Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
s3c2410.c
Go to the documentation of this file.
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  * http://armlinux.simtec.co.uk/
5  * Ben Dooks <[email protected]>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23 
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25 
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/string.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/slab.h>
41 #include <linux/clk.h>
42 #include <linux/cpufreq.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include <plat/regs-nand.h>
51 
52 /* new oob placement block for use with hardware ecc generation
53  */
54 
55 static struct nand_ecclayout nand_hw_eccoob = {
56  .eccbytes = 3,
57  .eccpos = {0, 1, 2},
58  .oobfree = {{8, 8}}
59 };
60 
61 /* controller and mtd information */
62 
63 struct s3c2410_nand_info;
64 
74  struct mtd_info mtd;
75  struct nand_chip chip;
76  struct s3c2410_nand_set *set;
78  int scan_res;
79 };
80 
85 };
86 
91 };
92 
93 /* overview of the s3c2410 nand state */
94 
111  /* mtd info */
115 
116  /* device info */
117  struct device *device;
118  struct clk *clk;
119  void __iomem *regs;
121  int sel_bit;
123  unsigned long save_sel;
124  unsigned long clk_rate;
126 
128 
129 #ifdef CONFIG_CPU_FREQ
130  struct notifier_block freq_transition;
131 #endif
132 };
133 
134 /* conversion functions */
135 
136 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
137 {
138  return container_of(mtd, struct s3c2410_nand_mtd, mtd);
139 }
140 
141 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
142 {
143  return s3c2410_nand_mtd_toours(mtd)->info;
144 }
145 
146 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
147 {
148  return platform_get_drvdata(dev);
149 }
150 
151 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
152 {
153  return dev->dev.platform_data;
154 }
155 
156 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
157 {
158 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
159  return 1;
160 #else
161  return 0;
162 #endif
163 }
164 
170 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
172 {
173  if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
174  return;
175 
176  if (info->clk_state == CLOCK_ENABLE) {
177  if (new_state != CLOCK_ENABLE)
178  clk_disable(info->clk);
179  } else {
180  if (new_state == CLOCK_ENABLE)
181  clk_enable(info->clk);
182  }
183 
184  info->clk_state = new_state;
185 }
186 
187 /* timing calculations */
188 
189 #define NS_IN_KHZ 1000000
190 
199 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
200 {
201  int result;
202 
203  result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
204 
205  pr_debug("result %d from %ld, %d\n", result, clk, wanted);
206 
207  if (result > max) {
208  pr_err("%d ns is too big for current clock rate %ld\n",
209  wanted, clk);
210  return -1;
211  }
212 
213  if (result < 1)
214  result = 1;
215 
216  return result;
217 }
218 
219 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
220 
221 /* controller setup */
222 
231 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
232 {
233  struct s3c2410_platform_nand *plat = info->platform;
234  int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
235  int tacls, twrph0, twrph1;
236  unsigned long clkrate = clk_get_rate(info->clk);
237  unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
238  unsigned long flags;
239 
240  /* calculate the timing information for the controller */
241 
242  info->clk_rate = clkrate;
243  clkrate /= 1000; /* turn clock into kHz for ease of use */
244 
245  if (plat != NULL) {
246  tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
247  twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
248  twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
249  } else {
250  /* default timings */
251  tacls = tacls_max;
252  twrph0 = 8;
253  twrph1 = 8;
254  }
255 
256  if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
257  dev_err(info->device, "cannot get suitable timings\n");
258  return -EINVAL;
259  }
260 
261  dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
262  tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
263  twrph1, to_ns(twrph1, clkrate));
264 
265  switch (info->cpu_type) {
266  case TYPE_S3C2410:
267  mask = (S3C2410_NFCONF_TACLS(3) |
270  set = S3C2410_NFCONF_EN;
271  set |= S3C2410_NFCONF_TACLS(tacls - 1);
272  set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
273  set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
274  break;
275 
276  case TYPE_S3C2440:
277  case TYPE_S3C2412:
278  mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
281 
282  set = S3C2440_NFCONF_TACLS(tacls - 1);
283  set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
284  set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
285  break;
286 
287  default:
288  BUG();
289  }
290 
291  local_irq_save(flags);
292 
293  cfg = readl(info->regs + S3C2410_NFCONF);
294  cfg &= ~mask;
295  cfg |= set;
296  writel(cfg, info->regs + S3C2410_NFCONF);
297 
298  local_irq_restore(flags);
299 
300  dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
301 
302  return 0;
303 }
304 
312 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
313 {
314  int ret;
315 
316  ret = s3c2410_nand_setrate(info);
317  if (ret < 0)
318  return ret;
319 
320  switch (info->cpu_type) {
321  case TYPE_S3C2410:
322  default:
323  break;
324 
325  case TYPE_S3C2440:
326  case TYPE_S3C2412:
327  /* enable the controller and de-assert nFCE */
328 
330  }
331 
332  return 0;
333 }
334 
348 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
349 {
350  struct s3c2410_nand_info *info;
351  struct s3c2410_nand_mtd *nmtd;
352  struct nand_chip *this = mtd->priv;
353  unsigned long cur;
354 
355  nmtd = this->priv;
356  info = nmtd->info;
357 
358  if (chip != -1)
359  s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
360 
361  cur = readl(info->sel_reg);
362 
363  if (chip == -1) {
364  cur |= info->sel_bit;
365  } else {
366  if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
367  dev_err(info->device, "invalid chip %d\n", chip);
368  return;
369  }
370 
371  if (info->platform != NULL) {
372  if (info->platform->select_chip != NULL)
373  (info->platform->select_chip) (nmtd->set, chip);
374  }
375 
376  cur &= ~info->sel_bit;
377  }
378 
379  writel(cur, info->sel_reg);
380 
381  if (chip == -1)
382  s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
383 }
384 
385 /* s3c2410_nand_hwcontrol
386  *
387  * Issue command and address cycles to the chip
388 */
389 
390 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
391  unsigned int ctrl)
392 {
393  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
394 
395  if (cmd == NAND_CMD_NONE)
396  return;
397 
398  if (ctrl & NAND_CLE)
399  writeb(cmd, info->regs + S3C2410_NFCMD);
400  else
401  writeb(cmd, info->regs + S3C2410_NFADDR);
402 }
403 
404 /* command and control functions */
405 
406 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
407  unsigned int ctrl)
408 {
409  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
410 
411  if (cmd == NAND_CMD_NONE)
412  return;
413 
414  if (ctrl & NAND_CLE)
415  writeb(cmd, info->regs + S3C2440_NFCMD);
416  else
417  writeb(cmd, info->regs + S3C2440_NFADDR);
418 }
419 
420 /* s3c2410_nand_devready()
421  *
422  * returns 0 if the nand is busy, 1 if it is ready
423 */
424 
425 static int s3c2410_nand_devready(struct mtd_info *mtd)
426 {
427  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
428  return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
429 }
430 
431 static int s3c2440_nand_devready(struct mtd_info *mtd)
432 {
433  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
434  return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
435 }
436 
437 static int s3c2412_nand_devready(struct mtd_info *mtd)
438 {
439  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440  return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
441 }
442 
443 /* ECC handling functions */
444 
445 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
446 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
447  u_char *read_ecc, u_char *calc_ecc)
448 {
449  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
450  unsigned int diff0, diff1, diff2;
451  unsigned int bit, byte;
452 
453  pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
454 
455  diff0 = read_ecc[0] ^ calc_ecc[0];
456  diff1 = read_ecc[1] ^ calc_ecc[1];
457  diff2 = read_ecc[2] ^ calc_ecc[2];
458 
459  pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
460  __func__, 3, read_ecc, 3, calc_ecc,
461  diff0, diff1, diff2);
462 
463  if (diff0 == 0 && diff1 == 0 && diff2 == 0)
464  return 0; /* ECC is ok */
465 
466  /* sometimes people do not think about using the ECC, so check
467  * to see if we have an 0xff,0xff,0xff read ECC and then ignore
468  * the error, on the assumption that this is an un-eccd page.
469  */
470  if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
471  && info->platform->ignore_unset_ecc)
472  return 0;
473 
474  /* Can we correct this ECC (ie, one row and column change).
475  * Note, this is similar to the 256 error code on smartmedia */
476 
477  if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
478  ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
479  ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
480  /* calculate the bit position of the error */
481 
482  bit = ((diff2 >> 3) & 1) |
483  ((diff2 >> 4) & 2) |
484  ((diff2 >> 5) & 4);
485 
486  /* calculate the byte position of the error */
487 
488  byte = ((diff2 << 7) & 0x100) |
489  ((diff1 << 0) & 0x80) |
490  ((diff1 << 1) & 0x40) |
491  ((diff1 << 2) & 0x20) |
492  ((diff1 << 3) & 0x10) |
493  ((diff0 >> 4) & 0x08) |
494  ((diff0 >> 3) & 0x04) |
495  ((diff0 >> 2) & 0x02) |
496  ((diff0 >> 1) & 0x01);
497 
498  dev_dbg(info->device, "correcting error bit %d, byte %d\n",
499  bit, byte);
500 
501  dat[byte] ^= (1 << bit);
502  return 1;
503  }
504 
505  /* if there is only one bit difference in the ECC, then
506  * one of only a row or column parity has changed, which
507  * means the error is most probably in the ECC itself */
508 
509  diff0 |= (diff1 << 8);
510  diff0 |= (diff2 << 16);
511 
512  if ((diff0 & ~(1<<fls(diff0))) == 0)
513  return 1;
514 
515  return -1;
516 }
517 
518 /* ECC functions
519  *
520  * These allow the s3c2410 and s3c2440 to use the controller's ECC
521  * generator block to ECC the data as it passes through]
522 */
523 
524 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
525 {
526  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
527  unsigned long ctrl;
528 
529  ctrl = readl(info->regs + S3C2410_NFCONF);
530  ctrl |= S3C2410_NFCONF_INITECC;
531  writel(ctrl, info->regs + S3C2410_NFCONF);
532 }
533 
534 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
535 {
536  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
537  unsigned long ctrl;
538 
539  ctrl = readl(info->regs + S3C2440_NFCONT);
541  info->regs + S3C2440_NFCONT);
542 }
543 
544 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545 {
546  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
547  unsigned long ctrl;
548 
549  ctrl = readl(info->regs + S3C2440_NFCONT);
551 }
552 
553 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
554  u_char *ecc_code)
555 {
556  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
557 
558  ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
559  ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
560  ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
561 
562  pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
563 
564  return 0;
565 }
566 
567 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
568  u_char *ecc_code)
569 {
570  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571  unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
572 
573  ecc_code[0] = ecc;
574  ecc_code[1] = ecc >> 8;
575  ecc_code[2] = ecc >> 16;
576 
577  pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
578 
579  return 0;
580 }
581 
582 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
583  u_char *ecc_code)
584 {
585  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586  unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
587 
588  ecc_code[0] = ecc;
589  ecc_code[1] = ecc >> 8;
590  ecc_code[2] = ecc >> 16;
591 
592  pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
593 
594  return 0;
595 }
596 #endif
597 
598 /* over-ride the standard functions for a little more speed. We can
599  * use read/write block to move the data buffers to/from the controller
600 */
601 
602 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
603 {
604  struct nand_chip *this = mtd->priv;
605  readsb(this->IO_ADDR_R, buf, len);
606 }
607 
608 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
609 {
610  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
611 
612  readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
613 
614  /* cleanup if we've got less than a word to do */
615  if (len & 3) {
616  buf += len & ~3;
617 
618  for (; len & 3; len--)
619  *buf++ = readb(info->regs + S3C2440_NFDATA);
620  }
621 }
622 
623 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
624  int len)
625 {
626  struct nand_chip *this = mtd->priv;
627  writesb(this->IO_ADDR_W, buf, len);
628 }
629 
630 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
631  int len)
632 {
633  struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
634 
635  writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
636 
637  /* cleanup any fractional write */
638  if (len & 3) {
639  buf += len & ~3;
640 
641  for (; len & 3; len--, buf++)
642  writeb(*buf, info->regs + S3C2440_NFDATA);
643  }
644 }
645 
646 /* cpufreq driver support */
647 
648 #ifdef CONFIG_CPU_FREQ
649 
650 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
651  unsigned long val, void *data)
652 {
653  struct s3c2410_nand_info *info;
654  unsigned long newclk;
655 
656  info = container_of(nb, struct s3c2410_nand_info, freq_transition);
657  newclk = clk_get_rate(info->clk);
658 
659  if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
660  (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
661  s3c2410_nand_setrate(info);
662  }
663 
664  return 0;
665 }
666 
667 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
668 {
669  info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
670 
671  return cpufreq_register_notifier(&info->freq_transition,
673 }
674 
675 static inline void
676 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
677 {
678  cpufreq_unregister_notifier(&info->freq_transition,
680 }
681 
682 #else
683 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
684 {
685  return 0;
686 }
687 
688 static inline void
689 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
690 {
691 }
692 #endif
693 
694 /* device management functions */
695 
696 static int s3c24xx_nand_remove(struct platform_device *pdev)
697 {
698  struct s3c2410_nand_info *info = to_nand_info(pdev);
699 
700  platform_set_drvdata(pdev, NULL);
701 
702  if (info == NULL)
703  return 0;
704 
705  s3c2410_nand_cpufreq_deregister(info);
706 
707  /* Release all our mtds and their partitions, then go through
708  * freeing the resources used
709  */
710 
711  if (info->mtds != NULL) {
712  struct s3c2410_nand_mtd *ptr = info->mtds;
713  int mtdno;
714 
715  for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
716  pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
717  nand_release(&ptr->mtd);
718  }
719  }
720 
721  /* free the common resources */
722 
723  if (!IS_ERR(info->clk))
724  s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
725 
726  return 0;
727 }
728 
729 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
730  struct s3c2410_nand_mtd *mtd,
731  struct s3c2410_nand_set *set)
732 {
733  if (set)
734  mtd->mtd.name = set->name;
735 
736  return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
737  set->partitions, set->nr_partitions);
738 }
739 
750 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
751  struct s3c2410_nand_mtd *nmtd,
752  struct s3c2410_nand_set *set)
753 {
754  struct nand_chip *chip = &nmtd->chip;
755  void __iomem *regs = info->regs;
756 
757  chip->write_buf = s3c2410_nand_write_buf;
758  chip->read_buf = s3c2410_nand_read_buf;
759  chip->select_chip = s3c2410_nand_select_chip;
760  chip->chip_delay = 50;
761  chip->priv = nmtd;
762  chip->options = set->options;
763  chip->controller = &info->controller;
764 
765  switch (info->cpu_type) {
766  case TYPE_S3C2410:
767  chip->IO_ADDR_W = regs + S3C2410_NFDATA;
768  info->sel_reg = regs + S3C2410_NFCONF;
770  chip->cmd_ctrl = s3c2410_nand_hwcontrol;
771  chip->dev_ready = s3c2410_nand_devready;
772  break;
773 
774  case TYPE_S3C2440:
775  chip->IO_ADDR_W = regs + S3C2440_NFDATA;
776  info->sel_reg = regs + S3C2440_NFCONT;
778  chip->cmd_ctrl = s3c2440_nand_hwcontrol;
779  chip->dev_ready = s3c2440_nand_devready;
780  chip->read_buf = s3c2440_nand_read_buf;
781  chip->write_buf = s3c2440_nand_write_buf;
782  break;
783 
784  case TYPE_S3C2412:
785  chip->IO_ADDR_W = regs + S3C2440_NFDATA;
786  info->sel_reg = regs + S3C2440_NFCONT;
788  chip->cmd_ctrl = s3c2440_nand_hwcontrol;
789  chip->dev_ready = s3c2412_nand_devready;
790 
791  if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
792  dev_info(info->device, "System booted from NAND\n");
793 
794  break;
795  }
796 
797  chip->IO_ADDR_R = chip->IO_ADDR_W;
798 
799  nmtd->info = info;
800  nmtd->mtd.priv = chip;
801  nmtd->mtd.owner = THIS_MODULE;
802  nmtd->set = set;
803 
804 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
805  chip->ecc.calculate = s3c2410_nand_calculate_ecc;
806  chip->ecc.correct = s3c2410_nand_correct_data;
807  chip->ecc.mode = NAND_ECC_HW;
808  chip->ecc.strength = 1;
809 
810  switch (info->cpu_type) {
811  case TYPE_S3C2410:
812  chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
813  chip->ecc.calculate = s3c2410_nand_calculate_ecc;
814  break;
815 
816  case TYPE_S3C2412:
817  chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
818  chip->ecc.calculate = s3c2412_nand_calculate_ecc;
819  break;
820 
821  case TYPE_S3C2440:
822  chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
823  chip->ecc.calculate = s3c2440_nand_calculate_ecc;
824  break;
825  }
826 #else
827  chip->ecc.mode = NAND_ECC_SOFT;
828 #endif
829 
830  if (set->ecc_layout != NULL)
831  chip->ecc.layout = set->ecc_layout;
832 
833  if (set->disable_ecc)
834  chip->ecc.mode = NAND_ECC_NONE;
835 
836  switch (chip->ecc.mode) {
837  case NAND_ECC_NONE:
838  dev_info(info->device, "NAND ECC disabled\n");
839  break;
840  case NAND_ECC_SOFT:
841  dev_info(info->device, "NAND soft ECC\n");
842  break;
843  case NAND_ECC_HW:
844  dev_info(info->device, "NAND hardware ECC\n");
845  break;
846  default:
847  dev_info(info->device, "NAND ECC UNKNOWN\n");
848  break;
849  }
850 
851  /* If you use u-boot BBT creation code, specifying this flag will
852  * let the kernel fish out the BBT from the NAND, and also skip the
853  * full NAND scan that can take 1/2s or so. Little things... */
854  if (set->flash_bbt) {
856  chip->options |= NAND_SKIP_BBTSCAN;
857  }
858 }
859 
871 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
872  struct s3c2410_nand_mtd *nmtd)
873 {
874  struct nand_chip *chip = &nmtd->chip;
875 
876  dev_dbg(info->device, "chip %p => page shift %d\n",
877  chip, chip->page_shift);
878 
879  if (chip->ecc.mode != NAND_ECC_HW)
880  return;
881 
882  /* change the behaviour depending on wether we are using
883  * the large or small page nand device */
884 
885  if (chip->page_shift > 10) {
886  chip->ecc.size = 256;
887  chip->ecc.bytes = 3;
888  } else {
889  chip->ecc.size = 512;
890  chip->ecc.bytes = 3;
891  chip->ecc.layout = &nand_hw_eccoob;
892  }
893 }
894 
895 /* s3c24xx_nand_probe
896  *
897  * called by device layer when it finds a device matching
898  * one our driver can handled. This code checks to see if
899  * it can allocate all necessary resources then calls the
900  * nand layer to look for devices
901 */
902 static int s3c24xx_nand_probe(struct platform_device *pdev)
903 {
904  struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
905  enum s3c_cpu_type cpu_type;
906  struct s3c2410_nand_info *info;
907  struct s3c2410_nand_mtd *nmtd;
908  struct s3c2410_nand_set *sets;
909  struct resource *res;
910  int err = 0;
911  int size;
912  int nr_sets;
913  int setno;
914 
915  cpu_type = platform_get_device_id(pdev)->driver_data;
916 
917  pr_debug("s3c2410_nand_probe(%p)\n", pdev);
918 
919  info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
920  if (info == NULL) {
921  dev_err(&pdev->dev, "no memory for flash info\n");
922  err = -ENOMEM;
923  goto exit_error;
924  }
925 
926  platform_set_drvdata(pdev, info);
927 
928  spin_lock_init(&info->controller.lock);
929  init_waitqueue_head(&info->controller.wq);
930 
931  /* get the clock source and enable it */
932 
933  info->clk = devm_clk_get(&pdev->dev, "nand");
934  if (IS_ERR(info->clk)) {
935  dev_err(&pdev->dev, "failed to get clock\n");
936  err = -ENOENT;
937  goto exit_error;
938  }
939 
940  s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
941 
942  /* allocate and map the resource */
943 
944  /* currently we assume we have the one resource */
945  res = pdev->resource;
946  size = resource_size(res);
947 
948  info->device = &pdev->dev;
949  info->platform = plat;
950  info->cpu_type = cpu_type;
951 
952  info->regs = devm_request_and_ioremap(&pdev->dev, res);
953  if (info->regs == NULL) {
954  dev_err(&pdev->dev, "cannot reserve register region\n");
955  err = -EIO;
956  goto exit_error;
957  }
958 
959  dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
960 
961  /* initialise the hardware */
962 
963  err = s3c2410_nand_inithw(info);
964  if (err != 0)
965  goto exit_error;
966 
967  sets = (plat != NULL) ? plat->sets : NULL;
968  nr_sets = (plat != NULL) ? plat->nr_sets : 1;
969 
970  info->mtd_count = nr_sets;
971 
972  /* allocate our information */
973 
974  size = nr_sets * sizeof(*info->mtds);
975  info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
976  if (info->mtds == NULL) {
977  dev_err(&pdev->dev, "failed to allocate mtd storage\n");
978  err = -ENOMEM;
979  goto exit_error;
980  }
981 
982  /* initialise all possible chips */
983 
984  nmtd = info->mtds;
985 
986  for (setno = 0; setno < nr_sets; setno++, nmtd++) {
987  pr_debug("initialising set %d (%p, info %p)\n",
988  setno, nmtd, info);
989 
990  s3c2410_nand_init_chip(info, nmtd, sets);
991 
992  nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
993  (sets) ? sets->nr_chips : 1,
994  NULL);
995 
996  if (nmtd->scan_res == 0) {
997  s3c2410_nand_update_chip(info, nmtd);
998  nand_scan_tail(&nmtd->mtd);
999  s3c2410_nand_add_partition(info, nmtd, sets);
1000  }
1001 
1002  if (sets != NULL)
1003  sets++;
1004  }
1005 
1006  err = s3c2410_nand_cpufreq_register(info);
1007  if (err < 0) {
1008  dev_err(&pdev->dev, "failed to init cpufreq support\n");
1009  goto exit_error;
1010  }
1011 
1012  if (allow_clk_suspend(info)) {
1013  dev_info(&pdev->dev, "clock idle support enabled\n");
1014  s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1015  }
1016 
1017  pr_debug("initialised ok\n");
1018  return 0;
1019 
1020  exit_error:
1021  s3c24xx_nand_remove(pdev);
1022 
1023  if (err == 0)
1024  err = -EINVAL;
1025  return err;
1026 }
1027 
1028 /* PM Support */
1029 #ifdef CONFIG_PM
1030 
1032 {
1033  struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1034 
1035  if (info) {
1036  info->save_sel = readl(info->sel_reg);
1037 
1038  /* For the moment, we must ensure nFCE is high during
1039  * the time we are suspended. This really should be
1040  * handled by suspending the MTDs we are using, but
1041  * that is currently not the case. */
1042 
1043  writel(info->save_sel | info->sel_bit, info->sel_reg);
1044 
1045  s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1046  }
1047 
1048  return 0;
1049 }
1050 
1051 static int s3c24xx_nand_resume(struct platform_device *dev)
1052 {
1053  struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1054  unsigned long sel;
1055 
1056  if (info) {
1057  s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1058  s3c2410_nand_inithw(info);
1059 
1060  /* Restore the state of the nFCE line. */
1061 
1062  sel = readl(info->sel_reg);
1063  sel &= ~info->sel_bit;
1064  sel |= info->save_sel & info->sel_bit;
1065  writel(sel, info->sel_reg);
1066 
1067  s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1068  }
1069 
1070  return 0;
1071 }
1072 
1073 #else
1074 #define s3c24xx_nand_suspend NULL
1075 #define s3c24xx_nand_resume NULL
1076 #endif
1077 
1078 /* driver device registration */
1079 
1080 static struct platform_device_id s3c24xx_driver_ids[] = {
1081  {
1082  .name = "s3c2410-nand",
1083  .driver_data = TYPE_S3C2410,
1084  }, {
1085  .name = "s3c2440-nand",
1086  .driver_data = TYPE_S3C2440,
1087  }, {
1088  .name = "s3c2412-nand",
1089  .driver_data = TYPE_S3C2412,
1090  }, {
1091  .name = "s3c6400-nand",
1092  .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1093  },
1094  { }
1095 };
1096 
1097 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1098 
1099 static struct platform_driver s3c24xx_nand_driver = {
1100  .probe = s3c24xx_nand_probe,
1101  .remove = s3c24xx_nand_remove,
1102  .suspend = s3c24xx_nand_suspend,
1103  .resume = s3c24xx_nand_resume,
1104  .id_table = s3c24xx_driver_ids,
1105  .driver = {
1106  .name = "s3c24xx-nand",
1107  .owner = THIS_MODULE,
1108  },
1109 };
1110 
1111 module_platform_driver(s3c24xx_nand_driver);
1112 
1113 MODULE_LICENSE("GPL");
1114 MODULE_AUTHOR("Ben Dooks <[email protected]>");
1115 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");