raid_params--;
474 
475  /*
476  * We set each individual device as In_sync with a completed
477  * 'recovery_offset'. If there has been a device failure or
478  * replacement then one of the following cases applies:
479  *
480  * 1) User specifies 'rebuild'.
481  * - Device is reset when param is read.
482  * 2) A new device is supplied.
483  * - No matching superblock found, resets device.
484  * 3) Device failure was transient and returns on reload.
485  * - Failure noticed, resets device for bitmap replay.
486  * 4) Device hadn't completed recovery after previous failure.
487  * - Superblock is read and overrides recovery_offset.
488  *
489  * What is found in the superblocks of the devices is always
490  * authoritative, unless 'rebuild' or '[no]sync' was specified.
491  */
492  for (i = 0; i < rs->md.raid_disks; i++) {
493  set_bit(In_sync, &rs->dev[i].rdev.flags);
494  rs->dev[i].rdev.recovery_offset = MaxSector;
495  }
496 
497  /*
498  * Second, parse the unordered optional arguments
499  */
500  for (i = 0; i < num_raid_params; i++) {
501  if (!strcasecmp(argv[i], "nosync")) {
502  rs->md.recovery_cp = MaxSector;
503  rs->print_flags |= DMPF_NOSYNC;
504  continue;
505  }
506  if (!strcasecmp(argv[i], "sync")) {
507  rs->md.recovery_cp = 0;
508  rs->print_flags |= DMPF_SYNC;
509  continue;
510  }
511 
512  /* The rest of the optional arguments come in key/value pairs */
513  if ((i + 1) >= num_raid_params) {
514  rs->ti->error = "Wrong number of raid parameters given";
515  return -EINVAL;
516  }
517 
518  key = argv[i++];
519 
520  /* Parameters that take a string value are checked here. */
521  if (!strcasecmp(key, "raid10_format")) {
522  if (rs->raid_type->level != 10) {
523  rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
524  return -EINVAL;
525  }
526  if (strcmp("near", argv[i])) {
527  rs->ti->error = "Invalid 'raid10_format' value given";
528  return -EINVAL;
529  }
530  raid10_format = argv[i];
532  continue;
533  }
534 
535  if (strict_strtoul(argv[i], 10, &value) < 0) {
536  rs->ti->error = "Bad numerical argument given in raid params";
537  return -EINVAL;
538  }
539 
540  /* Parameters that take a numeric value are checked here */
541  if (!strcasecmp(key, "rebuild")) {
542  if (value >= rs->md.raid_disks) {
543  rs->ti->error = "Invalid rebuild index given";
544  return -EINVAL;
545  }
546  clear_bit(In_sync, &rs->dev[value].rdev.flags);
547  rs->dev[value].rdev.recovery_offset = 0;
548  rs->print_flags |= DMPF_REBUILD;
549  } else if (!strcasecmp(key, "write_mostly")) {
550  if (rs->raid_type->level != 1) {
551  rs->ti->error = "write_mostly option is only valid for RAID1";
552  return -EINVAL;
553  }
554  if (value >= rs->md.raid_disks) {
555  rs->ti->error = "Invalid write_mostly drive index given";
556  return -EINVAL;
557  }
558  set_bit(WriteMostly, &rs->dev[value].rdev.flags);
559  } else if (!strcasecmp(key, "max_write_behind")) {
560  if (rs->raid_type->level != 1) {
561  rs->ti->error = "max_write_behind option is only valid for RAID1";
562  return -EINVAL;
563  }
565 
566  /*
567  * In device-mapper, we specify things in sectors, but
568  * MD records this value in kB
569  */
570  value /= 2;
571  if (value > COUNTER_MAX) {
572  rs->ti->error = "Max write-behind limit out of range";
573  return -EINVAL;
574  }
575  rs->md.bitmap_info.max_write_behind = value;
576  } else if (!strcasecmp(key, "daemon_sleep")) {
578  if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
579  rs->ti->error = "daemon sleep period out of range";
580  return -EINVAL;
581  }
582  rs->md.bitmap_info.daemon_sleep = value;
583  } else if (!strcasecmp(key, "stripe_cache")) {
585 
586  /*
587  * In device-mapper, we specify things in sectors, but
588  * MD records this value in kB
589  */
590  value /= 2;
591 
592  if ((rs->raid_type->level != 5) &&
593  (rs->raid_type->level != 6)) {
594  rs->ti->error = "Inappropriate argument: stripe_cache";
595  return -EINVAL;
596  }
597  if (raid5_set_cache_size(&rs->md, (int)value)) {
598  rs->ti->error = "Bad stripe_cache size";
599  return -EINVAL;
600  }
601  } else if (!strcasecmp(key, "min_recovery_rate")) {
603  if (value > INT_MAX) {
604  rs->ti->error = "min_recovery_rate out of range";
605  return -EINVAL;
606  }
607  rs->md.sync_speed_min = (int)value;
608  } else if (!strcasecmp(key, "max_recovery_rate")) {
610  if (value > INT_MAX) {
611  rs->ti->error = "max_recovery_rate out of range";
612  return -EINVAL;
613  }
614  rs->md.sync_speed_max = (int)value;
615  } else if (!strcasecmp(key, "region_size")) {
617  region_size = value;
618  } else if (!strcasecmp(key, "raid10_copies") &&
619  (rs->raid_type->level == 10)) {
620  if ((value < 2) || (value > 0xFF)) {
621  rs->ti->error = "Bad value for 'raid10_copies'";
622  return -EINVAL;
623  }
625  raid10_copies = value;
626  } else {
627  DMERR("Unable to parse RAID parameter: %s", key);
628  rs->ti->error = "Unable to parse RAID parameters";
629  return -EINVAL;
630  }
631  }
632 
633  if (validate_region_size(rs, region_size))
634  return -EINVAL;
635 
636  if (rs->md.chunk_sectors)
637  max_io_len = rs->md.chunk_sectors;
638  else
639  max_io_len = region_size;
640 
641  if (dm_set_target_max_io_len(rs->ti, max_io_len))
642  return -EINVAL;
643 
644  if (rs->raid_type->level == 10) {
645  if (raid10_copies > rs->md.raid_disks) {
646  rs->ti->error = "Not enough devices to satisfy specification";
647  return -EINVAL;
648  }
649 
650  /* (Len * #mirrors) / #devices */
651  sectors_per_dev = rs->ti->len * raid10_copies;
652  sector_div(sectors_per_dev, rs->md.raid_disks);
653 
654  rs->md.layout = raid10_format_to_md_layout(raid10_format,
655  raid10_copies);
656  rs->md.new_layout = rs->md.layout;
657  } else if ((rs->raid_type->level > 1) &&
658  sector_div(sectors_per_dev,
659  (rs->md.raid_disks - rs->raid_type->parity_devs))) {
660  rs->ti->error = "Target length not divisible by number of data devices";
661  return -EINVAL;
662  }
663  rs->md.dev_sectors = sectors_per_dev;
664 
665  if (validate_rebuild_devices(rs))
666  return -EINVAL;
667 
668  /* Assume there are no metadata devices until the drives are parsed */
669  rs->md.persistent = 0;
670  rs->md.external = 1;
671 
672  return 0;
673 }
674 
675 static void do_table_event(struct work_struct *ws)
676 {
677  struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
678 
679  dm_table_event(rs->ti->table);
680 }
681 
682 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
683 {
684  struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
685 
686  if (rs->raid_type->level == 1)
687  return md_raid1_congested(&rs->md, bits);
688 
689  if (rs->raid_type->level == 10)
690  return md_raid10_congested(&rs->md, bits);
691 
692  return md_raid5_congested(&rs->md, bits);
693 }
694 
695 /*
696  * This structure is never routinely used by userspace, unlike md superblocks.
697  * Devices with this superblock should only ever be accessed via device-mapper.
698  */
699 #define DM_RAID_MAGIC 0x64526D44
701  __le32 magic; /* "DmRd" */
702  __le32 features; /* Used to indicate possible future changes */
703 
704  __le32 num_devices; /* Number of devices in this array. (Max 64) */
705  __le32 array_position; /* The position of this drive in the array */
706 
707  __le64 events; /* Incremented by md when superblock updated */
708  __le64 failed_devices; /* Bit field of devices to indicate failures */
709 
710  /*
711  * This offset tracks the progress of the repair or replacement of
712  * an individual drive.
713  */
715 
716  /*
717  * This offset tracks the progress of the initial array
718  * synchronisation/parity calculation.
719  */
721 
722  /*
723  * RAID characteristics
724  */
728 
729  __u8 pad[452]; /* Round struct to 512 bytes. */
730  /* Always set to 0 when writing. */
731 } __packed;
732 
733 static int read_disk_sb(struct md_rdev *rdev, int size)
734 {
735  BUG_ON(!rdev->sb_page);
736 
737  if (rdev->sb_loaded)
738  return 0;
739 
740  if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
741  DMERR("Failed to read superblock of device at position %d",
742  rdev->raid_disk);
743  md_error(rdev->mddev, rdev);
744  return -EINVAL;
745  }
746 
747  rdev->sb_loaded = 1;
748 
749  return 0;
750 }
751 
752 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
753 {
754  int i;
755  uint64_t failed_devices;
756  struct dm_raid_superblock *sb;
757  struct raid_set *rs = container_of(mddev, struct raid_set, md);
758 
759  sb = page_address(rdev->sb_page);
760  failed_devices = le64_to_cpu(sb->failed_devices);
761 
762  for (i = 0; i < mddev->raid_disks; i++)
763  if (!rs->dev[i].data_dev ||
764  test_bit(Faulty, &(rs->dev[i].rdev.flags)))
765  failed_devices |= (1ULL << i);
766 
767  memset(sb, 0, sizeof(*sb));
768 
770  sb->features = cpu_to_le32(0); /* No features yet */
771 
772  sb->num_devices = cpu_to_le32(mddev->raid_disks);
773  sb->array_position = cpu_to_le32(rdev->raid_disk);
774 
775  sb->events = cpu_to_le64(mddev->events);
776  sb->failed_devices = cpu_to_le64(failed_devices);
777 
780 
781  sb->level = cpu_to_le32(mddev->level);
782  sb->layout = cpu_to_le32(mddev->layout);
784 }
785 
786 /*
787  * super_load
788  *
789  * This function creates a superblock if one is not found on the device
790  * and will decide which superblock to use if there's a choice.
791  *
792  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
793  */
794 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
795 {
796  int ret;
797  struct dm_raid_superblock *sb;
798  struct dm_raid_superblock *refsb;
799  uint64_t events_sb, events_refsb;
800 
801  rdev->sb_start = 0;
802  rdev->sb_size = sizeof(*sb);
803 
804  ret = read_disk_sb(rdev, rdev->sb_size);
805  if (ret)
806  return ret;
807 
808  sb = page_address(rdev->sb_page);
809 
810  /*
811  * Two cases that we want to write new superblocks and rebuild:
812  * 1) New device (no matching magic number)
813  * 2) Device specified for rebuild (!In_sync w/ offset == 0)
814  */
815  if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
816  (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
817  super_sync(rdev->mddev, rdev);
818 
819  set_bit(FirstUse, &rdev->flags);
820 
821  /* Force writing of superblocks to disk */
822  set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
823 
824  /* Any superblock is better than none, choose that if given */
825  return refdev ? 0 : 1;
826  }
827 
828  if (!refdev)
829  return 1;
830 
831  events_sb = le64_to_cpu(sb->events);
832 
833  refsb = page_address(refdev->sb_page);
834  events_refsb = le64_to_cpu(refsb->events);
835 
836  return (events_sb > events_refsb) ? 1 : 0;
837 }
838 
839 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
840 {
841  int role;
842  struct raid_set *rs = container_of(mddev, struct raid_set, md);
843  uint64_t events_sb;
844  uint64_t failed_devices;
845  struct dm_raid_superblock *sb;
846  uint32_t new_devs = 0;
847  uint32_t rebuilds = 0;
848  struct md_rdev *r;
849  struct dm_raid_superblock *sb2;
850 
851  sb = page_address(rdev->sb_page);
852  events_sb = le64_to_cpu(sb->events);
853  failed_devices = le64_to_cpu(sb->failed_devices);
854 
855  /*
856  * Initialise to 1 if this is a new superblock.
857  */
858  mddev->events = events_sb ? : 1;
859 
860  /*
861  * Reshaping is not currently allowed
862  */
863  if ((le32_to_cpu(sb->level) != mddev->level) ||
864  (le32_to_cpu(sb->layout) != mddev->layout) ||
865  (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
866  DMERR("Reshaping arrays not yet supported.");
867  return -EINVAL;
868  }
869 
870  /* We can only change the number of devices in RAID1 right now */
871  if ((rs->raid_type->level != 1) &&
872  (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
873  DMERR("Reshaping arrays not yet supported.");
874  return -EINVAL;
875  }
876 
877  if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
879 
880  /*
881  * During load, we set FirstUse if a new superblock was written.
882  * There are two reasons we might not have a superblock:
883  * 1) The array is brand new - in which case, all of the
884  * devices must have their In_sync bit set. Also,
885  * recovery_cp must be 0, unless forced.
886  * 2) This is a new device being added to an old array
887  * and the new device needs to be rebuilt - in which
888  * case the In_sync bit will /not/ be set and
889  * recovery_cp must be MaxSector.
890  */
891  rdev_for_each(r, mddev) {
892  if (!test_bit(In_sync, &r->flags)) {
893  DMINFO("Device %d specified for rebuild: "
894  "Clearing superblock", r->raid_disk);
895  rebuilds++;
896  } else if (test_bit(FirstUse, &r->flags))
897  new_devs++;
898  }
899 
900  if (!rebuilds) {
901  if (new_devs == mddev->raid_disks) {
902  DMINFO("Superblocks created for new array");
903  set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
904  } else if (new_devs) {
905  DMERR("New device injected "
906  "into existing array without 'rebuild' "
907  "parameter specified");
908  return -EINVAL;
909  }
910  } else if (new_devs) {
911  DMERR("'rebuild' devices cannot be "
912  "injected into an array with other first-time devices");
913  return -EINVAL;
914  } else if (mddev->recovery_cp != MaxSector) {
915  DMERR("'rebuild' specified while array is not in-sync");
916  return -EINVAL;
917  }
918 
919  /*
920  * Now we set the Faulty bit for those devices that are
921  * recorded in the superblock as failed.
922  */
923  rdev_for_each(r, mddev) {
924  if (!r->sb_page)
925  continue;
926  sb2 = page_address(r->sb_page);
927  sb2->failed_devices = 0;
928 
929  /*
930  * Check for any device re-ordering.
931  */
932  if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
933  role = le32_to_cpu(sb2->array_position);
934  if (role != r->raid_disk) {
935  if (rs->raid_type->level != 1) {
936  rs->ti->error = "Cannot change device "
937  "positions in RAID array";
938  return -EINVAL;
939  }
940  DMINFO("RAID1 device #%d now at position #%d",
941  role, r->raid_disk);
942  }
943 
944  /*
945  * Partial recovery is performed on
946  * returning failed devices.
947  */
948  if (failed_devices & (1 << role))
949  set_bit(Faulty, &r->flags);
950  }
951  }
952 
953  return 0;
954 }
955 
956 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
957 {
958  struct dm_raid_superblock *sb = page_address(rdev->sb_page);
959 
960  /*
961  * If mddev->events is not set, we know we have not yet initialized
962  * the array.
963  */
964  if (!mddev->events && super_init_validation(mddev, rdev))
965  return -EINVAL;
966 
967  mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
968  rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
969  if (!test_bit(FirstUse, &rdev->flags)) {
971  if (rdev->recovery_offset != MaxSector)
972  clear_bit(In_sync, &rdev->flags);
973  }
974 
975  /*
976  * If a device comes back, set it as not In_sync and no longer faulty.
977  */
978  if (test_bit(Faulty, &rdev->flags)) {
979  clear_bit(Faulty, &rdev->flags);
980  clear_bit(In_sync, &rdev->flags);
981  rdev->saved_raid_disk = rdev->raid_disk;
982  rdev->recovery_offset = 0;
983  }
984 
985  clear_bit(FirstUse, &rdev->flags);
986 
987  return 0;
988 }
989 
990 /*
991  * Analyse superblocks and select the freshest.
992  */
993 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
994 {
995  int ret;
996  unsigned redundancy = 0;
997  struct raid_dev *dev;
998  struct md_rdev *rdev, *tmp, *freshest;
999  struct mddev *mddev = &rs->md;
1000 
1001  switch (rs->raid_type->level) {
1002  case 1:
1003  redundancy = rs->md.raid_disks - 1;
1004  break;
1005  case 4:
1006  case 5:
1007  case 6:
1008  redundancy = rs->raid_type->parity_devs;
1009  break;
1010  case 10:
1011  redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
1012  break;
1013  default:
1014  ti->error = "Unknown RAID type";
1015  return -EINVAL;
1016  }
1017 
1018  freshest = NULL;
1019  rdev_for_each_safe(rdev, tmp, mddev) {
1020  /*
1021  * Skipping super_load due to DMPF_SYNC will cause
1022  * the array to undergo initialization again as
1023  * though it were new. This is the intended effect
1024  * of the "sync" directive.
1025  *
1026  * When reshaping capability is added, we must ensure
1027  * that the "sync" directive is disallowed during the
1028  * reshape.
1029  */
1030  if (rs->print_flags & DMPF_SYNC)
1031  continue;
1032 
1033  if (!rdev->meta_bdev)
1034  continue;
1035 
1036  ret = super_load(rdev, freshest);
1037 
1038  switch (ret) {
1039  case 1:
1040  freshest = rdev;
1041  break;
1042  case 0:
1043  break;
1044  default:
1045  dev = container_of(rdev, struct raid_dev, rdev);
1046  if (redundancy--) {
1047  if (dev->meta_dev)
1048  dm_put_device(ti, dev->meta_dev);
1049 
1050  dev->meta_dev = NULL;
1051  rdev->meta_bdev = NULL;
1052 
1053  if (rdev->sb_page)
1054  put_page(rdev->sb_page);
1055 
1056  rdev->sb_page = NULL;
1057 
1058  rdev->sb_loaded = 0;
1059 
1060  /*
1061  * We might be able to salvage the data device
1062  * even though the meta device has failed. For
1063  * now, we behave as though '- -' had been
1064  * set for this device in the table.
1065  */
1066  if (dev->data_dev)
1067  dm_put_device(ti, dev->data_dev);
1068 
1069  dev->data_dev = NULL;
1070  rdev->bdev = NULL;
1071 
1072  list_del(&rdev->same_set);
1073 
1074  continue;
1075  }
1076  ti->error = "Failed to load superblock";
1077  return ret;
1078  }
1079  }
1080 
1081  if (!freshest)
1082  return 0;
1083 
1084  /*
1085  * Validation of the freshest device provides the source of
1086  * validation for the remaining devices.
1087  */
1088  ti->error = "Unable to assemble array: Invalid superblocks";
1089  if (super_validate(mddev, freshest))
1090  return -EINVAL;
1091 
1092  rdev_for_each(rdev, mddev)
1093  if ((rdev != freshest) && super_validate(mddev, rdev))
1094  return -EINVAL;
1095 
1096  return 0;
1097 }
1098 
1099 /*
1100  * Construct a RAID4/5/6 mapping:
1101  * Args:
1102  * <raid_type> <#raid_params> <raid_params> \
1103  * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1104  *
1105  * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
1106  * details on possible <raid_params>.
1107  */
1108 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1109 {
1110  int ret;
1111  struct raid_type *rt;
1112  unsigned long num_raid_params, num_raid_devs;
1113  struct raid_set *rs = NULL;
1114 
1115  /* Must have at least <raid_type> <#raid_params> */
1116  if (argc < 2) {
1117  ti->error = "Too few arguments";
1118  return -EINVAL;
1119  }
1120 
1121  /* raid type */
1122  rt = get_raid_type(argv[0]);
1123  if (!rt) {
1124  ti->error = "Unrecognised raid_type";
1125  return -EINVAL;
1126  }
1127  argc--;
1128  argv++;
1129 
1130  /* number of RAID parameters */
1131  if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1132  ti->error = "Cannot understand number of RAID parameters";
1133  return -EINVAL;
1134  }
1135  argc--;
1136  argv++;
1137 
1138  /* Skip over RAID params for now and find out # of devices */
1139  if (num_raid_params + 1 > argc) {
1140  ti->error = "Arguments do not agree with counts given";
1141  return -EINVAL;
1142  }
1143 
1144  if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1145  (num_raid_devs >= INT_MAX)) {
1146  ti->error = "Cannot understand number of raid devices";
1147  return -EINVAL;
1148  }
1149 
1150  rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1151  if (IS_ERR(rs))
1152  return PTR_ERR(rs);
1153 
1154  ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1155  if (ret)
1156  goto bad;
1157 
1158  ret = -EINVAL;
1159 
1160  argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1161  argv += num_raid_params + 1;
1162 
1163  if (argc != (num_raid_devs * 2)) {
1164  ti->error = "Supplied RAID devices does not match the count given";
1165  goto bad;
1166  }
1167 
1168  ret = dev_parms(rs, argv);
1169  if (ret)
1170  goto bad;
1171 
1172  rs->md.sync_super = super_sync;
1173  ret = analyse_superblocks(ti, rs);
1174  if (ret)
1175  goto bad;
1176 
1177  INIT_WORK(&rs->md.event_work, do_table_event);
1178  ti->private = rs;
1179  ti->num_flush_requests = 1;
1180 
1181  mutex_lock(&rs->md.reconfig_mutex);
1182  ret = md_run(&rs->md);
1183  rs->md.in_sync = 0; /* Assume already marked dirty */
1184  mutex_unlock(&rs->md.reconfig_mutex);
1185 
1186  if (ret) {
1187  ti->error = "Fail to run raid array";
1188  goto bad;
1189  }
1190 
1191  if (ti->len != rs->md.array_sectors) {
1192  ti->error = "Array size does not match requested target length";
1193  ret = -EINVAL;
1194  goto size_mismatch;
1195  }
1196  rs->callbacks.congested_fn = raid_is_congested;
1197  dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1198 
1199  mddev_suspend(&rs->md);
1200  return 0;
1201 
1202 size_mismatch:
1203  md_stop(&rs->md);
1204 bad:
1205  context_free(rs);
1206 
1207  return ret;
1208 }
1209 
1210 static void raid_dtr(struct dm_target *ti)
1211 {
1212  struct raid_set *rs = ti->private;
1213 
1214  list_del_init(&rs->callbacks.list);
1215  md_stop(&rs->md);
1216  context_free(rs);
1217 }
1218 
1219 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1220 {
1221  struct raid_set *rs = ti->private;
1222  struct mddev *mddev = &rs->md;
1223 
1224  mddev->pers->make_request(mddev, bio);
1225 
1226  return DM_MAPIO_SUBMITTED;
1227 }
1228 
1229 static int raid_status(struct dm_target *ti, status_type_t type,
1230  unsigned status_flags, char *result, unsigned maxlen)
1231 {
1232  struct raid_set *rs = ti->private;
1233  unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1234  unsigned sz = 0;
1235  int i, array_in_sync = 0;
1236  sector_t sync;
1237 
1238  switch (type) {
1239  case STATUSTYPE_INFO:
1240  DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1241 
1242  if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1243  sync = rs->md.curr_resync_completed;
1244  else
1245  sync = rs->md.recovery_cp;
1246 
1247  if (sync >= rs->md.resync_max_sectors) {
1248  array_in_sync = 1;
1249  sync = rs->md.resync_max_sectors;
1250  } else {
1251  /*
1252  * The array may be doing an initial sync, or it may
1253  * be rebuilding individual components. If all the
1254  * devices are In_sync, then it is the array that is
1255  * being initialized.
1256  */
1257  for (i = 0; i < rs->md.raid_disks; i++)
1258  if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1259  array_in_sync = 1;
1260  }
1261  /*
1262  * Status characters:
1263  * 'D' = Dead/Failed device
1264  * 'a' = Alive but not in-sync
1265  * 'A' = Alive and in-sync
1266  */
1267  for (i = 0; i < rs->md.raid_disks; i++) {
1268  if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1269  DMEMIT("D");
1270  else if (!array_in_sync ||
1271  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1272  DMEMIT("a");
1273  else
1274  DMEMIT("A");
1275  }
1276 
1277  /*
1278  * In-sync ratio:
1279  * The in-sync ratio shows the progress of:
1280  * - Initializing the array
1281  * - Rebuilding a subset of devices of the array
1282  * The user can distinguish between the two by referring
1283  * to the status characters.
1284  */
1285  DMEMIT(" %llu/%llu",
1286  (unsigned long long) sync,
1287  (unsigned long long) rs->md.resync_max_sectors);
1288 
1289  break;
1290  case STATUSTYPE_TABLE:
1291  /* The string you would use to construct this array */
1292  for (i = 0; i < rs->md.raid_disks; i++) {
1293  if ((rs->print_flags & DMPF_REBUILD) &&
1294  rs->dev[i].data_dev &&
1295  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1296  raid_param_cnt += 2; /* for rebuilds */
1297  if (rs->dev[i].data_dev &&
1298  test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1299  raid_param_cnt += 2;
1300  }
1301 
1302  raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1303  if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1304  raid_param_cnt--;
1305 
1306  DMEMIT("%s %u %u", rs->raid_type->name,
1307  raid_param_cnt, rs->md.chunk_sectors);
1308 
1309  if ((rs->print_flags & DMPF_SYNC) &&
1310  (rs->md.recovery_cp == MaxSector))
1311  DMEMIT(" sync");
1312  if (rs->print_flags & DMPF_NOSYNC)
1313  DMEMIT(" nosync");
1314 
1315  for (i = 0; i < rs->md.raid_disks; i++)
1316  if ((rs->print_flags & DMPF_REBUILD) &&
1317  rs->dev[i].data_dev &&
1318  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1319  DMEMIT(" rebuild %u", i);
1320 
1321  if (rs->print_flags & DMPF_DAEMON_SLEEP)
1322  DMEMIT(" daemon_sleep %lu",
1323  rs->md.bitmap_info.daemon_sleep);
1324 
1326  DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1327 
1329  DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1330 
1331  for (i = 0; i < rs->md.raid_disks; i++)
1332  if (rs->dev[i].data_dev &&
1333  test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1334  DMEMIT(" write_mostly %u", i);
1335 
1337  DMEMIT(" max_write_behind %lu",
1338  rs->md.bitmap_info.max_write_behind);
1339 
1340  if (rs->print_flags & DMPF_STRIPE_CACHE) {
1341  struct r5conf *conf = rs->md.private;
1342 
1343  /* convert from kiB to sectors */
1344  DMEMIT(" stripe_cache %d",
1345  conf ? conf->max_nr_stripes * 2 : 0);
1346  }
1347 
1348  if (rs->print_flags & DMPF_REGION_SIZE)
1349  DMEMIT(" region_size %lu",
1350  rs->md.bitmap_info.chunksize >> 9);
1351 
1352  if (rs->print_flags & DMPF_RAID10_COPIES)
1353  DMEMIT(" raid10_copies %u",
1354  raid10_md_layout_to_copies(rs->md.layout));
1355 
1356  if (rs->print_flags & DMPF_RAID10_FORMAT)
1357  DMEMIT(" raid10_format near");
1358 
1359  DMEMIT(" %d", rs->md.raid_disks);
1360  for (i = 0; i < rs->md.raid_disks; i++) {
1361  if (rs->dev[i].meta_dev)
1362  DMEMIT(" %s", rs->dev[i].meta_dev->name);
1363  else
1364  DMEMIT(" -");
1365 
1366  if (rs->dev[i].data_dev)
1367  DMEMIT(" %s", rs->dev[i].data_dev->name);
1368  else
1369  DMEMIT(" -");
1370  }
1371  }
1372 
1373  return 0;
1374 }
1375 
1376 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1377 {
1378  struct raid_set *rs = ti->private;
1379  unsigned i;
1380  int ret = 0;
1381 
1382  for (i = 0; !ret && i < rs->md.raid_disks; i++)
1383  if (rs->dev[i].data_dev)
1384  ret = fn(ti,
1385  rs->dev[i].data_dev,
1386  0, /* No offset on data devs */
1387  rs->md.dev_sectors,
1388  data);
1389 
1390  return ret;
1391 }
1392 
1393 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1394 {
1395  struct raid_set *rs = ti->private;
1396  unsigned chunk_size = rs->md.chunk_sectors << 9;
1397  struct r5conf *conf = rs->md.private;
1398 
1399  blk_limits_io_min(limits, chunk_size);
1400  blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1401 }
1402 
1403 static void raid_presuspend(struct dm_target *ti)
1404 {
1405  struct raid_set *rs = ti->private;
1406 
1407  md_stop_writes(&rs->md);
1408 }
1409 
1410 static void raid_postsuspend(struct dm_target *ti)
1411 {
1412  struct raid_set *rs = ti->private;
1413 
1414  mddev_suspend(&rs->md);
1415 }
1416 
1417 static void raid_resume(struct dm_target *ti)
1418 {
1419  struct raid_set *rs = ti->private;
1420 
1421  set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1422  if (!rs->bitmap_loaded) {
1423  bitmap_load(&rs->md);
1424  rs->bitmap_loaded = 1;
1425  }
1426 
1427  clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1428  mddev_resume(&rs->md);
1429 }
1430 
1431 static struct target_type raid_target = {
1432  .name = "raid",
1433  .version = {1, 3, 1},
1434  .module = THIS_MODULE,
1435  .ctr = raid_ctr,
1436  .dtr = raid_dtr,
1437  .map = raid_map,
1438  .status = raid_status,
1439  .iterate_devices = raid_iterate_devices,
1440  .io_hints = raid_io_hints,
1441  .presuspend = raid_presuspend,
1442  .postsuspend = raid_postsuspend,
1443  .resume = raid_resume,
1444 };
1445 
1446 static int __init dm_raid_init(void)
1447 {
1448  return dm_register_target(&raid_target);
1449 }
1450 
1451 static void __exit dm_raid_exit(void)
1452 {
1453  dm_unregister_target(&raid_target);
1454 }
1455 
1456 module_init(dm_raid_init);
1457 module_exit(dm_raid_exit);
1458 
1459 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1460 MODULE_ALIAS("dm-raid1");
1461 MODULE_ALIAS("dm-raid10");
1462 MODULE_ALIAS("dm-raid4");
1463 MODULE_ALIAS("dm-raid5");
1464 MODULE_ALIAS("dm-raid6");
1465 MODULE_AUTHOR("Neil Brown <[email protected]>");
1466 MODULE_LICENSE("GPL");