Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memory.c
Go to the documentation of this file.
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <[email protected]>
5  * Dave Hansen <[email protected]>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME "memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37  return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41  .name = MEMORY_CLASS_NAME,
42  .dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
48 {
49  return blocking_notifier_chain_register(&memory_chain, nb);
50 }
52 
54 {
55  blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
62 {
63  return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
66 
68 {
69  atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
72 
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
77 int register_memory(struct memory_block *memory)
78 {
79  int error;
80 
81  memory->dev.bus = &memory_subsys;
82  memory->dev.id = memory->start_section_nr / sections_per_block;
83 
84  error = device_register(&memory->dev);
85  return error;
86 }
87 
88 static void
89 unregister_memory(struct memory_block *memory)
90 {
91  BUG_ON(memory->dev.bus != &memory_subsys);
92 
93  /* drop the ref. we got in remove_memory_block() */
94  kobject_put(&memory->dev.kobj);
95  device_unregister(&memory->dev);
96 }
97 
98 unsigned long __weak memory_block_size_bytes(void)
99 {
100  return MIN_MEMORY_BLOCK_SIZE;
101 }
102 
103 static unsigned long get_memory_block_size(void)
104 {
105  unsigned long block_sz;
106 
107  block_sz = memory_block_size_bytes();
108 
109  /* Validate blk_sz is a power of 2 and not less than section size */
110  if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111  WARN_ON(1);
112  block_sz = MIN_MEMORY_BLOCK_SIZE;
113  }
114 
115  return block_sz;
116 }
117 
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122 
123 static ssize_t show_mem_start_phys_index(struct device *dev,
124  struct device_attribute *attr, char *buf)
125 {
126  struct memory_block *mem =
127  container_of(dev, struct memory_block, dev);
128  unsigned long phys_index;
129 
130  phys_index = mem->start_section_nr / sections_per_block;
131  return sprintf(buf, "%08lx\n", phys_index);
132 }
133 
134 static ssize_t show_mem_end_phys_index(struct device *dev,
135  struct device_attribute *attr, char *buf)
136 {
137  struct memory_block *mem =
138  container_of(dev, struct memory_block, dev);
139  unsigned long phys_index;
140 
141  phys_index = mem->end_section_nr / sections_per_block;
142  return sprintf(buf, "%08lx\n", phys_index);
143 }
144 
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
148 static ssize_t show_mem_removable(struct device *dev,
149  struct device_attribute *attr, char *buf)
150 {
151  unsigned long i, pfn;
152  int ret = 1;
153  struct memory_block *mem =
154  container_of(dev, struct memory_block, dev);
155 
156  for (i = 0; i < sections_per_block; i++) {
157  pfn = section_nr_to_pfn(mem->start_section_nr + i);
158  ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159  }
160 
161  return sprintf(buf, "%d\n", ret);
162 }
163 
164 /*
165  * online, offline, going offline, etc.
166  */
167 static ssize_t show_mem_state(struct device *dev,
168  struct device_attribute *attr, char *buf)
169 {
170  struct memory_block *mem =
171  container_of(dev, struct memory_block, dev);
172  ssize_t len = 0;
173 
174  /*
175  * We can probably put these states in a nice little array
176  * so that they're not open-coded
177  */
178  switch (mem->state) {
179  case MEM_ONLINE:
180  len = sprintf(buf, "online\n");
181  break;
182  case MEM_OFFLINE:
183  len = sprintf(buf, "offline\n");
184  break;
185  case MEM_GOING_OFFLINE:
186  len = sprintf(buf, "going-offline\n");
187  break;
188  default:
189  len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190  mem->state);
191  WARN_ON(1);
192  break;
193  }
194 
195  return len;
196 }
197 
198 int memory_notify(unsigned long val, void *v)
199 {
200  return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202 
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205  return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207 
208 /*
209  * The probe routines leave the pages reserved, just as the bootmem code does.
210  * Make sure they're still that way.
211  */
212 static bool pages_correctly_reserved(unsigned long start_pfn,
213  unsigned long nr_pages)
214 {
215  int i, j;
216  struct page *page;
217  unsigned long pfn = start_pfn;
218 
219  /*
220  * memmap between sections is not contiguous except with
221  * SPARSEMEM_VMEMMAP. We lookup the page once per section
222  * and assume memmap is contiguous within each section
223  */
224  for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225  if (WARN_ON_ONCE(!pfn_valid(pfn)))
226  return false;
227  page = pfn_to_page(pfn);
228 
229  for (j = 0; j < PAGES_PER_SECTION; j++) {
230  if (PageReserved(page + j))
231  continue;
232 
233  printk(KERN_WARNING "section number %ld page number %d "
234  "not reserved, was it already online?\n",
235  pfn_to_section_nr(pfn), j);
236 
237  return false;
238  }
239  }
240 
241  return true;
242 }
243 
244 /*
245  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246  * OK to have direct references to sparsemem variables in here.
247  */
248 static int
249 memory_block_action(unsigned long phys_index, unsigned long action)
250 {
251  unsigned long start_pfn;
252  unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253  struct page *first_page;
254  int ret;
255 
256  first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257  start_pfn = page_to_pfn(first_page);
258 
259  switch (action) {
260  case MEM_ONLINE:
261  if (!pages_correctly_reserved(start_pfn, nr_pages))
262  return -EBUSY;
263 
264  ret = online_pages(start_pfn, nr_pages);
265  break;
266  case MEM_OFFLINE:
267  ret = offline_pages(start_pfn, nr_pages);
268  break;
269  default:
270  WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
271  "%ld\n", __func__, phys_index, action, action);
272  ret = -EINVAL;
273  }
274 
275  return ret;
276 }
277 
278 static int __memory_block_change_state(struct memory_block *mem,
279  unsigned long to_state, unsigned long from_state_req)
280 {
281  int ret = 0;
282 
283  if (mem->state != from_state_req) {
284  ret = -EINVAL;
285  goto out;
286  }
287 
288  if (to_state == MEM_OFFLINE)
289  mem->state = MEM_GOING_OFFLINE;
290 
291  ret = memory_block_action(mem->start_section_nr, to_state);
292 
293  if (ret) {
294  mem->state = from_state_req;
295  goto out;
296  }
297 
298  mem->state = to_state;
299  switch (mem->state) {
300  case MEM_OFFLINE:
301  kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
302  break;
303  case MEM_ONLINE:
304  kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
305  break;
306  default:
307  break;
308  }
309 out:
310  return ret;
311 }
312 
313 static int memory_block_change_state(struct memory_block *mem,
314  unsigned long to_state, unsigned long from_state_req)
315 {
316  int ret;
317 
318  mutex_lock(&mem->state_mutex);
319  ret = __memory_block_change_state(mem, to_state, from_state_req);
320  mutex_unlock(&mem->state_mutex);
321 
322  return ret;
323 }
324 static ssize_t
325 store_mem_state(struct device *dev,
326  struct device_attribute *attr, const char *buf, size_t count)
327 {
328  struct memory_block *mem;
329  int ret = -EINVAL;
330 
331  mem = container_of(dev, struct memory_block, dev);
332 
333  if (!strncmp(buf, "online", min((int)count, 6)))
334  ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
335  else if(!strncmp(buf, "offline", min((int)count, 7)))
336  ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
337 
338  if (ret)
339  return ret;
340  return count;
341 }
342 
343 /*
344  * phys_device is a bad name for this. What I really want
345  * is a way to differentiate between memory ranges that
346  * are part of physical devices that constitute
347  * a complete removable unit or fru.
348  * i.e. do these ranges belong to the same physical device,
349  * s.t. if I offline all of these sections I can then
350  * remove the physical device?
351  */
352 static ssize_t show_phys_device(struct device *dev,
353  struct device_attribute *attr, char *buf)
354 {
355  struct memory_block *mem =
356  container_of(dev, struct memory_block, dev);
357  return sprintf(buf, "%d\n", mem->phys_device);
358 }
359 
360 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
361 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
362 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
363 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
364 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
365 
366 #define mem_create_simple_file(mem, attr_name) \
367  device_create_file(&mem->dev, &dev_attr_##attr_name)
368 #define mem_remove_simple_file(mem, attr_name) \
369  device_remove_file(&mem->dev, &dev_attr_##attr_name)
370 
371 /*
372  * Block size attribute stuff
373  */
374 static ssize_t
375 print_block_size(struct device *dev, struct device_attribute *attr,
376  char *buf)
377 {
378  return sprintf(buf, "%lx\n", get_memory_block_size());
379 }
380 
381 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
382 
383 static int block_size_init(void)
384 {
385  return device_create_file(memory_subsys.dev_root,
386  &dev_attr_block_size_bytes);
387 }
388 
389 /*
390  * Some architectures will have custom drivers to do this, and
391  * will not need to do it from userspace. The fake hot-add code
392  * as well as ppc64 will do all of their discovery in userspace
393  * and will require this interface.
394  */
395 #ifdef CONFIG_ARCH_MEMORY_PROBE
396 static ssize_t
397 memory_probe_store(struct device *dev, struct device_attribute *attr,
398  const char *buf, size_t count)
399 {
400  u64 phys_addr;
401  int nid;
402  int i, ret;
403  unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
404 
405  phys_addr = simple_strtoull(buf, NULL, 0);
406 
407  if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
408  return -EINVAL;
409 
410  for (i = 0; i < sections_per_block; i++) {
411  nid = memory_add_physaddr_to_nid(phys_addr);
412  ret = add_memory(nid, phys_addr,
413  PAGES_PER_SECTION << PAGE_SHIFT);
414  if (ret)
415  goto out;
416 
417  phys_addr += MIN_MEMORY_BLOCK_SIZE;
418  }
419 
420  ret = count;
421 out:
422  return ret;
423 }
424 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
425 
426 static int memory_probe_init(void)
427 {
428  return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
429 }
430 #else
431 static inline int memory_probe_init(void)
432 {
433  return 0;
434 }
435 #endif
436 
437 #ifdef CONFIG_MEMORY_FAILURE
438 /*
439  * Support for offlining pages of memory
440  */
441 
442 /* Soft offline a page */
443 static ssize_t
444 store_soft_offline_page(struct device *dev,
445  struct device_attribute *attr,
446  const char *buf, size_t count)
447 {
448  int ret;
449  u64 pfn;
450  if (!capable(CAP_SYS_ADMIN))
451  return -EPERM;
452  if (strict_strtoull(buf, 0, &pfn) < 0)
453  return -EINVAL;
454  pfn >>= PAGE_SHIFT;
455  if (!pfn_valid(pfn))
456  return -ENXIO;
457  ret = soft_offline_page(pfn_to_page(pfn), 0);
458  return ret == 0 ? count : ret;
459 }
460 
461 /* Forcibly offline a page, including killing processes. */
462 static ssize_t
463 store_hard_offline_page(struct device *dev,
464  struct device_attribute *attr,
465  const char *buf, size_t count)
466 {
467  int ret;
468  u64 pfn;
469  if (!capable(CAP_SYS_ADMIN))
470  return -EPERM;
471  if (strict_strtoull(buf, 0, &pfn) < 0)
472  return -EINVAL;
473  pfn >>= PAGE_SHIFT;
474  ret = memory_failure(pfn, 0, 0);
475  return ret ? ret : count;
476 }
477 
478 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
479 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
480 
481 static __init int memory_fail_init(void)
482 {
483  int err;
484 
485  err = device_create_file(memory_subsys.dev_root,
486  &dev_attr_soft_offline_page);
487  if (!err)
488  err = device_create_file(memory_subsys.dev_root,
489  &dev_attr_hard_offline_page);
490  return err;
491 }
492 #else
493 static inline int memory_fail_init(void)
494 {
495  return 0;
496 }
497 #endif
498 
499 /*
500  * Note that phys_device is optional. It is here to allow for
501  * differentiation between which *physical* devices each
502  * section belongs to...
503  */
504 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
505 {
506  return 0;
507 }
508 
509 /*
510  * A reference for the returned object is held and the reference for the
511  * hinted object is released.
512  */
513 struct memory_block *find_memory_block_hinted(struct mem_section *section,
514  struct memory_block *hint)
515 {
516  int block_id = base_memory_block_id(__section_nr(section));
517  struct device *hintdev = hint ? &hint->dev : NULL;
518  struct device *dev;
519 
520  dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
521  if (hint)
522  put_device(&hint->dev);
523  if (!dev)
524  return NULL;
525  return container_of(dev, struct memory_block, dev);
526 }
527 
528 /*
529  * For now, we have a linear search to go find the appropriate
530  * memory_block corresponding to a particular phys_index. If
531  * this gets to be a real problem, we can always use a radix
532  * tree or something here.
533  *
534  * This could be made generic for all device subsystems.
535  */
536 struct memory_block *find_memory_block(struct mem_section *section)
537 {
538  return find_memory_block_hinted(section, NULL);
539 }
540 
541 static int init_memory_block(struct memory_block **memory,
542  struct mem_section *section, unsigned long state)
543 {
544  struct memory_block *mem;
545  unsigned long start_pfn;
546  int scn_nr;
547  int ret = 0;
548 
549  mem = kzalloc(sizeof(*mem), GFP_KERNEL);
550  if (!mem)
551  return -ENOMEM;
552 
553  scn_nr = __section_nr(section);
554  mem->start_section_nr =
555  base_memory_block_id(scn_nr) * sections_per_block;
556  mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
557  mem->state = state;
558  mem->section_count++;
559  mutex_init(&mem->state_mutex);
560  start_pfn = section_nr_to_pfn(mem->start_section_nr);
561  mem->phys_device = arch_get_memory_phys_device(start_pfn);
562 
563  ret = register_memory(mem);
564  if (!ret)
565  ret = mem_create_simple_file(mem, phys_index);
566  if (!ret)
567  ret = mem_create_simple_file(mem, end_phys_index);
568  if (!ret)
569  ret = mem_create_simple_file(mem, state);
570  if (!ret)
572  if (!ret)
573  ret = mem_create_simple_file(mem, removable);
574 
575  *memory = mem;
576  return ret;
577 }
578 
579 static int add_memory_section(int nid, struct mem_section *section,
580  struct memory_block **mem_p,
581  unsigned long state, enum mem_add_context context)
582 {
583  struct memory_block *mem = NULL;
584  int scn_nr = __section_nr(section);
585  int ret = 0;
586 
587  mutex_lock(&mem_sysfs_mutex);
588 
589  if (context == BOOT) {
590  /* same memory block ? */
591  if (mem_p && *mem_p)
592  if (scn_nr >= (*mem_p)->start_section_nr &&
593  scn_nr <= (*mem_p)->end_section_nr) {
594  mem = *mem_p;
595  kobject_get(&mem->dev.kobj);
596  }
597  } else
598  mem = find_memory_block(section);
599 
600  if (mem) {
601  mem->section_count++;
602  kobject_put(&mem->dev.kobj);
603  } else {
604  ret = init_memory_block(&mem, section, state);
605  /* store memory_block pointer for next loop */
606  if (!ret && context == BOOT)
607  if (mem_p)
608  *mem_p = mem;
609  }
610 
611  if (!ret) {
612  if (context == HOTPLUG &&
613  mem->section_count == sections_per_block)
614  ret = register_mem_sect_under_node(mem, nid);
615  }
616 
617  mutex_unlock(&mem_sysfs_mutex);
618  return ret;
619 }
620 
621 int remove_memory_block(unsigned long node_id, struct mem_section *section,
622  int phys_device)
623 {
624  struct memory_block *mem;
625 
626  mutex_lock(&mem_sysfs_mutex);
627  mem = find_memory_block(section);
628  unregister_mem_sect_under_nodes(mem, __section_nr(section));
629 
630  mem->section_count--;
631  if (mem->section_count == 0) {
632  mem_remove_simple_file(mem, phys_index);
633  mem_remove_simple_file(mem, end_phys_index);
634  mem_remove_simple_file(mem, state);
635  mem_remove_simple_file(mem, phys_device);
637  unregister_memory(mem);
638  kfree(mem);
639  } else
640  kobject_put(&mem->dev.kobj);
641 
642  mutex_unlock(&mem_sysfs_mutex);
643  return 0;
644 }
645 
646 /*
647  * need an interface for the VM to add new memory regions,
648  * but without onlining it.
649  */
650 int register_new_memory(int nid, struct mem_section *section)
651 {
652  return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
653 }
654 
655 int unregister_memory_section(struct mem_section *section)
656 {
657  if (!present_section(section))
658  return -EINVAL;
659 
660  return remove_memory_block(0, section, 0);
661 }
662 
663 /*
664  * offline one memory block. If the memory block has been offlined, do nothing.
665  */
667 {
668  int ret = 0;
669 
670  mutex_lock(&mem->state_mutex);
671  if (mem->state != MEM_OFFLINE)
672  ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
673  mutex_unlock(&mem->state_mutex);
674 
675  return ret;
676 }
677 
678 /*
679  * Initialize the sysfs support for memory devices...
680  */
682 {
683  unsigned int i;
684  int ret;
685  int err;
686  unsigned long block_sz;
687  struct memory_block *mem = NULL;
688 
689  ret = subsys_system_register(&memory_subsys, NULL);
690  if (ret)
691  goto out;
692 
693  block_sz = get_memory_block_size();
694  sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
695 
696  /*
697  * Create entries for memory sections that were found
698  * during boot and have been initialized
699  */
700  for (i = 0; i < NR_MEM_SECTIONS; i++) {
701  if (!present_section_nr(i))
702  continue;
703  /* don't need to reuse memory_block if only one per block */
704  err = add_memory_section(0, __nr_to_section(i),
705  (sections_per_block == 1) ? NULL : &mem,
706  MEM_ONLINE,
707  BOOT);
708  if (!ret)
709  ret = err;
710  }
711 
712  err = memory_probe_init();
713  if (!ret)
714  ret = err;
715  err = memory_fail_init();
716  if (!ret)
717  ret = err;
718  err = block_size_init();
719  if (!ret)
720  ret = err;
721 out:
722  if (ret)
723  printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
724  return ret;
725 }