Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-thin-metadata.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  * atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  * dev id, virtual block) -> block_time. Block time is a 64-bit
31  * field holding the time in the low 24 bits, and block in the top 48
32  * bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block. Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes. Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size). The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values. We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry. Which points to a
45  * bitmap block, and has some details about how many free entries there
46  * are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum). Then the rest
49  * of the block is pairs of bits. With the meaning being:
50  *
51  * 0 - ref count is 0
52  * 1 - ref count is 1
53  * 2 - ref count is 2
54  * 3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  * second btree that directly maps the block_address to a uint32_t ref
58  * count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree. Instead
61  * it has one single blocks worth of index_entries. This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert. With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back. Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /*
84  * 3 for btree insert +
85  * 2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88 
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91 
92 /*
93  * Little endian on-disk superblock and device details.
94  */
96  __le32 csum; /* Checksum of superblock except for this field. */
98  __le64 blocknr; /* This block number, dm_block_t. */
99 
100  __u8 uuid[16];
104 
106 
107  /*
108  * Root held by userspace transactions.
109  */
111 
114 
115  /*
116  * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117  */
119 
120  /*
121  * Device detail root mapping dev_id -> device_details
122  */
124 
125  __le32 data_block_size; /* In 512-byte sectors. */
126 
127  __le32 metadata_block_size; /* In 512-byte sectors. */
129 
133 } __packed;
134 
137  __le64 transaction_id; /* When created. */
140 } __packed;
141 
143  struct hlist_node hash;
144 
151 
152  /*
153  * Two-level btree.
154  * First level holds thin_dev_t.
155  * Second level holds mappings.
156  */
158 
159  /*
160  * Non-blocking version of the above.
161  */
163 
164  /*
165  * Just the top level for deleting whole devices.
166  */
168 
169  /*
170  * Just the bottom level for creating new devices.
171  */
173 
174  /*
175  * Describes the device details btree.
176  */
178 
185  unsigned long flags;
187  bool read_only:1;
188 
189  /*
190  * Set if a transaction has to be aborted but the attempt to roll back
191  * to the previous (good) transaction failed. The only pool metadata
192  * operation possible in this state is the closing of the device.
193  */
194  bool fail_io:1;
195 };
196 
198  struct list_head list;
201 
203  bool changed:1;
209 };
210 
211 /*----------------------------------------------------------------
212  * superblock validator
213  *--------------------------------------------------------------*/
214 
215 #define SUPERBLOCK_CSUM_XOR 160774
216 
217 static void sb_prepare_for_write(struct dm_block_validator *v,
218  struct dm_block *b,
219  size_t block_size)
220 {
221  struct thin_disk_superblock *disk_super = dm_block_data(b);
222 
223  disk_super->blocknr = cpu_to_le64(dm_block_location(b));
224  disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
225  block_size - sizeof(__le32),
227 }
228 
229 static int sb_check(struct dm_block_validator *v,
230  struct dm_block *b,
231  size_t block_size)
232 {
233  struct thin_disk_superblock *disk_super = dm_block_data(b);
234  __le32 csum_le;
235 
236  if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
237  DMERR("sb_check failed: blocknr %llu: "
238  "wanted %llu", le64_to_cpu(disk_super->blocknr),
239  (unsigned long long)dm_block_location(b));
240  return -ENOTBLK;
241  }
242 
243  if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
244  DMERR("sb_check failed: magic %llu: "
245  "wanted %llu", le64_to_cpu(disk_super->magic),
246  (unsigned long long)THIN_SUPERBLOCK_MAGIC);
247  return -EILSEQ;
248  }
249 
250  csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
251  block_size - sizeof(__le32),
253  if (csum_le != disk_super->csum) {
254  DMERR("sb_check failed: csum %u: wanted %u",
255  le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
256  return -EILSEQ;
257  }
258 
259  return 0;
260 }
261 
262 static struct dm_block_validator sb_validator = {
263  .name = "superblock",
264  .prepare_for_write = sb_prepare_for_write,
265  .check = sb_check
266 };
267 
268 /*----------------------------------------------------------------
269  * Methods for the btree value types
270  *--------------------------------------------------------------*/
271 
272 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
273 {
274  return (b << 24) | t;
275 }
276 
277 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
278 {
279  *b = v >> 24;
280  *t = v & ((1 << 24) - 1);
281 }
282 
283 static void data_block_inc(void *context, void *value_le)
284 {
285  struct dm_space_map *sm = context;
286  __le64 v_le;
287  uint64_t b;
288  uint32_t t;
289 
290  memcpy(&v_le, value_le, sizeof(v_le));
291  unpack_block_time(le64_to_cpu(v_le), &b, &t);
292  dm_sm_inc_block(sm, b);
293 }
294 
295 static void data_block_dec(void *context, void *value_le)
296 {
297  struct dm_space_map *sm = context;
298  __le64 v_le;
299  uint64_t b;
300  uint32_t t;
301 
302  memcpy(&v_le, value_le, sizeof(v_le));
303  unpack_block_time(le64_to_cpu(v_le), &b, &t);
304  dm_sm_dec_block(sm, b);
305 }
306 
307 static int data_block_equal(void *context, void *value1_le, void *value2_le)
308 {
309  __le64 v1_le, v2_le;
310  uint64_t b1, b2;
311  uint32_t t;
312 
313  memcpy(&v1_le, value1_le, sizeof(v1_le));
314  memcpy(&v2_le, value2_le, sizeof(v2_le));
315  unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
316  unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
317 
318  return b1 == b2;
319 }
320 
321 static void subtree_inc(void *context, void *value)
322 {
323  struct dm_btree_info *info = context;
324  __le64 root_le;
325  uint64_t root;
326 
327  memcpy(&root_le, value, sizeof(root_le));
328  root = le64_to_cpu(root_le);
329  dm_tm_inc(info->tm, root);
330 }
331 
332 static void subtree_dec(void *context, void *value)
333 {
334  struct dm_btree_info *info = context;
335  __le64 root_le;
336  uint64_t root;
337 
338  memcpy(&root_le, value, sizeof(root_le));
339  root = le64_to_cpu(root_le);
340  if (dm_btree_del(info, root))
341  DMERR("btree delete failed\n");
342 }
343 
344 static int subtree_equal(void *context, void *value1_le, void *value2_le)
345 {
346  __le64 v1_le, v2_le;
347  memcpy(&v1_le, value1_le, sizeof(v1_le));
348  memcpy(&v2_le, value2_le, sizeof(v2_le));
349 
350  return v1_le == v2_le;
351 }
352 
353 /*----------------------------------------------------------------*/
354 
355 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
356  struct dm_block **sblock)
357 {
359  &sb_validator, sblock);
360 }
361 
362 static int superblock_lock(struct dm_pool_metadata *pmd,
363  struct dm_block **sblock)
364 {
366  &sb_validator, sblock);
367 }
368 
369 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
370 {
371  int r;
372  unsigned i;
373  struct dm_block *b;
374  __le64 *data_le, zero = cpu_to_le64(0);
375  unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
376 
377  /*
378  * We can't use a validator here - it may be all zeroes.
379  */
381  if (r)
382  return r;
383 
384  data_le = dm_block_data(b);
385  *result = 1;
386  for (i = 0; i < block_size; i++) {
387  if (data_le[i] != zero) {
388  *result = 0;
389  break;
390  }
391  }
392 
393  return dm_bm_unlock(b);
394 }
395 
396 static void __setup_btree_details(struct dm_pool_metadata *pmd)
397 {
398  pmd->info.tm = pmd->tm;
399  pmd->info.levels = 2;
400  pmd->info.value_type.context = pmd->data_sm;
401  pmd->info.value_type.size = sizeof(__le64);
402  pmd->info.value_type.inc = data_block_inc;
403  pmd->info.value_type.dec = data_block_dec;
404  pmd->info.value_type.equal = data_block_equal;
405 
406  memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
407  pmd->nb_info.tm = pmd->nb_tm;
408 
409  pmd->tl_info.tm = pmd->tm;
410  pmd->tl_info.levels = 1;
411  pmd->tl_info.value_type.context = &pmd->info;
412  pmd->tl_info.value_type.size = sizeof(__le64);
413  pmd->tl_info.value_type.inc = subtree_inc;
414  pmd->tl_info.value_type.dec = subtree_dec;
415  pmd->tl_info.value_type.equal = subtree_equal;
416 
417  pmd->bl_info.tm = pmd->tm;
418  pmd->bl_info.levels = 1;
419  pmd->bl_info.value_type.context = pmd->data_sm;
420  pmd->bl_info.value_type.size = sizeof(__le64);
421  pmd->bl_info.value_type.inc = data_block_inc;
422  pmd->bl_info.value_type.dec = data_block_dec;
423  pmd->bl_info.value_type.equal = data_block_equal;
424 
425  pmd->details_info.tm = pmd->tm;
426  pmd->details_info.levels = 1;
427  pmd->details_info.value_type.context = NULL;
428  pmd->details_info.value_type.size = sizeof(struct disk_device_details);
429  pmd->details_info.value_type.inc = NULL;
430  pmd->details_info.value_type.dec = NULL;
431  pmd->details_info.value_type.equal = NULL;
432 }
433 
434 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
435 {
436  int r;
437  struct dm_block *sblock;
438  size_t metadata_len, data_len;
439  struct thin_disk_superblock *disk_super;
440  sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
441 
442  if (bdev_size > THIN_METADATA_MAX_SECTORS)
443  bdev_size = THIN_METADATA_MAX_SECTORS;
444 
445  r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
446  if (r < 0)
447  return r;
448 
449  r = dm_sm_root_size(pmd->data_sm, &data_len);
450  if (r < 0)
451  return r;
452 
453  r = dm_sm_commit(pmd->data_sm);
454  if (r < 0)
455  return r;
456 
457  r = dm_tm_pre_commit(pmd->tm);
458  if (r < 0)
459  return r;
460 
461  r = superblock_lock_zero(pmd, &sblock);
462  if (r)
463  return r;
464 
465  disk_super = dm_block_data(sblock);
466  disk_super->flags = 0;
467  memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
468  disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
469  disk_super->version = cpu_to_le32(THIN_VERSION);
470  disk_super->time = 0;
471  disk_super->trans_id = 0;
472  disk_super->held_root = 0;
473 
474  r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
475  metadata_len);
476  if (r < 0)
477  goto bad_locked;
478 
479  r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
480  data_len);
481  if (r < 0)
482  goto bad_locked;
483 
484  disk_super->data_mapping_root = cpu_to_le64(pmd->root);
485  disk_super->device_details_root = cpu_to_le64(pmd->details_root);
487  disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
488  disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
489 
490  return dm_tm_commit(pmd->tm, sblock);
491 
492 bad_locked:
493  dm_bm_unlock(sblock);
494  return r;
495 }
496 
497 static int __format_metadata(struct dm_pool_metadata *pmd)
498 {
499  int r;
500 
502  &pmd->tm, &pmd->metadata_sm);
503  if (r < 0) {
504  DMERR("tm_create_with_sm failed");
505  return r;
506  }
507 
508  pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
509  if (IS_ERR(pmd->data_sm)) {
510  DMERR("sm_disk_create failed");
511  r = PTR_ERR(pmd->data_sm);
512  goto bad_cleanup_tm;
513  }
514 
516  if (!pmd->nb_tm) {
517  DMERR("could not create non-blocking clone tm");
518  r = -ENOMEM;
519  goto bad_cleanup_data_sm;
520  }
521 
522  __setup_btree_details(pmd);
523 
524  r = dm_btree_empty(&pmd->info, &pmd->root);
525  if (r < 0)
526  goto bad_cleanup_nb_tm;
527 
528  r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
529  if (r < 0) {
530  DMERR("couldn't create devices root");
531  goto bad_cleanup_nb_tm;
532  }
533 
534  r = __write_initial_superblock(pmd);
535  if (r)
536  goto bad_cleanup_nb_tm;
537 
538  return 0;
539 
540 bad_cleanup_nb_tm:
541  dm_tm_destroy(pmd->nb_tm);
542 bad_cleanup_data_sm:
543  dm_sm_destroy(pmd->data_sm);
544 bad_cleanup_tm:
545  dm_tm_destroy(pmd->tm);
546  dm_sm_destroy(pmd->metadata_sm);
547 
548  return r;
549 }
550 
551 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
552  struct dm_pool_metadata *pmd)
553 {
555 
556  features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
557  if (features) {
558  DMERR("could not access metadata due to unsupported optional features (%lx).",
559  (unsigned long)features);
560  return -EINVAL;
561  }
562 
563  /*
564  * Check for read-only metadata to skip the following RDWR checks.
565  */
566  if (get_disk_ro(pmd->bdev->bd_disk))
567  return 0;
568 
569  features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
570  if (features) {
571  DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
572  (unsigned long)features);
573  return -EINVAL;
574  }
575 
576  return 0;
577 }
578 
579 static int __open_metadata(struct dm_pool_metadata *pmd)
580 {
581  int r;
582  struct dm_block *sblock;
583  struct thin_disk_superblock *disk_super;
584 
586  &sb_validator, &sblock);
587  if (r < 0) {
588  DMERR("couldn't read superblock");
589  return r;
590  }
591 
592  disk_super = dm_block_data(sblock);
593 
594  r = __check_incompat_features(disk_super, pmd);
595  if (r < 0)
596  goto bad_unlock_sblock;
597 
599  disk_super->metadata_space_map_root,
600  sizeof(disk_super->metadata_space_map_root),
601  &pmd->tm, &pmd->metadata_sm);
602  if (r < 0) {
603  DMERR("tm_open_with_sm failed");
604  goto bad_unlock_sblock;
605  }
606 
607  pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
608  sizeof(disk_super->data_space_map_root));
609  if (IS_ERR(pmd->data_sm)) {
610  DMERR("sm_disk_open failed");
611  r = PTR_ERR(pmd->data_sm);
612  goto bad_cleanup_tm;
613  }
614 
616  if (!pmd->nb_tm) {
617  DMERR("could not create non-blocking clone tm");
618  r = -ENOMEM;
619  goto bad_cleanup_data_sm;
620  }
621 
622  __setup_btree_details(pmd);
623  return dm_bm_unlock(sblock);
624 
625 bad_cleanup_data_sm:
626  dm_sm_destroy(pmd->data_sm);
627 bad_cleanup_tm:
628  dm_tm_destroy(pmd->tm);
629  dm_sm_destroy(pmd->metadata_sm);
630 bad_unlock_sblock:
631  dm_bm_unlock(sblock);
632 
633  return r;
634 }
635 
636 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
637 {
638  int r, unformatted;
639 
640  r = __superblock_all_zeroes(pmd->bm, &unformatted);
641  if (r)
642  return r;
643 
644  if (unformatted)
645  return format_device ? __format_metadata(pmd) : -EPERM;
646 
647  return __open_metadata(pmd);
648 }
649 
650 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
651 {
652  int r;
653 
657  if (IS_ERR(pmd->bm)) {
658  DMERR("could not create block manager");
659  return PTR_ERR(pmd->bm);
660  }
661 
662  r = __open_or_format_metadata(pmd, format_device);
663  if (r)
665 
666  return r;
667 }
668 
669 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
670 {
671  dm_sm_destroy(pmd->data_sm);
672  dm_sm_destroy(pmd->metadata_sm);
673  dm_tm_destroy(pmd->nb_tm);
674  dm_tm_destroy(pmd->tm);
676 }
677 
678 static int __begin_transaction(struct dm_pool_metadata *pmd)
679 {
680  int r;
681  struct thin_disk_superblock *disk_super;
682  struct dm_block *sblock;
683 
684  /*
685  * We re-read the superblock every time. Shouldn't need to do this
686  * really.
687  */
689  &sb_validator, &sblock);
690  if (r)
691  return r;
692 
693  disk_super = dm_block_data(sblock);
694  pmd->time = le32_to_cpu(disk_super->time);
695  pmd->root = le64_to_cpu(disk_super->data_mapping_root);
696  pmd->details_root = le64_to_cpu(disk_super->device_details_root);
697  pmd->trans_id = le64_to_cpu(disk_super->trans_id);
698  pmd->flags = le32_to_cpu(disk_super->flags);
699  pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
700 
701  dm_bm_unlock(sblock);
702  return 0;
703 }
704 
705 static int __write_changed_details(struct dm_pool_metadata *pmd)
706 {
707  int r;
708  struct dm_thin_device *td, *tmp;
709  struct disk_device_details details;
710  uint64_t key;
711 
712  list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
713  if (!td->changed)
714  continue;
715 
716  key = td->id;
717 
718  details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
719  details.transaction_id = cpu_to_le64(td->transaction_id);
720  details.creation_time = cpu_to_le32(td->creation_time);
721  details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
722  __dm_bless_for_disk(&details);
723 
724  r = dm_btree_insert(&pmd->details_info, pmd->details_root,
725  &key, &details, &pmd->details_root);
726  if (r)
727  return r;
728 
729  if (td->open_count)
730  td->changed = 0;
731  else {
732  list_del(&td->list);
733  kfree(td);
734  }
735  }
736 
737  return 0;
738 }
739 
740 static int __commit_transaction(struct dm_pool_metadata *pmd)
741 {
742  int r;
743  size_t metadata_len, data_len;
744  struct thin_disk_superblock *disk_super;
745  struct dm_block *sblock;
746 
747  /*
748  * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
749  */
750  BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
751 
752  r = __write_changed_details(pmd);
753  if (r < 0)
754  return r;
755 
756  r = dm_sm_commit(pmd->data_sm);
757  if (r < 0)
758  return r;
759 
760  r = dm_tm_pre_commit(pmd->tm);
761  if (r < 0)
762  return r;
763 
764  r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
765  if (r < 0)
766  return r;
767 
768  r = dm_sm_root_size(pmd->data_sm, &data_len);
769  if (r < 0)
770  return r;
771 
772  r = superblock_lock(pmd, &sblock);
773  if (r)
774  return r;
775 
776  disk_super = dm_block_data(sblock);
777  disk_super->time = cpu_to_le32(pmd->time);
778  disk_super->data_mapping_root = cpu_to_le64(pmd->root);
779  disk_super->device_details_root = cpu_to_le64(pmd->details_root);
780  disk_super->trans_id = cpu_to_le64(pmd->trans_id);
781  disk_super->flags = cpu_to_le32(pmd->flags);
782 
783  r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
784  metadata_len);
785  if (r < 0)
786  goto out_locked;
787 
788  r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
789  data_len);
790  if (r < 0)
791  goto out_locked;
792 
793  return dm_tm_commit(pmd->tm, sblock);
794 
795 out_locked:
796  dm_bm_unlock(sblock);
797  return r;
798 }
799 
802  bool format_device)
803 {
804  int r;
805  struct dm_pool_metadata *pmd;
806 
807  pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
808  if (!pmd) {
809  DMERR("could not allocate metadata struct");
810  return ERR_PTR(-ENOMEM);
811  }
812 
813  init_rwsem(&pmd->root_lock);
814  pmd->time = 0;
815  INIT_LIST_HEAD(&pmd->thin_devices);
816  pmd->read_only = false;
817  pmd->fail_io = false;
818  pmd->bdev = bdev;
820 
821  r = __create_persistent_data_objects(pmd, format_device);
822  if (r) {
823  kfree(pmd);
824  return ERR_PTR(r);
825  }
826 
827  r = __begin_transaction(pmd);
828  if (r < 0) {
829  if (dm_pool_metadata_close(pmd) < 0)
830  DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
831  return ERR_PTR(r);
832  }
833 
834  return pmd;
835 }
836 
838 {
839  int r;
840  unsigned open_devices = 0;
841  struct dm_thin_device *td, *tmp;
842 
843  down_read(&pmd->root_lock);
844  list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
845  if (td->open_count)
846  open_devices++;
847  else {
848  list_del(&td->list);
849  kfree(td);
850  }
851  }
852  up_read(&pmd->root_lock);
853 
854  if (open_devices) {
855  DMERR("attempt to close pmd when %u device(s) are still open",
856  open_devices);
857  return -EBUSY;
858  }
859 
860  if (!pmd->read_only && !pmd->fail_io) {
861  r = __commit_transaction(pmd);
862  if (r < 0)
863  DMWARN("%s: __commit_transaction() failed, error = %d",
864  __func__, r);
865  }
866 
867  if (!pmd->fail_io)
868  __destroy_persistent_data_objects(pmd);
869 
870  kfree(pmd);
871  return 0;
872 }
873 
874 /*
875  * __open_device: Returns @td corresponding to device with id @dev,
876  * creating it if @create is set and incrementing @td->open_count.
877  * On failure, @td is undefined.
878  */
879 static int __open_device(struct dm_pool_metadata *pmd,
880  dm_thin_id dev, int create,
881  struct dm_thin_device **td)
882 {
883  int r, changed = 0;
884  struct dm_thin_device *td2;
885  uint64_t key = dev;
886  struct disk_device_details details_le;
887 
888  /*
889  * If the device is already open, return it.
890  */
892  if (td2->id == dev) {
893  /*
894  * May not create an already-open device.
895  */
896  if (create)
897  return -EEXIST;
898 
899  td2->open_count++;
900  *td = td2;
901  return 0;
902  }
903 
904  /*
905  * Check the device exists.
906  */
907  r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
908  &key, &details_le);
909  if (r) {
910  if (r != -ENODATA || !create)
911  return r;
912 
913  /*
914  * Create new device.
915  */
916  changed = 1;
917  details_le.mapped_blocks = 0;
918  details_le.transaction_id = cpu_to_le64(pmd->trans_id);
919  details_le.creation_time = cpu_to_le32(pmd->time);
920  details_le.snapshotted_time = cpu_to_le32(pmd->time);
921  }
922 
923  *td = kmalloc(sizeof(**td), GFP_NOIO);
924  if (!*td)
925  return -ENOMEM;
926 
927  (*td)->pmd = pmd;
928  (*td)->id = dev;
929  (*td)->open_count = 1;
930  (*td)->changed = changed;
931  (*td)->aborted_with_changes = false;
932  (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
933  (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
934  (*td)->creation_time = le32_to_cpu(details_le.creation_time);
935  (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
936 
937  list_add(&(*td)->list, &pmd->thin_devices);
938 
939  return 0;
940 }
941 
942 static void __close_device(struct dm_thin_device *td)
943 {
944  --td->open_count;
945 }
946 
947 static int __create_thin(struct dm_pool_metadata *pmd,
948  dm_thin_id dev)
949 {
950  int r;
952  uint64_t key = dev;
953  struct disk_device_details details_le;
954  struct dm_thin_device *td;
955  __le64 value;
956 
957  r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
958  &key, &details_le);
959  if (!r)
960  return -EEXIST;
961 
962  /*
963  * Create an empty btree for the mappings.
964  */
965  r = dm_btree_empty(&pmd->bl_info, &dev_root);
966  if (r)
967  return r;
968 
969  /*
970  * Insert it into the main mapping tree.
971  */
972  value = cpu_to_le64(dev_root);
973  __dm_bless_for_disk(&value);
974  r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
975  if (r) {
976  dm_btree_del(&pmd->bl_info, dev_root);
977  return r;
978  }
979 
980  r = __open_device(pmd, dev, 1, &td);
981  if (r) {
982  dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
983  dm_btree_del(&pmd->bl_info, dev_root);
984  return r;
985  }
986  __close_device(td);
987 
988  return r;
989 }
990 
992 {
993  int r = -EINVAL;
994 
995  down_write(&pmd->root_lock);
996  if (!pmd->fail_io)
997  r = __create_thin(pmd, dev);
998  up_write(&pmd->root_lock);
999 
1000  return r;
1001 }
1002 
1003 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1004  struct dm_thin_device *snap,
1006 {
1007  int r;
1008  struct dm_thin_device *td;
1009 
1010  r = __open_device(pmd, origin, 0, &td);
1011  if (r)
1012  return r;
1013 
1014  td->changed = 1;
1015  td->snapshotted_time = time;
1016 
1017  snap->mapped_blocks = td->mapped_blocks;
1018  snap->snapshotted_time = time;
1019  __close_device(td);
1020 
1021  return 0;
1022 }
1023 
1024 static int __create_snap(struct dm_pool_metadata *pmd,
1025  dm_thin_id dev, dm_thin_id origin)
1026 {
1027  int r;
1028  dm_block_t origin_root;
1029  uint64_t key = origin, dev_key = dev;
1030  struct dm_thin_device *td;
1031  struct disk_device_details details_le;
1032  __le64 value;
1033 
1034  /* check this device is unused */
1035  r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1036  &dev_key, &details_le);
1037  if (!r)
1038  return -EEXIST;
1039 
1040  /* find the mapping tree for the origin */
1041  r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1042  if (r)
1043  return r;
1044  origin_root = le64_to_cpu(value);
1045 
1046  /* clone the origin, an inc will do */
1047  dm_tm_inc(pmd->tm, origin_root);
1048 
1049  /* insert into the main mapping tree */
1050  value = cpu_to_le64(origin_root);
1051  __dm_bless_for_disk(&value);
1052  key = dev;
1053  r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1054  if (r) {
1055  dm_tm_dec(pmd->tm, origin_root);
1056  return r;
1057  }
1058 
1059  pmd->time++;
1060 
1061  r = __open_device(pmd, dev, 1, &td);
1062  if (r)
1063  goto bad;
1064 
1065  r = __set_snapshot_details(pmd, td, origin, pmd->time);
1066  __close_device(td);
1067 
1068  if (r)
1069  goto bad;
1070 
1071  return 0;
1072 
1073 bad:
1074  dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1076  &key, &pmd->details_root);
1077  return r;
1078 }
1079 
1081  dm_thin_id dev,
1082  dm_thin_id origin)
1083 {
1084  int r = -EINVAL;
1085 
1086  down_write(&pmd->root_lock);
1087  if (!pmd->fail_io)
1088  r = __create_snap(pmd, dev, origin);
1089  up_write(&pmd->root_lock);
1090 
1091  return r;
1092 }
1093 
1094 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1095 {
1096  int r;
1097  uint64_t key = dev;
1098  struct dm_thin_device *td;
1099 
1100  /* TODO: failure should mark the transaction invalid */
1101  r = __open_device(pmd, dev, 0, &td);
1102  if (r)
1103  return r;
1104 
1105  if (td->open_count > 1) {
1106  __close_device(td);
1107  return -EBUSY;
1108  }
1109 
1110  list_del(&td->list);
1111  kfree(td);
1112  r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1113  &key, &pmd->details_root);
1114  if (r)
1115  return r;
1116 
1117  r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1118  if (r)
1119  return r;
1120 
1121  return 0;
1122 }
1123 
1125  dm_thin_id dev)
1126 {
1127  int r = -EINVAL;
1128 
1129  down_write(&pmd->root_lock);
1130  if (!pmd->fail_io)
1131  r = __delete_device(pmd, dev);
1132  up_write(&pmd->root_lock);
1133 
1134  return r;
1135 }
1136 
1138  uint64_t current_id,
1139  uint64_t new_id)
1140 {
1141  int r = -EINVAL;
1142 
1143  down_write(&pmd->root_lock);
1144 
1145  if (pmd->fail_io)
1146  goto out;
1147 
1148  if (pmd->trans_id != current_id) {
1149  DMERR("mismatched transaction id");
1150  goto out;
1151  }
1152 
1153  pmd->trans_id = new_id;
1154  r = 0;
1155 
1156 out:
1157  up_write(&pmd->root_lock);
1158 
1159  return r;
1160 }
1161 
1163  uint64_t *result)
1164 {
1165  int r = -EINVAL;
1166 
1167  down_read(&pmd->root_lock);
1168  if (!pmd->fail_io) {
1169  *result = pmd->trans_id;
1170  r = 0;
1171  }
1172  up_read(&pmd->root_lock);
1173 
1174  return r;
1175 }
1176 
1177 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1178 {
1179  int r, inc;
1180  struct thin_disk_superblock *disk_super;
1181  struct dm_block *copy, *sblock;
1182  dm_block_t held_root;
1183 
1184  /*
1185  * Copy the superblock.
1186  */
1187  dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1189  &sb_validator, &copy, &inc);
1190  if (r)
1191  return r;
1192 
1193  BUG_ON(!inc);
1194 
1195  held_root = dm_block_location(copy);
1196  disk_super = dm_block_data(copy);
1197 
1198  if (le64_to_cpu(disk_super->held_root)) {
1199  DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1200 
1201  dm_tm_dec(pmd->tm, held_root);
1202  dm_tm_unlock(pmd->tm, copy);
1203  return -EBUSY;
1204  }
1205 
1206  /*
1207  * Wipe the spacemap since we're not publishing this.
1208  */
1209  memset(&disk_super->data_space_map_root, 0,
1210  sizeof(disk_super->data_space_map_root));
1211  memset(&disk_super->metadata_space_map_root, 0,
1212  sizeof(disk_super->metadata_space_map_root));
1213 
1214  /*
1215  * Increment the data structures that need to be preserved.
1216  */
1217  dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1218  dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1219  dm_tm_unlock(pmd->tm, copy);
1220 
1221  /*
1222  * Write the held root into the superblock.
1223  */
1224  r = superblock_lock(pmd, &sblock);
1225  if (r) {
1226  dm_tm_dec(pmd->tm, held_root);
1227  return r;
1228  }
1229 
1230  disk_super = dm_block_data(sblock);
1231  disk_super->held_root = cpu_to_le64(held_root);
1232  dm_bm_unlock(sblock);
1233  return 0;
1234 }
1235 
1237 {
1238  int r = -EINVAL;
1239 
1240  down_write(&pmd->root_lock);
1241  if (!pmd->fail_io)
1242  r = __reserve_metadata_snap(pmd);
1243  up_write(&pmd->root_lock);
1244 
1245  return r;
1246 }
1247 
1248 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1249 {
1250  int r;
1251  struct thin_disk_superblock *disk_super;
1252  struct dm_block *sblock, *copy;
1253  dm_block_t held_root;
1254 
1255  r = superblock_lock(pmd, &sblock);
1256  if (r)
1257  return r;
1258 
1259  disk_super = dm_block_data(sblock);
1260  held_root = le64_to_cpu(disk_super->held_root);
1261  disk_super->held_root = cpu_to_le64(0);
1262 
1263  dm_bm_unlock(sblock);
1264 
1265  if (!held_root) {
1266  DMWARN("No pool metadata snapshot found: nothing to release.");
1267  return -EINVAL;
1268  }
1269 
1270  r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1271  if (r)
1272  return r;
1273 
1274  disk_super = dm_block_data(copy);
1275  dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1276  dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1277  dm_sm_dec_block(pmd->metadata_sm, held_root);
1278 
1279  return dm_tm_unlock(pmd->tm, copy);
1280 }
1281 
1283 {
1284  int r = -EINVAL;
1285 
1286  down_write(&pmd->root_lock);
1287  if (!pmd->fail_io)
1288  r = __release_metadata_snap(pmd);
1289  up_write(&pmd->root_lock);
1290 
1291  return r;
1292 }
1293 
1294 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1295  dm_block_t *result)
1296 {
1297  int r;
1298  struct thin_disk_superblock *disk_super;
1299  struct dm_block *sblock;
1300 
1302  &sb_validator, &sblock);
1303  if (r)
1304  return r;
1305 
1306  disk_super = dm_block_data(sblock);
1307  *result = le64_to_cpu(disk_super->held_root);
1308 
1309  return dm_bm_unlock(sblock);
1310 }
1311 
1313  dm_block_t *result)
1314 {
1315  int r = -EINVAL;
1316 
1317  down_read(&pmd->root_lock);
1318  if (!pmd->fail_io)
1319  r = __get_metadata_snap(pmd, result);
1320  up_read(&pmd->root_lock);
1321 
1322  return r;
1323 }
1324 
1326  struct dm_thin_device **td)
1327 {
1328  int r = -EINVAL;
1329 
1330  down_write(&pmd->root_lock);
1331  if (!pmd->fail_io)
1332  r = __open_device(pmd, dev, 0, td);
1333  up_write(&pmd->root_lock);
1334 
1335  return r;
1336 }
1337 
1339 {
1340  down_write(&td->pmd->root_lock);
1341  __close_device(td);
1342  up_write(&td->pmd->root_lock);
1343 
1344  return 0;
1345 }
1346 
1348 {
1349  return td->id;
1350 }
1351 
1352 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1353 {
1354  return td->snapshotted_time > time;
1355 }
1356 
1358  int can_block, struct dm_thin_lookup_result *result)
1359 {
1360  int r = -EINVAL;
1361  uint64_t block_time = 0;
1362  __le64 value;
1363  struct dm_pool_metadata *pmd = td->pmd;
1364  dm_block_t keys[2] = { td->id, block };
1365  struct dm_btree_info *info;
1366 
1367  if (can_block) {
1368  down_read(&pmd->root_lock);
1369  info = &pmd->info;
1370  } else if (down_read_trylock(&pmd->root_lock))
1371  info = &pmd->nb_info;
1372  else
1373  return -EWOULDBLOCK;
1374 
1375  if (pmd->fail_io)
1376  goto out;
1377 
1378  r = dm_btree_lookup(info, pmd->root, keys, &value);
1379  if (!r)
1380  block_time = le64_to_cpu(value);
1381 
1382 out:
1383  up_read(&pmd->root_lock);
1384 
1385  if (!r) {
1386  dm_block_t exception_block;
1387  uint32_t exception_time;
1388  unpack_block_time(block_time, &exception_block,
1389  &exception_time);
1390  result->block = exception_block;
1391  result->shared = __snapshotted_since(td, exception_time);
1392  }
1393 
1394  return r;
1395 }
1396 
1397 static int __insert(struct dm_thin_device *td, dm_block_t block,
1398  dm_block_t data_block)
1399 {
1400  int r, inserted;
1401  __le64 value;
1402  struct dm_pool_metadata *pmd = td->pmd;
1403  dm_block_t keys[2] = { td->id, block };
1404 
1405  value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1406  __dm_bless_for_disk(&value);
1407 
1408  r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1409  &pmd->root, &inserted);
1410  if (r)
1411  return r;
1412 
1413  td->changed = 1;
1414  if (inserted)
1415  td->mapped_blocks++;
1416 
1417  return 0;
1418 }
1419 
1421  dm_block_t data_block)
1422 {
1423  int r = -EINVAL;
1424 
1425  down_write(&td->pmd->root_lock);
1426  if (!td->pmd->fail_io)
1427  r = __insert(td, block, data_block);
1428  up_write(&td->pmd->root_lock);
1429 
1430  return r;
1431 }
1432 
1433 static int __remove(struct dm_thin_device *td, dm_block_t block)
1434 {
1435  int r;
1436  struct dm_pool_metadata *pmd = td->pmd;
1437  dm_block_t keys[2] = { td->id, block };
1438 
1439  r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1440  if (r)
1441  return r;
1442 
1443  td->mapped_blocks--;
1444  td->changed = 1;
1445 
1446  return 0;
1447 }
1448 
1450 {
1451  int r = -EINVAL;
1452 
1453  down_write(&td->pmd->root_lock);
1454  if (!td->pmd->fail_io)
1455  r = __remove(td, block);
1456  up_write(&td->pmd->root_lock);
1457 
1458  return r;
1459 }
1460 
1462 {
1463  int r;
1464 
1465  down_read(&td->pmd->root_lock);
1466  r = td->changed;
1467  up_read(&td->pmd->root_lock);
1468 
1469  return r;
1470 }
1471 
1473 {
1474  bool r;
1475 
1476  down_read(&td->pmd->root_lock);
1477  r = td->aborted_with_changes;
1478  up_read(&td->pmd->root_lock);
1479 
1480  return r;
1481 }
1482 
1484 {
1485  int r = -EINVAL;
1486 
1487  down_write(&pmd->root_lock);
1488  if (!pmd->fail_io)
1489  r = dm_sm_new_block(pmd->data_sm, result);
1490  up_write(&pmd->root_lock);
1491 
1492  return r;
1493 }
1494 
1496 {
1497  int r = -EINVAL;
1498 
1499  down_write(&pmd->root_lock);
1500  if (pmd->fail_io)
1501  goto out;
1502 
1503  r = __commit_transaction(pmd);
1504  if (r <= 0)
1505  goto out;
1506 
1507  /*
1508  * Open the next transaction.
1509  */
1510  r = __begin_transaction(pmd);
1511 out:
1512  up_write(&pmd->root_lock);
1513  return r;
1514 }
1515 
1516 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1517 {
1518  struct dm_thin_device *td;
1519 
1521  td->aborted_with_changes = td->changed;
1522 }
1523 
1525 {
1526  int r = -EINVAL;
1527 
1528  down_write(&pmd->root_lock);
1529  if (pmd->fail_io)
1530  goto out;
1531 
1532  __set_abort_with_changes_flags(pmd);
1533  __destroy_persistent_data_objects(pmd);
1534  r = __create_persistent_data_objects(pmd, false);
1535  if (r)
1536  pmd->fail_io = true;
1537 
1538 out:
1539  up_write(&pmd->root_lock);
1540 
1541  return r;
1542 }
1543 
1545 {
1546  int r = -EINVAL;
1547 
1548  down_read(&pmd->root_lock);
1549  if (!pmd->fail_io)
1550  r = dm_sm_get_nr_free(pmd->data_sm, result);
1551  up_read(&pmd->root_lock);
1552 
1553  return r;
1554 }
1555 
1557  dm_block_t *result)
1558 {
1559  int r = -EINVAL;
1560 
1561  down_read(&pmd->root_lock);
1562  if (!pmd->fail_io)
1563  r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1564  up_read(&pmd->root_lock);
1565 
1566  return r;
1567 }
1568 
1570  dm_block_t *result)
1571 {
1572  int r = -EINVAL;
1573 
1574  down_read(&pmd->root_lock);
1575  if (!pmd->fail_io)
1576  r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1577  up_read(&pmd->root_lock);
1578 
1579  return r;
1580 }
1581 
1583 {
1584  down_read(&pmd->root_lock);
1585  *result = pmd->data_block_size;
1586  up_read(&pmd->root_lock);
1587 
1588  return 0;
1589 }
1590 
1592 {
1593  int r = -EINVAL;
1594 
1595  down_read(&pmd->root_lock);
1596  if (!pmd->fail_io)
1597  r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1598  up_read(&pmd->root_lock);
1599 
1600  return r;
1601 }
1602 
1604 {
1605  int r = -EINVAL;
1606  struct dm_pool_metadata *pmd = td->pmd;
1607 
1608  down_read(&pmd->root_lock);
1609  if (!pmd->fail_io) {
1610  *result = td->mapped_blocks;
1611  r = 0;
1612  }
1613  up_read(&pmd->root_lock);
1614 
1615  return r;
1616 }
1617 
1618 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1619 {
1620  int r;
1621  __le64 value_le;
1622  dm_block_t thin_root;
1623  struct dm_pool_metadata *pmd = td->pmd;
1624 
1625  r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1626  if (r)
1627  return r;
1628 
1629  thin_root = le64_to_cpu(value_le);
1630 
1631  return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1632 }
1633 
1635  dm_block_t *result)
1636 {
1637  int r = -EINVAL;
1638  struct dm_pool_metadata *pmd = td->pmd;
1639 
1640  down_read(&pmd->root_lock);
1641  if (!pmd->fail_io)
1642  r = __highest_block(td, result);
1643  up_read(&pmd->root_lock);
1644 
1645  return r;
1646 }
1647 
1648 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1649 {
1650  int r;
1651  dm_block_t old_count;
1652 
1653  r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1654  if (r)
1655  return r;
1656 
1657  if (new_count == old_count)
1658  return 0;
1659 
1660  if (new_count < old_count) {
1661  DMERR("cannot reduce size of data device");
1662  return -EINVAL;
1663  }
1664 
1665  return dm_sm_extend(pmd->data_sm, new_count - old_count);
1666 }
1667 
1669 {
1670  int r = -EINVAL;
1671 
1672  down_write(&pmd->root_lock);
1673  if (!pmd->fail_io)
1674  r = __resize_data_dev(pmd, new_count);
1675  up_write(&pmd->root_lock);
1676 
1677  return r;
1678 }
1679 
1681 {
1682  down_write(&pmd->root_lock);
1683  pmd->read_only = true;
1684  dm_bm_set_read_only(pmd->bm);
1685  up_write(&pmd->root_lock);
1686 }