Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dw_apb_timer.c
Go to the documentation of this file.
1 /*
2  * (C) Copyright 2009 Intel Corporation
3  * Author: Jacob Pan ([email protected])
4  *
5  * Shared with ARM platforms, Jamie Iles, Picochip 2011
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Support for the Synopsys DesignWare APB Timers.
12  */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
23 
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
29 
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
34 
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
39 
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43  return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45 
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49  return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51 
52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54  return readl(timer->base + offs);
55 }
56 
57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
58  unsigned long offs)
59 {
60  writel(val, timer->base + offs);
61 }
62 
63 static void apbt_disable_int(struct dw_apb_timer *timer)
64 {
65  unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
66 
67  ctrl |= APBTMR_CONTROL_INT;
68  apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
69 }
70 
77 {
78  disable_irq(dw_ced->timer.irq);
79  apbt_disable_int(&dw_ced->timer);
80 }
81 
82 static void apbt_eoi(struct dw_apb_timer *timer)
83 {
84  apbt_readl(timer, APBTMR_N_EOI);
85 }
86 
87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
88 {
89  struct clock_event_device *evt = data;
90  struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
91 
92  if (!evt->event_handler) {
93  pr_info("Spurious APBT timer interrupt %d", irq);
94  return IRQ_NONE;
95  }
96 
97  if (dw_ced->eoi)
98  dw_ced->eoi(&dw_ced->timer);
99 
100  evt->event_handler(evt);
101  return IRQ_HANDLED;
102 }
103 
104 static void apbt_enable_int(struct dw_apb_timer *timer)
105 {
106  unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
107  /* clear pending intr */
108  apbt_readl(timer, APBTMR_N_EOI);
109  ctrl &= ~APBTMR_CONTROL_INT;
110  apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
111 }
112 
113 static void apbt_set_mode(enum clock_event_mode mode,
114  struct clock_event_device *evt)
115 {
116  unsigned long ctrl;
117  unsigned long period;
118  struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119 
120  pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
121  mode);
122 
123  switch (mode) {
124  case CLOCK_EVT_MODE_PERIODIC:
125  period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
126  ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
128  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129  /*
130  * DW APB p. 46, have to disable timer before load counter,
131  * may cause sync problem.
132  */
133  ctrl &= ~APBTMR_CONTROL_ENABLE;
134  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135  udelay(1);
136  pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
137  apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
138  ctrl |= APBTMR_CONTROL_ENABLE;
139  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
140  break;
141 
142  case CLOCK_EVT_MODE_ONESHOT:
143  ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
144  /*
145  * set free running mode, this mode will let timer reload max
146  * timeout which will give time (3min on 25MHz clock) to rearm
147  * the next event, therefore emulate the one-shot mode.
148  */
149  ctrl &= ~APBTMR_CONTROL_ENABLE;
151 
152  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
153  /* write again to set free running mode */
154  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
155 
156  /*
157  * DW APB p. 46, load counter with all 1s before starting free
158  * running mode.
159  */
160  apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
161  ctrl &= ~APBTMR_CONTROL_INT;
162  ctrl |= APBTMR_CONTROL_ENABLE;
163  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
164  break;
165 
166  case CLOCK_EVT_MODE_UNUSED:
167  case CLOCK_EVT_MODE_SHUTDOWN:
168  ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
169  ctrl &= ~APBTMR_CONTROL_ENABLE;
170  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171  break;
172 
173  case CLOCK_EVT_MODE_RESUME:
174  apbt_enable_int(&dw_ced->timer);
175  break;
176  }
177 }
178 
179 static int apbt_next_event(unsigned long delta,
180  struct clock_event_device *evt)
181 {
182  unsigned long ctrl;
183  struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
184 
185  /* Disable timer */
186  ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
187  ctrl &= ~APBTMR_CONTROL_ENABLE;
188  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189  /* write new count */
190  apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
191  ctrl |= APBTMR_CONTROL_ENABLE;
192  apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 
194  return 0;
195 }
196 
215 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
216  void __iomem *base, int irq, unsigned long freq)
217 {
218  struct dw_apb_clock_event_device *dw_ced =
219  kzalloc(sizeof(*dw_ced), GFP_KERNEL);
220  int err;
221 
222  if (!dw_ced)
223  return NULL;
224 
225  dw_ced->timer.base = base;
226  dw_ced->timer.irq = irq;
227  dw_ced->timer.freq = freq;
228 
229  clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
230  dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
231  &dw_ced->ced);
232  dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
233  dw_ced->ced.cpumask = cpumask_of(cpu);
234  dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
235  dw_ced->ced.set_mode = apbt_set_mode;
236  dw_ced->ced.set_next_event = apbt_next_event;
237  dw_ced->ced.irq = dw_ced->timer.irq;
238  dw_ced->ced.rating = rating;
239  dw_ced->ced.name = name;
240 
241  dw_ced->irqaction.name = dw_ced->ced.name;
242  dw_ced->irqaction.handler = dw_apb_clockevent_irq;
243  dw_ced->irqaction.dev_id = &dw_ced->ced;
244  dw_ced->irqaction.irq = irq;
245  dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
248 
249  dw_ced->eoi = apbt_eoi;
250  err = setup_irq(irq, &dw_ced->irqaction);
251  if (err) {
252  pr_err("failed to request timer irq\n");
253  kfree(dw_ced);
254  dw_ced = NULL;
255  }
256 
257  return dw_ced;
258 }
259 
266 {
267  enable_irq(dw_ced->timer.irq);
268 }
269 
276 {
277  free_irq(dw_ced->timer.irq, &dw_ced->ced);
278 }
279 
286 {
287  apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
289  apbt_enable_int(&dw_ced->timer);
290 }
291 
301 {
302  /*
303  * start count down from 0xffff_ffff. this is done by toggling the
304  * enable bit then load initial load count to ~0.
305  */
306  unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
307 
308  ctrl &= ~APBTMR_CONTROL_ENABLE;
309  apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
310  apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
311  /* enable, mask interrupt */
314  apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
315  /* read it once to get cached counter value initialized */
317 }
318 
319 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
320 {
321  unsigned long current_count;
322  struct dw_apb_clocksource *dw_cs =
323  clocksource_to_dw_apb_clocksource(cs);
324 
325  current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
326 
327  return (cycle_t)~current_count;
328 }
329 
330 static void apbt_restart_clocksource(struct clocksource *cs)
331 {
332  struct dw_apb_clocksource *dw_cs =
333  clocksource_to_dw_apb_clocksource(cs);
334 
336 }
337 
350 struct dw_apb_clocksource *
351 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
352  unsigned long freq)
353 {
354  struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
355 
356  if (!dw_cs)
357  return NULL;
358 
359  dw_cs->timer.base = base;
360  dw_cs->timer.freq = freq;
361  dw_cs->cs.name = name;
362  dw_cs->cs.rating = rating;
363  dw_cs->cs.read = __apbt_read_clocksource;
364  dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
365  dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
366  dw_cs->cs.resume = apbt_restart_clocksource;
367 
368  return dw_cs;
369 }
370 
377 {
378  clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
379 }
380 
387 {
388  return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
389 }
390 
397 {
398  clocksource_unregister(&dw_cs->cs);
399 
400  kfree(dw_cs);
401 }