Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tx.c
Go to the documentation of this file.
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24 
25 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
26  struct efx_tx_buffer *buffer,
27  unsigned int *pkts_compl,
28  unsigned int *bytes_compl)
29 {
30  if (buffer->unmap_len) {
31  struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
32  dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
33  buffer->unmap_len);
34  if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
35  dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
37  else
38  dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
40  buffer->unmap_len = 0;
41  }
42 
43  if (buffer->flags & EFX_TX_BUF_SKB) {
44  (*pkts_compl)++;
45  (*bytes_compl) += buffer->skb->len;
46  dev_kfree_skb_any((struct sk_buff *) buffer->skb);
47  netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
48  "TX queue %d transmission id %x complete\n",
49  tx_queue->queue, tx_queue->read_count);
50  } else if (buffer->flags & EFX_TX_BUF_HEAP) {
51  kfree(buffer->heap_buf);
52  }
53 
54  buffer->len = 0;
55  buffer->flags = 0;
56 }
57 
58 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
59  struct sk_buff *skb);
60 
61 static inline unsigned
62 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
63 {
64  /* Depending on the NIC revision, we can use descriptor
65  * lengths up to 8K or 8K-1. However, since PCI Express
66  * devices must split read requests at 4K boundaries, there is
67  * little benefit from using descriptors that cross those
68  * boundaries and we keep things simple by not doing so.
69  */
70  unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
71 
72  /* Work around hardware bug for unaligned buffers. */
73  if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
74  len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
75 
76  return len;
77 }
78 
79 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
80 {
81  /* Header and payload descriptor for each output segment, plus
82  * one for every input fragment boundary within a segment
83  */
84  unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
85 
86  /* Possibly one more per segment for the alignment workaround */
87  if (EFX_WORKAROUND_5391(efx))
88  max_descs += EFX_TSO_MAX_SEGS;
89 
90  /* Possibly more for PCIe page boundaries within input fragments */
92  max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
94 
95  return max_descs;
96 }
97 
98 /* Get partner of a TX queue, seen as part of the same net core queue */
99 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
100 {
101  if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
102  return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
103  else
104  return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
105 }
106 
107 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
108 {
109  /* We need to consider both queues that the net core sees as one */
110  struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
111  struct efx_nic *efx = txq1->efx;
112  unsigned int fill_level;
113 
114  fill_level = max(txq1->insert_count - txq1->old_read_count,
115  txq2->insert_count - txq2->old_read_count);
116  if (likely(fill_level < efx->txq_stop_thresh))
117  return;
118 
119  /* We used the stale old_read_count above, which gives us a
120  * pessimistic estimate of the fill level (which may even
121  * validly be >= efx->txq_entries). Now try again using
122  * read_count (more likely to be a cache miss).
123  *
124  * If we read read_count and then conditionally stop the
125  * queue, it is possible for the completion path to race with
126  * us and complete all outstanding descriptors in the middle,
127  * after which there will be no more completions to wake it.
128  * Therefore we stop the queue first, then read read_count
129  * (with a memory barrier to ensure the ordering), then
130  * restart the queue if the fill level turns out to be low
131  * enough.
132  */
133  netif_tx_stop_queue(txq1->core_txq);
134  smp_mb();
135  txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
136  txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
137 
138  fill_level = max(txq1->insert_count - txq1->old_read_count,
139  txq2->insert_count - txq2->old_read_count);
140  EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141  if (likely(fill_level < efx->txq_stop_thresh)) {
142  smp_mb();
143  if (likely(!efx->loopback_selftest))
144  netif_tx_start_queue(txq1->core_txq);
145  }
146 }
147 
148 /*
149  * Add a socket buffer to a TX queue
150  *
151  * This maps all fragments of a socket buffer for DMA and adds them to
152  * the TX queue. The queue's insert pointer will be incremented by
153  * the number of fragments in the socket buffer.
154  *
155  * If any DMA mapping fails, any mapped fragments will be unmapped,
156  * the queue's insert pointer will be restored to its original value.
157  *
158  * This function is split out from efx_hard_start_xmit to allow the
159  * loopback test to direct packets via specific TX queues.
160  *
161  * Returns NETDEV_TX_OK.
162  * You must hold netif_tx_lock() to call this function.
163  */
165 {
166  struct efx_nic *efx = tx_queue->efx;
167  struct device *dma_dev = &efx->pci_dev->dev;
168  struct efx_tx_buffer *buffer;
169  skb_frag_t *fragment;
170  unsigned int len, unmap_len = 0, insert_ptr;
171  dma_addr_t dma_addr, unmap_addr = 0;
172  unsigned int dma_len;
173  unsigned short dma_flags;
174  int i = 0;
175 
176  EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
177 
178  if (skb_shinfo(skb)->gso_size)
179  return efx_enqueue_skb_tso(tx_queue, skb);
180 
181  /* Get size of the initial fragment */
182  len = skb_headlen(skb);
183 
184  /* Pad if necessary */
185  if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
187  len = 32 + 1;
188  if (skb_pad(skb, len - skb->len))
189  return NETDEV_TX_OK;
190  }
191 
192  /* Map for DMA. Use dma_map_single rather than dma_map_page
193  * since this is more efficient on machines with sparse
194  * memory.
195  */
196  dma_flags = EFX_TX_BUF_MAP_SINGLE;
197  dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
198 
199  /* Process all fragments */
200  while (1) {
201  if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
202  goto dma_err;
203 
204  /* Store fields for marking in the per-fragment final
205  * descriptor */
206  unmap_len = len;
207  unmap_addr = dma_addr;
208 
209  /* Add to TX queue, splitting across DMA boundaries */
210  do {
211  insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212  buffer = &tx_queue->buffer[insert_ptr];
213  EFX_BUG_ON_PARANOID(buffer->flags);
214  EFX_BUG_ON_PARANOID(buffer->len);
216 
217  dma_len = efx_max_tx_len(efx, dma_addr);
218  if (likely(dma_len >= len))
219  dma_len = len;
220 
221  /* Fill out per descriptor fields */
222  buffer->len = dma_len;
223  buffer->dma_addr = dma_addr;
224  buffer->flags = EFX_TX_BUF_CONT;
225  len -= dma_len;
226  dma_addr += dma_len;
227  ++tx_queue->insert_count;
228  } while (len);
229 
230  /* Transfer ownership of the unmapping to the final buffer */
231  buffer->flags = EFX_TX_BUF_CONT | dma_flags;
232  buffer->unmap_len = unmap_len;
233  unmap_len = 0;
234 
235  /* Get address and size of next fragment */
236  if (i >= skb_shinfo(skb)->nr_frags)
237  break;
238  fragment = &skb_shinfo(skb)->frags[i];
239  len = skb_frag_size(fragment);
240  i++;
241  /* Map for DMA */
242  dma_flags = 0;
243  dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
244  DMA_TO_DEVICE);
245  }
246 
247  /* Transfer ownership of the skb to the final buffer */
248  buffer->skb = skb;
249  buffer->flags = EFX_TX_BUF_SKB | dma_flags;
250 
251  netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
252 
253  /* Pass off to hardware */
254  efx_nic_push_buffers(tx_queue);
255 
256  efx_tx_maybe_stop_queue(tx_queue);
257 
258  return NETDEV_TX_OK;
259 
260  dma_err:
261  netif_err(efx, tx_err, efx->net_dev,
262  " TX queue %d could not map skb with %d bytes %d "
263  "fragments for DMA\n", tx_queue->queue, skb->len,
264  skb_shinfo(skb)->nr_frags + 1);
265 
266  /* Mark the packet as transmitted, and free the SKB ourselves */
267  dev_kfree_skb_any(skb);
268 
269  /* Work backwards until we hit the original insert pointer value */
270  while (tx_queue->insert_count != tx_queue->write_count) {
271  unsigned int pkts_compl = 0, bytes_compl = 0;
272  --tx_queue->insert_count;
273  insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274  buffer = &tx_queue->buffer[insert_ptr];
275  efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
276  }
277 
278  /* Free the fragment we were mid-way through pushing */
279  if (unmap_len) {
280  if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
281  dma_unmap_single(dma_dev, unmap_addr, unmap_len,
282  DMA_TO_DEVICE);
283  else
284  dma_unmap_page(dma_dev, unmap_addr, unmap_len,
285  DMA_TO_DEVICE);
286  }
287 
288  return NETDEV_TX_OK;
289 }
290 
291 /* Remove packets from the TX queue
292  *
293  * This removes packets from the TX queue, up to and including the
294  * specified index.
295  */
296 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
297  unsigned int index,
298  unsigned int *pkts_compl,
299  unsigned int *bytes_compl)
300 {
301  struct efx_nic *efx = tx_queue->efx;
302  unsigned int stop_index, read_ptr;
303 
304  stop_index = (index + 1) & tx_queue->ptr_mask;
305  read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
306 
307  while (read_ptr != stop_index) {
308  struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
309  if (unlikely(buffer->len == 0)) {
310  netif_err(efx, tx_err, efx->net_dev,
311  "TX queue %d spurious TX completion id %x\n",
312  tx_queue->queue, read_ptr);
314  return;
315  }
316 
317  efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
318 
319  ++tx_queue->read_count;
320  read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
321  }
322 }
323 
324 /* Initiate a packet transmission. We use one channel per CPU
325  * (sharing when we have more CPUs than channels). On Falcon, the TX
326  * completion events will be directed back to the CPU that transmitted
327  * the packet, which should be cache-efficient.
328  *
329  * Context: non-blocking.
330  * Note that returning anything other than NETDEV_TX_OK will cause the
331  * OS to free the skb.
332  */
334  struct net_device *net_dev)
335 {
336  struct efx_nic *efx = netdev_priv(net_dev);
337  struct efx_tx_queue *tx_queue;
338  unsigned index, type;
339 
340  EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
341 
342  /* PTP "event" packet */
343  if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
344  unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
345  return efx_ptp_tx(efx, skb);
346  }
347 
348  index = skb_get_queue_mapping(skb);
349  type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
350  if (index >= efx->n_tx_channels) {
351  index -= efx->n_tx_channels;
352  type |= EFX_TXQ_TYPE_HIGHPRI;
353  }
354  tx_queue = efx_get_tx_queue(efx, index, type);
355 
356  return efx_enqueue_skb(tx_queue, skb);
357 }
358 
360 {
361  struct efx_nic *efx = tx_queue->efx;
362 
363  /* Must be inverse of queue lookup in efx_hard_start_xmit() */
364  tx_queue->core_txq =
365  netdev_get_tx_queue(efx->net_dev,
366  tx_queue->queue / EFX_TXQ_TYPES +
367  ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
368  efx->n_tx_channels : 0));
369 }
370 
371 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
372 {
373  struct efx_nic *efx = netdev_priv(net_dev);
374  struct efx_channel *channel;
375  struct efx_tx_queue *tx_queue;
376  unsigned tc;
377  int rc;
378 
379  if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
380  return -EINVAL;
381 
382  if (num_tc == net_dev->num_tc)
383  return 0;
384 
385  for (tc = 0; tc < num_tc; tc++) {
386  net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
387  net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
388  }
389 
390  if (num_tc > net_dev->num_tc) {
391  /* Initialise high-priority queues as necessary */
392  efx_for_each_channel(channel, efx) {
394  channel) {
395  if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
396  continue;
397  if (!tx_queue->buffer) {
398  rc = efx_probe_tx_queue(tx_queue);
399  if (rc)
400  return rc;
401  }
402  if (!tx_queue->initialised)
403  efx_init_tx_queue(tx_queue);
404  efx_init_tx_queue_core_txq(tx_queue);
405  }
406  }
407  } else {
408  /* Reduce number of classes before number of queues */
409  net_dev->num_tc = num_tc;
410  }
411 
412  rc = netif_set_real_num_tx_queues(net_dev,
413  max_t(int, num_tc, 1) *
414  efx->n_tx_channels);
415  if (rc)
416  return rc;
417 
418  /* Do not destroy high-priority queues when they become
419  * unused. We would have to flush them first, and it is
420  * fairly difficult to flush a subset of TX queues. Leave
421  * it to efx_fini_channels().
422  */
423 
424  net_dev->num_tc = num_tc;
425  return 0;
426 }
427 
428 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
429 {
430  unsigned fill_level;
431  struct efx_nic *efx = tx_queue->efx;
432  struct efx_tx_queue *txq2;
433  unsigned int pkts_compl = 0, bytes_compl = 0;
434 
435  EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
436 
437  efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
438  netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
439 
440  /* See if we need to restart the netif queue. This memory
441  * barrier ensures that we write read_count (inside
442  * efx_dequeue_buffers()) before reading the queue status.
443  */
444  smp_mb();
445  if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446  likely(efx->port_enabled) &&
447  likely(netif_device_present(efx->net_dev))) {
448  txq2 = efx_tx_queue_partner(tx_queue);
449  fill_level = max(tx_queue->insert_count - tx_queue->read_count,
450  txq2->insert_count - txq2->read_count);
451  if (fill_level <= efx->txq_wake_thresh)
452  netif_tx_wake_queue(tx_queue->core_txq);
453  }
454 
455  /* Check whether the hardware queue is now empty */
456  if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
457  tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
458  if (tx_queue->read_count == tx_queue->old_write_count) {
459  smp_mb();
460  tx_queue->empty_read_count =
461  tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
462  }
463  }
464 }
465 
466 /* Size of page-based TSO header buffers. Larger blocks must be
467  * allocated from the heap.
468  */
469 #define TSOH_STD_SIZE 128
470 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
471 
472 /* At most half the descriptors in the queue at any time will refer to
473  * a TSO header buffer, since they must always be followed by a
474  * payload descriptor referring to an skb.
475  */
476 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
477 {
478  return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
479 }
480 
481 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
482 {
483  struct efx_nic *efx = tx_queue->efx;
484  unsigned int entries;
485  int rc;
486 
487  /* Create the smallest power-of-two aligned ring */
490  tx_queue->ptr_mask = entries - 1;
491 
492  netif_dbg(efx, probe, efx->net_dev,
493  "creating TX queue %d size %#x mask %#x\n",
494  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
495 
496  /* Allocate software ring */
497  tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
498  GFP_KERNEL);
499  if (!tx_queue->buffer)
500  return -ENOMEM;
501 
502  if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
503  tx_queue->tsoh_page =
504  kcalloc(efx_tsoh_page_count(tx_queue),
505  sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
506  if (!tx_queue->tsoh_page) {
507  rc = -ENOMEM;
508  goto fail1;
509  }
510  }
511 
512  /* Allocate hardware ring */
513  rc = efx_nic_probe_tx(tx_queue);
514  if (rc)
515  goto fail2;
516 
517  return 0;
518 
519 fail2:
520  kfree(tx_queue->tsoh_page);
521  tx_queue->tsoh_page = NULL;
522 fail1:
523  kfree(tx_queue->buffer);
524  tx_queue->buffer = NULL;
525  return rc;
526 }
527 
528 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
529 {
530  netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
531  "initialising TX queue %d\n", tx_queue->queue);
532 
533  tx_queue->insert_count = 0;
534  tx_queue->write_count = 0;
535  tx_queue->old_write_count = 0;
536  tx_queue->read_count = 0;
537  tx_queue->old_read_count = 0;
538  tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
539 
540  /* Set up TX descriptor ring */
541  efx_nic_init_tx(tx_queue);
542 
543  tx_queue->initialised = true;
544 }
545 
546 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
547 {
548  struct efx_tx_buffer *buffer;
549 
550  if (!tx_queue->buffer)
551  return;
552 
553  /* Free any buffers left in the ring */
554  while (tx_queue->read_count != tx_queue->write_count) {
555  unsigned int pkts_compl = 0, bytes_compl = 0;
556  buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
557  efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
558 
559  ++tx_queue->read_count;
560  }
561  netdev_tx_reset_queue(tx_queue->core_txq);
562 }
563 
564 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
565 {
566  if (!tx_queue->initialised)
567  return;
568 
569  netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
570  "shutting down TX queue %d\n", tx_queue->queue);
571 
572  tx_queue->initialised = false;
573 
574  /* Flush TX queue, remove descriptor ring */
575  efx_nic_fini_tx(tx_queue);
576 
577  efx_release_tx_buffers(tx_queue);
578 }
579 
580 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
581 {
582  int i;
583 
584  if (!tx_queue->buffer)
585  return;
586 
587  netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
588  "destroying TX queue %d\n", tx_queue->queue);
589  efx_nic_remove_tx(tx_queue);
590 
591  if (tx_queue->tsoh_page) {
592  for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
593  efx_nic_free_buffer(tx_queue->efx,
594  &tx_queue->tsoh_page[i]);
595  kfree(tx_queue->tsoh_page);
596  tx_queue->tsoh_page = NULL;
597  }
598 
599  kfree(tx_queue->buffer);
600  tx_queue->buffer = NULL;
601 }
602 
603 
604 /* Efx TCP segmentation acceleration.
605  *
606  * Why? Because by doing it here in the driver we can go significantly
607  * faster than the GSO.
608  *
609  * Requires TX checksum offload support.
610  */
611 
612 /* Number of bytes inserted at the start of a TSO header buffer,
613  * similar to NET_IP_ALIGN.
614  */
615 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
616 #define TSOH_OFFSET 0
617 #else
618 #define TSOH_OFFSET NET_IP_ALIGN
619 #endif
620 
621 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
622 
643 struct tso_state {
644  /* Output position */
645  unsigned out_len;
646  unsigned seqnum;
647  unsigned ipv4_id;
648  unsigned packet_space;
649 
650  /* Input position */
652  unsigned in_len;
653  unsigned unmap_len;
655  unsigned short dma_flags;
656 
658  unsigned int ip_off;
659  unsigned int tcp_off;
660  unsigned header_len;
661  unsigned int ip_base_len;
662 };
663 
664 
665 /*
666  * Verify that our various assumptions about sk_buffs and the conditions
667  * under which TSO will be attempted hold true. Return the protocol number.
668  */
669 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
670 {
671  __be16 protocol = skb->protocol;
672 
673  EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
674  protocol);
675  if (protocol == htons(ETH_P_8021Q)) {
676  struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
677  protocol = veh->h_vlan_encapsulated_proto;
678  }
679 
680  if (protocol == htons(ETH_P_IP)) {
681  EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
682  } else {
683  EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
684  EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
685  }
686  EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
687  + (tcp_hdr(skb)->doff << 2u)) >
688  skb_headlen(skb));
689 
690  return protocol;
691 }
692 
693 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
694  struct efx_tx_buffer *buffer, unsigned int len)
695 {
696  u8 *result;
697 
698  EFX_BUG_ON_PARANOID(buffer->len);
699  EFX_BUG_ON_PARANOID(buffer->flags);
701 
702  if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
703  unsigned index =
704  (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
705  struct efx_buffer *page_buf =
706  &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
707  unsigned offset =
709 
710  if (unlikely(!page_buf->addr) &&
711  efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE))
712  return NULL;
713 
714  result = (u8 *)page_buf->addr + offset;
715  buffer->dma_addr = page_buf->dma_addr + offset;
716  buffer->flags = EFX_TX_BUF_CONT;
717  } else {
718  tx_queue->tso_long_headers++;
719 
720  buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
721  if (unlikely(!buffer->heap_buf))
722  return NULL;
723  result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
725  }
726 
727  buffer->len = len;
728 
729  return result;
730 }
731 
741 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
742  dma_addr_t dma_addr, unsigned len,
743  struct efx_tx_buffer **final_buffer)
744 {
745  struct efx_tx_buffer *buffer;
746  struct efx_nic *efx = tx_queue->efx;
747  unsigned dma_len, insert_ptr;
748 
749  EFX_BUG_ON_PARANOID(len <= 0);
750 
751  while (1) {
752  insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
753  buffer = &tx_queue->buffer[insert_ptr];
754  ++tx_queue->insert_count;
755 
756  EFX_BUG_ON_PARANOID(tx_queue->insert_count -
757  tx_queue->read_count >=
758  efx->txq_entries);
759 
760  EFX_BUG_ON_PARANOID(buffer->len);
762  EFX_BUG_ON_PARANOID(buffer->flags);
763 
764  buffer->dma_addr = dma_addr;
765 
766  dma_len = efx_max_tx_len(efx, dma_addr);
767 
768  /* If there is enough space to send then do so */
769  if (dma_len >= len)
770  break;
771 
772  buffer->len = dma_len;
773  buffer->flags = EFX_TX_BUF_CONT;
774  dma_addr += dma_len;
775  len -= dma_len;
776  }
777 
778  EFX_BUG_ON_PARANOID(!len);
779  buffer->len = len;
780  *final_buffer = buffer;
781 }
782 
783 
784 /*
785  * Put a TSO header into the TX queue.
786  *
787  * This is special-cased because we know that it is small enough to fit in
788  * a single fragment, and we know it doesn't cross a page boundary. It
789  * also allows us to not worry about end-of-packet etc.
790  */
791 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
792  struct efx_tx_buffer *buffer, u8 *header)
793 {
794  if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
795  buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
796  header, buffer->len,
797  DMA_TO_DEVICE);
798  if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
799  buffer->dma_addr))) {
800  kfree(buffer->heap_buf);
801  buffer->len = 0;
802  buffer->flags = 0;
803  return -ENOMEM;
804  }
805  buffer->unmap_len = buffer->len;
806  buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
807  }
808 
809  ++tx_queue->insert_count;
810  return 0;
811 }
812 
813 
814 /* Remove buffers put into a tx_queue. None of the buffers must have
815  * an skb attached.
816  */
817 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
818 {
819  struct efx_tx_buffer *buffer;
820 
821  /* Work backwards until we hit the original insert pointer value */
822  while (tx_queue->insert_count != tx_queue->write_count) {
823  --tx_queue->insert_count;
824  buffer = &tx_queue->buffer[tx_queue->insert_count &
825  tx_queue->ptr_mask];
826  efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
827  }
828 }
829 
830 
831 /* Parse the SKB header and initialise state. */
832 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
833 {
834  st->ip_off = skb_network_header(skb) - skb->data;
835  st->tcp_off = skb_transport_header(skb) - skb->data;
836  st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
837  if (st->protocol == htons(ETH_P_IP)) {
838  st->ip_base_len = st->header_len - st->ip_off;
839  st->ipv4_id = ntohs(ip_hdr(skb)->id);
840  } else {
841  st->ip_base_len = st->header_len - st->tcp_off;
842  st->ipv4_id = 0;
843  }
844  st->seqnum = ntohl(tcp_hdr(skb)->seq);
845 
846  EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
847  EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
848  EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
849 
850  st->out_len = skb->len - st->header_len;
851  st->unmap_len = 0;
852  st->dma_flags = 0;
853 }
854 
855 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
856  skb_frag_t *frag)
857 {
858  st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
859  skb_frag_size(frag), DMA_TO_DEVICE);
860  if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
861  st->dma_flags = 0;
862  st->unmap_len = skb_frag_size(frag);
863  st->in_len = skb_frag_size(frag);
864  st->dma_addr = st->unmap_addr;
865  return 0;
866  }
867  return -ENOMEM;
868 }
869 
870 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
871  const struct sk_buff *skb)
872 {
873  int hl = st->header_len;
874  int len = skb_headlen(skb) - hl;
875 
876  st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
877  len, DMA_TO_DEVICE);
878  if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
880  st->unmap_len = len;
881  st->in_len = len;
882  st->dma_addr = st->unmap_addr;
883  return 0;
884  }
885  return -ENOMEM;
886 }
887 
888 
898 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
899  const struct sk_buff *skb,
900  struct tso_state *st)
901 {
902  struct efx_tx_buffer *buffer;
903  int n;
904 
905  if (st->in_len == 0)
906  return;
907  if (st->packet_space == 0)
908  return;
909 
910  EFX_BUG_ON_PARANOID(st->in_len <= 0);
912 
913  n = min(st->in_len, st->packet_space);
914 
915  st->packet_space -= n;
916  st->out_len -= n;
917  st->in_len -= n;
918 
919  efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
920 
921  if (st->out_len == 0) {
922  /* Transfer ownership of the skb */
923  buffer->skb = skb;
924  buffer->flags = EFX_TX_BUF_SKB;
925  } else if (st->packet_space != 0) {
926  buffer->flags = EFX_TX_BUF_CONT;
927  }
928 
929  if (st->in_len == 0) {
930  /* Transfer ownership of the DMA mapping */
931  buffer->unmap_len = st->unmap_len;
932  buffer->flags |= st->dma_flags;
933  st->unmap_len = 0;
934  }
935 
936  st->dma_addr += n;
937 }
938 
939 
949 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
950  const struct sk_buff *skb,
951  struct tso_state *st)
952 {
953  struct efx_tx_buffer *buffer =
954  &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
955  struct tcphdr *tsoh_th;
956  unsigned ip_length;
957  u8 *header;
958  int rc;
959 
960  /* Allocate and insert a DMA-mapped header buffer. */
961  header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
962  if (!header)
963  return -ENOMEM;
964 
965  tsoh_th = (struct tcphdr *)(header + st->tcp_off);
966 
967  /* Copy and update the headers. */
968  memcpy(header, skb->data, st->header_len);
969 
970  tsoh_th->seq = htonl(st->seqnum);
971  st->seqnum += skb_shinfo(skb)->gso_size;
972  if (st->out_len > skb_shinfo(skb)->gso_size) {
973  /* This packet will not finish the TSO burst. */
974  st->packet_space = skb_shinfo(skb)->gso_size;
975  tsoh_th->fin = 0;
976  tsoh_th->psh = 0;
977  } else {
978  /* This packet will be the last in the TSO burst. */
979  st->packet_space = st->out_len;
980  tsoh_th->fin = tcp_hdr(skb)->fin;
981  tsoh_th->psh = tcp_hdr(skb)->psh;
982  }
983  ip_length = st->ip_base_len + st->packet_space;
984 
985  if (st->protocol == htons(ETH_P_IP)) {
986  struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
987 
988  tsoh_iph->tot_len = htons(ip_length);
989 
990  /* Linux leaves suitable gaps in the IP ID space for us to fill. */
991  tsoh_iph->id = htons(st->ipv4_id);
992  st->ipv4_id++;
993  } else {
994  struct ipv6hdr *tsoh_iph =
995  (struct ipv6hdr *)(header + st->ip_off);
996 
997  tsoh_iph->payload_len = htons(ip_length);
998  }
999 
1000  rc = efx_tso_put_header(tx_queue, buffer, header);
1001  if (unlikely(rc))
1002  return rc;
1003 
1004  ++tx_queue->tso_packets;
1005 
1006  return 0;
1007 }
1008 
1009 
1021 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1022  struct sk_buff *skb)
1023 {
1024  struct efx_nic *efx = tx_queue->efx;
1025  int frag_i, rc;
1026  struct tso_state state;
1027 
1028  /* Find the packet protocol and sanity-check it */
1029  state.protocol = efx_tso_check_protocol(skb);
1030 
1031  EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1032 
1033  tso_start(&state, skb);
1034 
1035  /* Assume that skb header area contains exactly the headers, and
1036  * all payload is in the frag list.
1037  */
1038  if (skb_headlen(skb) == state.header_len) {
1039  /* Grab the first payload fragment. */
1040  EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1041  frag_i = 0;
1042  rc = tso_get_fragment(&state, efx,
1043  skb_shinfo(skb)->frags + frag_i);
1044  if (rc)
1045  goto mem_err;
1046  } else {
1047  rc = tso_get_head_fragment(&state, efx, skb);
1048  if (rc)
1049  goto mem_err;
1050  frag_i = -1;
1051  }
1052 
1053  if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1054  goto mem_err;
1055 
1056  while (1) {
1057  tso_fill_packet_with_fragment(tx_queue, skb, &state);
1058 
1059  /* Move onto the next fragment? */
1060  if (state.in_len == 0) {
1061  if (++frag_i >= skb_shinfo(skb)->nr_frags)
1062  /* End of payload reached. */
1063  break;
1064  rc = tso_get_fragment(&state, efx,
1065  skb_shinfo(skb)->frags + frag_i);
1066  if (rc)
1067  goto mem_err;
1068  }
1069 
1070  /* Start at new packet? */
1071  if (state.packet_space == 0 &&
1072  tso_start_new_packet(tx_queue, skb, &state) < 0)
1073  goto mem_err;
1074  }
1075 
1076  netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1077 
1078  /* Pass off to hardware */
1079  efx_nic_push_buffers(tx_queue);
1080 
1081  efx_tx_maybe_stop_queue(tx_queue);
1082 
1083  tx_queue->tso_bursts++;
1084  return NETDEV_TX_OK;
1085 
1086  mem_err:
1087  netif_err(efx, tx_err, efx->net_dev,
1088  "Out of memory for TSO headers, or DMA mapping error\n");
1089  dev_kfree_skb_any(skb);
1090 
1091  /* Free the DMA mapping we were in the process of writing out */
1092  if (state.unmap_len) {
1093  if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1094  dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1095  state.unmap_len, DMA_TO_DEVICE);
1096  else
1097  dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1098  state.unmap_len, DMA_TO_DEVICE);
1099  }
1100 
1101  efx_enqueue_unwind(tx_queue);
1102  return NETDEV_TX_OK;
1103 }