Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eeprom_4k.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23  return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28  return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35  struct ath_common *common = ath9k_hw_common(ah);
36  u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37  int addr, eep_start_loc = 64;
38 
39  for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40  if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41  ath_dbg(common, EEPROM,
42  "Unable to read eeprom region\n");
43  return false;
44  }
45  eep_data++;
46  }
47 
48  return true;
49 }
50 
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53  u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54 
56 
57  return true;
58 }
59 
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62  struct ath_common *common = ath9k_hw_common(ah);
63 
64  if (!ath9k_hw_use_flash(ah)) {
65  ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
66  }
67 
68  if (common->bus_ops->ath_bus_type == ATH_USB)
69  return __ath9k_hw_usb_4k_fill_eeprom(ah);
70  else
71  return __ath9k_hw_4k_fill_eeprom(ah);
72 }
73 
74 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
75 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
76  struct modal_eep_4k_header *modal_hdr)
77 {
78  PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
79  PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80  PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81  PR_EEP("Switch Settle", modal_hdr->switchSettling);
82  PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
83  PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
84  PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
85  PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
86  PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
87  PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
88  PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
89  PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
90  PR_EEP("CCA Threshold)", modal_hdr->thresh62);
91  PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
92  PR_EEP("xpdGain", modal_hdr->xpdGain);
93  PR_EEP("External PD", modal_hdr->xpd);
94  PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
95  PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
96  PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
97  PR_EEP("O/D Bias Version", modal_hdr->version);
98  PR_EEP("CCK OutputBias", modal_hdr->ob_0);
99  PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
100  PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
101  PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
102  PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
103  PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
104  PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
105  PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
106  PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
107  PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
108  PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
109  PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
110  PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
111  PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
112  PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
113  PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
114  PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
115  PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
116  PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
117  PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
118  PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
119  PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
120  PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
121  PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
122  PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
123  PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
124  PR_EEP("TX Diversity", modal_hdr->tx_diversity);
125 
126  return len;
127 }
128 
129 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
130  u8 *buf, u32 len, u32 size)
131 {
132  struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
133  struct base_eep_header_4k *pBase = &eep->baseEepHeader;
134 
135  if (!dump_base_hdr) {
136  len += snprintf(buf + len, size - len,
137  "%20s :\n", "2GHz modal Header");
138  len = ath9k_dump_4k_modal_eeprom(buf, len, size,
139  &eep->modalHeader);
140  goto out;
141  }
142 
143  PR_EEP("Major Version", pBase->version >> 12);
144  PR_EEP("Minor Version", pBase->version & 0xFFF);
145  PR_EEP("Checksum", pBase->checksum);
146  PR_EEP("Length", pBase->length);
147  PR_EEP("RegDomain1", pBase->regDmn[0]);
148  PR_EEP("RegDomain2", pBase->regDmn[1]);
149  PR_EEP("TX Mask", pBase->txMask);
150  PR_EEP("RX Mask", pBase->rxMask);
151  PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
152  PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
153  PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
155  PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
157  PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
159  PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
161  PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
162  PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
163  PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
164  PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
165  PR_EEP("TX Gain type", pBase->txGainType);
166 
167  len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
168  pBase->macAddr);
169 
170 out:
171  if (len > size)
172  len = size;
173 
174  return len;
175 }
176 #else
177 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
178  u8 *buf, u32 len, u32 size)
179 {
180  return 0;
181 }
182 #endif
183 
184 
185 #undef SIZE_EEPROM_4K
186 
187 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
188 {
189 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
190  struct ath_common *common = ath9k_hw_common(ah);
191  struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
192  u16 *eepdata, temp, magic, magic2;
193  u32 sum = 0, el;
194  bool need_swap = false;
195  int i, addr;
196 
197 
198  if (!ath9k_hw_use_flash(ah)) {
200  &magic)) {
201  ath_err(common, "Reading Magic # failed\n");
202  return false;
203  }
204 
205  ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
206 
207  if (magic != AR5416_EEPROM_MAGIC) {
208  magic2 = swab16(magic);
209 
210  if (magic2 == AR5416_EEPROM_MAGIC) {
211  need_swap = true;
212  eepdata = (u16 *) (&ah->eeprom);
213 
214  for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
215  temp = swab16(*eepdata);
216  *eepdata = temp;
217  eepdata++;
218  }
219  } else {
220  ath_err(common,
221  "Invalid EEPROM Magic. Endianness mismatch.\n");
222  return -EINVAL;
223  }
224  }
225  }
226 
227  ath_dbg(common, EEPROM, "need_swap = %s\n",
228  need_swap ? "True" : "False");
229 
230  if (need_swap)
231  el = swab16(ah->eeprom.map4k.baseEepHeader.length);
232  else
233  el = ah->eeprom.map4k.baseEepHeader.length;
234 
235  if (el > sizeof(struct ar5416_eeprom_4k))
236  el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
237  else
238  el = el / sizeof(u16);
239 
240  eepdata = (u16 *)(&ah->eeprom);
241 
242  for (i = 0; i < el; i++)
243  sum ^= *eepdata++;
244 
245  if (need_swap) {
246  u32 integer;
247  u16 word;
248 
249  ath_dbg(common, EEPROM,
250  "EEPROM Endianness is not native.. Changing\n");
251 
252  word = swab16(eep->baseEepHeader.length);
253  eep->baseEepHeader.length = word;
254 
255  word = swab16(eep->baseEepHeader.checksum);
256  eep->baseEepHeader.checksum = word;
257 
258  word = swab16(eep->baseEepHeader.version);
259  eep->baseEepHeader.version = word;
260 
261  word = swab16(eep->baseEepHeader.regDmn[0]);
262  eep->baseEepHeader.regDmn[0] = word;
263 
264  word = swab16(eep->baseEepHeader.regDmn[1]);
265  eep->baseEepHeader.regDmn[1] = word;
266 
267  word = swab16(eep->baseEepHeader.rfSilent);
268  eep->baseEepHeader.rfSilent = word;
269 
270  word = swab16(eep->baseEepHeader.blueToothOptions);
271  eep->baseEepHeader.blueToothOptions = word;
272 
273  word = swab16(eep->baseEepHeader.deviceCap);
274  eep->baseEepHeader.deviceCap = word;
275 
276  integer = swab32(eep->modalHeader.antCtrlCommon);
277  eep->modalHeader.antCtrlCommon = integer;
278 
279  for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
280  integer = swab32(eep->modalHeader.antCtrlChain[i]);
281  eep->modalHeader.antCtrlChain[i] = integer;
282  }
283 
284  for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
285  word = swab16(eep->modalHeader.spurChans[i].spurChan);
286  eep->modalHeader.spurChans[i].spurChan = word;
287  }
288  }
289 
290  if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
291  ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
292  ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
293  sum, ah->eep_ops->get_eeprom_ver(ah));
294  return -EINVAL;
295  }
296 
297  return 0;
298 #undef EEPROM_4K_SIZE
299 }
300 
301 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
302  enum eeprom_param param)
303 {
304  struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
305  struct modal_eep_4k_header *pModal = &eep->modalHeader;
306  struct base_eep_header_4k *pBase = &eep->baseEepHeader;
307  u16 ver_minor;
308 
309  ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
310 
311  switch (param) {
312  case EEP_NFTHRESH_2:
313  return pModal->noiseFloorThreshCh[0];
314  case EEP_MAC_LSW:
315  return get_unaligned_be16(pBase->macAddr);
316  case EEP_MAC_MID:
317  return get_unaligned_be16(pBase->macAddr + 2);
318  case EEP_MAC_MSW:
319  return get_unaligned_be16(pBase->macAddr + 4);
320  case EEP_REG_0:
321  return pBase->regDmn[0];
322  case EEP_OP_CAP:
323  return pBase->deviceCap;
324  case EEP_OP_MODE:
325  return pBase->opCapFlags;
326  case EEP_RF_SILENT:
327  return pBase->rfSilent;
328  case EEP_OB_2:
329  return pModal->ob_0;
330  case EEP_DB_2:
331  return pModal->db1_1;
332  case EEP_MINOR_REV:
333  return ver_minor;
334  case EEP_TX_MASK:
335  return pBase->txMask;
336  case EEP_RX_MASK:
337  return pBase->rxMask;
338  case EEP_FRAC_N_5G:
339  return 0;
342  case EEP_MODAL_VER:
343  return pModal->version;
344  case EEP_ANT_DIV_CTL1:
345  return pModal->antdiv_ctl1;
346  case EEP_TXGAIN_TYPE:
347  return pBase->txGainType;
348  case EEP_ANTENNA_GAIN_2G:
349  return pModal->antennaGainCh[0];
350  default:
351  return 0;
352  }
353 }
354 
355 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
356  struct ath9k_channel *chan)
357 {
358  struct ath_common *common = ath9k_hw_common(ah);
359  struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
360  struct cal_data_per_freq_4k *pRawDataset;
361  u8 *pCalBChans = NULL;
362  u16 pdGainOverlap_t2;
363  static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
364  u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
365  u16 numPiers, i, j;
366  u16 numXpdGain, xpdMask;
367  u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
368  u32 reg32, regOffset, regChainOffset;
369 
370  xpdMask = pEepData->modalHeader.xpdGain;
371 
372  if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
374  pdGainOverlap_t2 =
375  pEepData->modalHeader.pdGainOverlap;
376  } else {
377  pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
379  }
380 
381  pCalBChans = pEepData->calFreqPier2G;
383 
384  numXpdGain = 0;
385 
386  for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
387  if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
388  if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
389  break;
390  xpdGainValues[numXpdGain] =
392  numXpdGain++;
393  }
394  }
395 
397  (numXpdGain - 1) & 0x3);
399  xpdGainValues[0]);
401  xpdGainValues[1]);
403 
404  for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
405  regChainOffset = i * 0x1000;
406 
407  if (pEepData->baseEepHeader.txMask & (1 << i)) {
408  pRawDataset = pEepData->calPierData2G[i];
409 
411  pRawDataset, pCalBChans,
412  numPiers, pdGainOverlap_t2,
413  gainBoundaries,
414  pdadcValues, numXpdGain);
415 
417 
418  REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
419  SM(pdGainOverlap_t2,
421  | SM(gainBoundaries[0],
423  | SM(gainBoundaries[1],
425  | SM(gainBoundaries[2],
427  | SM(gainBoundaries[3],
429 
430  regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
431  for (j = 0; j < 32; j++) {
432  reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
433  REG_WRITE(ah, regOffset, reg32);
434 
435  ath_dbg(common, EEPROM,
436  "PDADC (%d,%4x): %4.4x %8.8x\n",
437  i, regChainOffset, regOffset,
438  reg32);
439  ath_dbg(common, EEPROM,
440  "PDADC: Chain %d | "
441  "PDADC %3d Value %3d | "
442  "PDADC %3d Value %3d | "
443  "PDADC %3d Value %3d | "
444  "PDADC %3d Value %3d |\n",
445  i, 4 * j, pdadcValues[4 * j],
446  4 * j + 1, pdadcValues[4 * j + 1],
447  4 * j + 2, pdadcValues[4 * j + 2],
448  4 * j + 3, pdadcValues[4 * j + 3]);
449 
450  regOffset += 4;
451  }
452 
454  }
455  }
456 }
457 
458 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
459  struct ath9k_channel *chan,
460  int16_t *ratesArray,
461  u16 cfgCtl,
462  u16 antenna_reduction,
463  u16 powerLimit)
464 {
465 #define CMP_TEST_GRP \
466  (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
467  pEepData->ctlIndex[i]) \
468  || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
469  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
470 
471  int i;
472  u16 twiceMinEdgePower;
473  u16 twiceMaxEdgePower;
474  u16 scaledPower = 0, minCtlPower;
475  u16 numCtlModes;
476  const u16 *pCtlMode;
477  u16 ctlMode, freq;
478  struct chan_centers centers;
479  struct cal_ctl_data_4k *rep;
480  struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
481  struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
482  0, { 0, 0, 0, 0}
483  };
484  struct cal_target_power_leg targetPowerOfdmExt = {
485  0, { 0, 0, 0, 0} }, targetPowerCckExt = {
486  0, { 0, 0, 0, 0 }
487  };
488  struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
489  0, {0, 0, 0, 0}
490  };
491  static const u16 ctlModesFor11g[] = {
494  };
495 
496  ath9k_hw_get_channel_centers(ah, chan, &centers);
497 
498  scaledPower = powerLimit - antenna_reduction;
499  numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
500  pCtlMode = ctlModesFor11g;
501 
503  pEepData->calTargetPowerCck,
505  &targetPowerCck, 4, false);
507  pEepData->calTargetPower2G,
509  &targetPowerOfdm, 4, false);
511  pEepData->calTargetPower2GHT20,
513  &targetPowerHt20, 8, false);
514 
515  if (IS_CHAN_HT40(chan)) {
516  numCtlModes = ARRAY_SIZE(ctlModesFor11g);
518  pEepData->calTargetPower2GHT40,
520  &targetPowerHt40, 8, true);
522  pEepData->calTargetPowerCck,
524  &targetPowerCckExt, 4, true);
526  pEepData->calTargetPower2G,
528  &targetPowerOfdmExt, 4, true);
529  }
530 
531  for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
532  bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
533  (pCtlMode[ctlMode] == CTL_2GHT40);
534 
535  if (isHt40CtlMode)
536  freq = centers.synth_center;
537  else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
538  freq = centers.ext_center;
539  else
540  freq = centers.ctl_center;
541 
542  twiceMaxEdgePower = MAX_RATE_POWER;
543 
544  for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
545  pEepData->ctlIndex[i]; i++) {
546 
547  if (CMP_TEST_GRP) {
548  rep = &(pEepData->ctlData[i]);
549 
550  twiceMinEdgePower = ath9k_hw_get_max_edge_power(
551  freq,
552  rep->ctlEdges[
554  IS_CHAN_2GHZ(chan),
556 
557  if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
558  twiceMaxEdgePower =
559  min(twiceMaxEdgePower,
560  twiceMinEdgePower);
561  } else {
562  twiceMaxEdgePower = twiceMinEdgePower;
563  break;
564  }
565  }
566  }
567 
568  minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
569 
570  switch (pCtlMode[ctlMode]) {
571  case CTL_11B:
572  for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
573  targetPowerCck.tPow2x[i] =
574  min((u16)targetPowerCck.tPow2x[i],
575  minCtlPower);
576  }
577  break;
578  case CTL_11G:
579  for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
580  targetPowerOfdm.tPow2x[i] =
581  min((u16)targetPowerOfdm.tPow2x[i],
582  minCtlPower);
583  }
584  break;
585  case CTL_2GHT20:
586  for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
587  targetPowerHt20.tPow2x[i] =
588  min((u16)targetPowerHt20.tPow2x[i],
589  minCtlPower);
590  }
591  break;
592  case CTL_11B_EXT:
593  targetPowerCckExt.tPow2x[0] =
594  min((u16)targetPowerCckExt.tPow2x[0],
595  minCtlPower);
596  break;
597  case CTL_11G_EXT:
598  targetPowerOfdmExt.tPow2x[0] =
599  min((u16)targetPowerOfdmExt.tPow2x[0],
600  minCtlPower);
601  break;
602  case CTL_2GHT40:
603  for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
604  targetPowerHt40.tPow2x[i] =
605  min((u16)targetPowerHt40.tPow2x[i],
606  minCtlPower);
607  }
608  break;
609  default:
610  break;
611  }
612  }
613 
614  ratesArray[rate6mb] =
615  ratesArray[rate9mb] =
616  ratesArray[rate12mb] =
617  ratesArray[rate18mb] =
618  ratesArray[rate24mb] =
619  targetPowerOfdm.tPow2x[0];
620 
621  ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
622  ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
623  ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
624  ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
625 
626  for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
627  ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
628 
629  ratesArray[rate1l] = targetPowerCck.tPow2x[0];
630  ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
631  ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
632  ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
633 
634  if (IS_CHAN_HT40(chan)) {
635  for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
636  ratesArray[rateHt40_0 + i] =
637  targetPowerHt40.tPow2x[i];
638  }
639  ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
640  ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
641  ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
642  ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
643  }
644 
645 #undef CMP_TEST_GRP
646 }
647 
648 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
649  struct ath9k_channel *chan,
650  u16 cfgCtl,
651  u8 twiceAntennaReduction,
652  u8 powerLimit, bool test)
653 {
654  struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
655  struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
656  struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
657  int16_t ratesArray[Ar5416RateSize];
659  int i;
660 
661  memset(ratesArray, 0, sizeof(ratesArray));
662 
663  if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
665  ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
666  }
667 
668  ath9k_hw_set_4k_power_per_rate_table(ah, chan,
669  &ratesArray[0], cfgCtl,
670  twiceAntennaReduction,
671  powerLimit);
672 
673  ath9k_hw_set_4k_power_cal_table(ah, chan);
674 
675  regulatory->max_power_level = 0;
676  for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
677  if (ratesArray[i] > MAX_RATE_POWER)
678  ratesArray[i] = MAX_RATE_POWER;
679 
680  if (ratesArray[i] > regulatory->max_power_level)
681  regulatory->max_power_level = ratesArray[i];
682  }
683 
684  if (test)
685  return;
686 
687  for (i = 0; i < Ar5416RateSize; i++)
688  ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
689 
691 
692  /* OFDM power per rate */
694  ATH9K_POW_SM(ratesArray[rate18mb], 24)
695  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
696  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
697  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
699  ATH9K_POW_SM(ratesArray[rate54mb], 24)
700  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
701  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
702  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
703 
704  /* CCK power per rate */
706  ATH9K_POW_SM(ratesArray[rate2s], 24)
707  | ATH9K_POW_SM(ratesArray[rate2l], 16)
708  | ATH9K_POW_SM(ratesArray[rateXr], 8)
709  | ATH9K_POW_SM(ratesArray[rate1l], 0));
711  ATH9K_POW_SM(ratesArray[rate11s], 24)
712  | ATH9K_POW_SM(ratesArray[rate11l], 16)
713  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
714  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
715 
716  /* HT20 power per rate */
718  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
719  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
720  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
721  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
723  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
724  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
725  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
726  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
727 
728  /* HT40 power per rate */
729  if (IS_CHAN_HT40(chan)) {
731  ATH9K_POW_SM(ratesArray[rateHt40_3] +
732  ht40PowerIncForPdadc, 24)
733  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
734  ht40PowerIncForPdadc, 16)
735  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
736  ht40PowerIncForPdadc, 8)
737  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
738  ht40PowerIncForPdadc, 0));
740  ATH9K_POW_SM(ratesArray[rateHt40_7] +
741  ht40PowerIncForPdadc, 24)
742  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
743  ht40PowerIncForPdadc, 16)
744  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
745  ht40PowerIncForPdadc, 8)
746  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
747  ht40PowerIncForPdadc, 0));
749  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
750  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
751  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
752  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
753  }
754 
756 }
757 
758 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
759  struct modal_eep_4k_header *pModal,
760  struct ar5416_eeprom_4k *eep,
761  u8 txRxAttenLocal)
762 {
764  pModal->antCtrlChain[0]);
765 
767  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
772 
773  if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
775  txRxAttenLocal = pModal->txRxAttenCh[0];
776 
783  pModal->xatten2Margin[0]);
786 
787  /* Set the block 1 value to block 0 value */
788  REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
790  pModal->bswMargin[0]);
791  REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
793  REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
795  pModal->xatten2Margin[0]);
796  REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
798  pModal->xatten2Db[0]);
799  }
800 
802  AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
805 
806  REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
807  AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
808  REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
810 }
811 
812 /*
813  * Read EEPROM header info and program the device for correct operation
814  * given the channel value.
815  */
816 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
817  struct ath9k_channel *chan)
818 {
819  struct modal_eep_4k_header *pModal;
820  struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
821  struct base_eep_header_4k *pBase = &eep->baseEepHeader;
822  u8 txRxAttenLocal;
823  u8 ob[5], db1[5], db2[5];
824  u8 ant_div_control1, ant_div_control2;
825  u8 bb_desired_scale;
826  u32 regVal;
827 
828  pModal = &eep->modalHeader;
829  txRxAttenLocal = 23;
830 
832 
833  /* Single chain for 4K EEPROM*/
834  ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
835 
836  /* Initialize Ant Diversity settings from EEPROM */
837  if (pModal->version >= 3) {
838  ant_div_control1 = pModal->antdiv_ctl1;
839  ant_div_control2 = pModal->antdiv_ctl2;
840 
841  regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
842  regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
843 
844  regVal |= SM(ant_div_control1,
846  regVal |= SM(ant_div_control2,
848  regVal |= SM((ant_div_control2 >> 2),
850  regVal |= SM((ant_div_control1 >> 1),
852  regVal |= SM((ant_div_control1 >> 2),
854 
855 
857  regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
858  regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
860  regVal |= SM((ant_div_control1 >> 3),
862 
863  REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
864  regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
865  }
866 
867  if (pModal->version >= 2) {
868  ob[0] = pModal->ob_0;
869  ob[1] = pModal->ob_1;
870  ob[2] = pModal->ob_2;
871  ob[3] = pModal->ob_3;
872  ob[4] = pModal->ob_4;
873 
874  db1[0] = pModal->db1_0;
875  db1[1] = pModal->db1_1;
876  db1[2] = pModal->db1_2;
877  db1[3] = pModal->db1_3;
878  db1[4] = pModal->db1_4;
879 
880  db2[0] = pModal->db2_0;
881  db2[1] = pModal->db2_1;
882  db2[2] = pModal->db2_2;
883  db2[3] = pModal->db2_3;
884  db2[4] = pModal->db2_4;
885  } else if (pModal->version == 1) {
886  ob[0] = pModal->ob_0;
887  ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
888  db1[0] = pModal->db1_0;
889  db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
890  db2[0] = pModal->db2_0;
891  db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
892  } else {
893  int i;
894 
895  for (i = 0; i < 5; i++) {
896  ob[i] = pModal->ob_0;
897  db1[i] = pModal->db1_0;
898  db2[i] = pModal->db1_0;
899  }
900  }
901 
902  if (AR_SREV_9271(ah)) {
907  ob[0]);
912  ob[1]);
917  ob[2]);
922  db1[0]);
927  db2[0]);
928  } else {
933  ob[0]);
938  ob[1]);
943  ob[2]);
948  ob[3]);
953  ob[4]);
954 
959  db1[0]);
964  db1[1]);
969  db1[2]);
974  db1[3]);
978  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
979 
984  db2[0]);
989  db2[1]);
994  db2[2]);
999  db2[3]);
1004  db2[4]);
1005  }
1006 
1007 
1009  pModal->switchSettling);
1011  pModal->adcDesiredSize);
1012 
1018 
1020  pModal->txEndToRxOn);
1021 
1022  if (AR_SREV_9271_10(ah))
1024  pModal->txEndToRxOn);
1026  pModal->thresh62);
1028  pModal->thresh62);
1029 
1030  if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1033  pModal->txFrameToDataStart);
1035  pModal->txFrameToPaOn);
1036  }
1037 
1038  if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1040  if (IS_CHAN_HT40(chan))
1043  pModal->swSettleHt40);
1044  }
1045 
1046  bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1048  if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1049  u32 pwrctrl, mask, clr;
1050 
1051  mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1052  pwrctrl = mask * bb_desired_scale;
1053  clr = mask * 0x1f;
1054  REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1055  REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1056  REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1057 
1058  mask = BIT(0)|BIT(5)|BIT(15);
1059  pwrctrl = mask * bb_desired_scale;
1060  clr = mask * 0x1f;
1061  REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1062 
1063  mask = BIT(0)|BIT(5);
1064  pwrctrl = mask * bb_desired_scale;
1065  clr = mask * 0x1f;
1066  REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1067  REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1068  }
1069 }
1070 
1071 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1072 {
1073 #define EEP_MAP4K_SPURCHAN \
1074  (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1075  struct ath_common *common = ath9k_hw_common(ah);
1076 
1077  u16 spur_val = AR_NO_SPUR;
1078 
1079  ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1080  i, is2GHz, ah->config.spurchans[i][is2GHz]);
1081 
1082  switch (ah->config.spurmode) {
1083  case SPUR_DISABLE:
1084  break;
1085  case SPUR_ENABLE_IOCTL:
1086  spur_val = ah->config.spurchans[i][is2GHz];
1087  ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1088  spur_val);
1089  break;
1090  case SPUR_ENABLE_EEPROM:
1091  spur_val = EEP_MAP4K_SPURCHAN;
1092  break;
1093  }
1094 
1095  return spur_val;
1096 
1097 #undef EEP_MAP4K_SPURCHAN
1098 }
1099 
1100 const struct eeprom_ops eep_4k_ops = {
1101  .check_eeprom = ath9k_hw_4k_check_eeprom,
1102  .get_eeprom = ath9k_hw_4k_get_eeprom,
1103  .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1104  .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1105  .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1106  .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1107  .set_board_values = ath9k_hw_4k_set_board_values,
1108  .set_txpower = ath9k_hw_4k_set_txpower,
1109  .get_spur_channel = ath9k_hw_4k_get_spur_channel
1110 };