Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ems_usb.c
Go to the documentation of this file.
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/usb.h>
25 
26 #include <linux/can.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 
30 MODULE_AUTHOR("Sebastian Haas <[email protected]>");
31 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
32 MODULE_LICENSE("GPL v2");
33 
34 /* Control-Values for CPC_Control() Command Subject Selection */
35 #define CONTR_CAN_MESSAGE 0x04
36 #define CONTR_CAN_STATE 0x0C
37 #define CONTR_BUS_ERROR 0x1C
38 
39 /* Control Command Actions */
40 #define CONTR_CONT_OFF 0
41 #define CONTR_CONT_ON 1
42 #define CONTR_ONCE 2
43 
44 /* Messages from CPC to PC */
45 #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
46 #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
47 #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
48 #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
49 #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
50 #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
51 #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
52 #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
53 #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
54 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
55 #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
56 
57 /* Messages from the PC to the CPC interface */
58 #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
59 #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
60 #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
61 #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
62 #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
63 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
64 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
65 #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
66 
67 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
68 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
69 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
70 
71 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
72 
73 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
74 
75 /* Overrun types */
76 #define CPC_OVR_EVENT_CAN 0x01
77 #define CPC_OVR_EVENT_CANSTATE 0x02
78 #define CPC_OVR_EVENT_BUSERROR 0x04
79 
80 /*
81  * If the CAN controller lost a message we indicate it with the highest bit
82  * set in the count field.
83  */
84 #define CPC_OVR_HW 0x80
85 
86 /* Size of the "struct ems_cpc_msg" without the union */
87 #define CPC_MSG_HEADER_LEN 11
88 #define CPC_CAN_MSG_MIN_SIZE 5
89 
90 /* Define these values to match your devices */
91 #define USB_CPCUSB_VENDOR_ID 0x12D6
92 
93 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
94 
95 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
96 #define SJA1000_MOD_NORMAL 0x00
97 #define SJA1000_MOD_RM 0x01
98 
99 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
100 #define SJA1000_ECC_SEG 0x1F
101 #define SJA1000_ECC_DIR 0x20
102 #define SJA1000_ECC_ERR 0x06
103 #define SJA1000_ECC_BIT 0x00
104 #define SJA1000_ECC_FORM 0x40
105 #define SJA1000_ECC_STUFF 0x80
106 #define SJA1000_ECC_MASK 0xc0
107 
108 /* Status register content */
109 #define SJA1000_SR_BS 0x80
110 #define SJA1000_SR_ES 0x40
111 
112 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
113 
114 /*
115  * The device actually uses a 16MHz clock to generate the CAN clock
116  * but it expects SJA1000 bit settings based on 8MHz (is internally
117  * converted).
118  */
119 #define EMS_USB_ARM7_CLOCK 8000000
120 
121 /*
122  * CAN-Message representation in a CPC_MSG. Message object type is
123  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
124  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
125  */
126 struct cpc_can_msg {
129  u8 msg[8];
130 };
131 
132 /* Representation of the CAN parameters for the SJA1000 controller */
146 };
147 
148 /* CAN params message representation */
151 
152  /* Will support M16C CAN controller in the future */
153  union {
155  } cc_params;
156 };
157 
158 /* Structure for confirmed message handling */
159 struct cpc_confirm {
160  u8 error; /* error code */
161 };
162 
163 /* Structure for overrun conditions */
164 struct cpc_overrun {
167 };
168 
169 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
174 };
175 
176 /* structure for CAN error conditions */
179 
180  struct {
182 
183  /* Other controllers may also provide error code capture regs */
184  union {
186  } regs;
187  } cc;
188 };
189 
190 /*
191  * Structure containing RX/TX error counter. This structure is used to request
192  * the values of the CAN controllers TX and RX error counter.
193  */
197 };
198 
199 /* Main message type used between library and application */
201  u8 type; /* type of message */
202  u8 length; /* length of data within union 'msg' */
203  u8 msgid; /* confirmation handle */
204  u32 ts_sec; /* timestamp in seconds */
205  u32 ts_nsec; /* timestamp in nano seconds */
206 
207  union {
208  u8 generic[64];
216  } msg;
217 };
218 
219 /*
220  * Table of devices that work with this driver
221  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
222  */
223 static struct usb_device_id ems_usb_table[] = {
225  {} /* Terminating entry */
226 };
227 
228 MODULE_DEVICE_TABLE(usb, ems_usb_table);
229 
230 #define RX_BUFFER_SIZE 64
231 #define CPC_HEADER_SIZE 4
232 #define INTR_IN_BUFFER_SIZE 4
233 
234 #define MAX_RX_URBS 10
235 #define MAX_TX_URBS 10
236 
237 struct ems_usb;
238 
240  struct ems_usb *dev;
241 
244 };
245 
246 struct ems_usb {
247  struct can_priv can; /* must be the first member */
249 
250  struct sk_buff *echo_skb[MAX_TX_URBS];
251 
252  struct usb_device *udev;
254 
256  struct usb_anchor tx_submitted;
257  struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
258 
259  struct usb_anchor rx_submitted;
260 
261  struct urb *intr_urb;
262 
264 
266  unsigned int free_slots; /* remember number of available slots */
267 
268  struct ems_cpc_msg active_params; /* active controller parameters */
269 };
270 
271 static void ems_usb_read_interrupt_callback(struct urb *urb)
272 {
273  struct ems_usb *dev = urb->context;
274  struct net_device *netdev = dev->netdev;
275  int err;
276 
277  if (!netif_device_present(netdev))
278  return;
279 
280  switch (urb->status) {
281  case 0:
282  dev->free_slots = dev->intr_in_buffer[1];
283  break;
284 
285  case -ECONNRESET: /* unlink */
286  case -ENOENT:
287  case -ESHUTDOWN:
288  return;
289 
290  default:
291  netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
292  break;
293  }
294 
295  err = usb_submit_urb(urb, GFP_ATOMIC);
296 
297  if (err == -ENODEV)
298  netif_device_detach(netdev);
299  else if (err)
300  netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
301 }
302 
303 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
304 {
305  struct can_frame *cf;
306  struct sk_buff *skb;
307  int i;
308  struct net_device_stats *stats = &dev->netdev->stats;
309 
310  skb = alloc_can_skb(dev->netdev, &cf);
311  if (skb == NULL)
312  return;
313 
314  cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
315  cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
316 
317  if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
319  cf->can_id |= CAN_EFF_FLAG;
320 
321  if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
323  cf->can_id |= CAN_RTR_FLAG;
324  } else {
325  for (i = 0; i < cf->can_dlc; i++)
326  cf->data[i] = msg->msg.can_msg.msg[i];
327  }
328 
329  netif_rx(skb);
330 
331  stats->rx_packets++;
332  stats->rx_bytes += cf->can_dlc;
333 }
334 
335 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
336 {
337  struct can_frame *cf;
338  struct sk_buff *skb;
339  struct net_device_stats *stats = &dev->netdev->stats;
340 
341  skb = alloc_can_err_skb(dev->netdev, &cf);
342  if (skb == NULL)
343  return;
344 
345  if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
346  u8 state = msg->msg.can_state;
347 
348  if (state & SJA1000_SR_BS) {
349  dev->can.state = CAN_STATE_BUS_OFF;
350  cf->can_id |= CAN_ERR_BUSOFF;
351 
352  can_bus_off(dev->netdev);
353  } else if (state & SJA1000_SR_ES) {
354  dev->can.state = CAN_STATE_ERROR_WARNING;
355  dev->can.can_stats.error_warning++;
356  } else {
357  dev->can.state = CAN_STATE_ERROR_ACTIVE;
358  dev->can.can_stats.error_passive++;
359  }
360  } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
361  u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
362  u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
363  u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
364 
365  /* bus error interrupt */
366  dev->can.can_stats.bus_error++;
367  stats->rx_errors++;
368 
370 
371  switch (ecc & SJA1000_ECC_MASK) {
372  case SJA1000_ECC_BIT:
373  cf->data[2] |= CAN_ERR_PROT_BIT;
374  break;
375  case SJA1000_ECC_FORM:
376  cf->data[2] |= CAN_ERR_PROT_FORM;
377  break;
378  case SJA1000_ECC_STUFF:
379  cf->data[2] |= CAN_ERR_PROT_STUFF;
380  break;
381  default:
382  cf->data[2] |= CAN_ERR_PROT_UNSPEC;
383  cf->data[3] = ecc & SJA1000_ECC_SEG;
384  break;
385  }
386 
387  /* Error occurred during transmission? */
388  if ((ecc & SJA1000_ECC_DIR) == 0)
389  cf->data[2] |= CAN_ERR_PROT_TX;
390 
391  if (dev->can.state == CAN_STATE_ERROR_WARNING ||
392  dev->can.state == CAN_STATE_ERROR_PASSIVE) {
393  cf->data[1] = (txerr > rxerr) ?
395  }
396  } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
397  cf->can_id |= CAN_ERR_CRTL;
398  cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
399 
400  stats->rx_over_errors++;
401  stats->rx_errors++;
402  }
403 
404  netif_rx(skb);
405 
406  stats->rx_packets++;
407  stats->rx_bytes += cf->can_dlc;
408 }
409 
410 /*
411  * callback for bulk IN urb
412  */
413 static void ems_usb_read_bulk_callback(struct urb *urb)
414 {
415  struct ems_usb *dev = urb->context;
416  struct net_device *netdev;
417  int retval;
418 
419  netdev = dev->netdev;
420 
421  if (!netif_device_present(netdev))
422  return;
423 
424  switch (urb->status) {
425  case 0: /* success */
426  break;
427 
428  case -ENOENT:
429  return;
430 
431  default:
432  netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
433  goto resubmit_urb;
434  }
435 
436  if (urb->actual_length > CPC_HEADER_SIZE) {
437  struct ems_cpc_msg *msg;
438  u8 *ibuf = urb->transfer_buffer;
439  u8 msg_count, again, start;
440 
441  msg_count = ibuf[0] & ~0x80;
442  again = ibuf[0] & 0x80;
443 
444  start = CPC_HEADER_SIZE;
445 
446  while (msg_count) {
447  msg = (struct ems_cpc_msg *)&ibuf[start];
448 
449  switch (msg->type) {
451  /* Process CAN state changes */
452  ems_usb_rx_err(dev, msg);
453  break;
454 
459  ems_usb_rx_can_msg(dev, msg);
460  break;
461 
463  /* Process errorframe */
464  ems_usb_rx_err(dev, msg);
465  break;
466 
468  /* Message lost while receiving */
469  ems_usb_rx_err(dev, msg);
470  break;
471  }
472 
473  start += CPC_MSG_HEADER_LEN + msg->length;
474  msg_count--;
475 
476  if (start > urb->transfer_buffer_length) {
477  netdev_err(netdev, "format error\n");
478  break;
479  }
480  }
481  }
482 
483 resubmit_urb:
484  usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
485  urb->transfer_buffer, RX_BUFFER_SIZE,
486  ems_usb_read_bulk_callback, dev);
487 
488  retval = usb_submit_urb(urb, GFP_ATOMIC);
489 
490  if (retval == -ENODEV)
491  netif_device_detach(netdev);
492  else if (retval)
493  netdev_err(netdev,
494  "failed resubmitting read bulk urb: %d\n", retval);
495 }
496 
497 /*
498  * callback for bulk IN urb
499  */
500 static void ems_usb_write_bulk_callback(struct urb *urb)
501 {
502  struct ems_tx_urb_context *context = urb->context;
503  struct ems_usb *dev;
504  struct net_device *netdev;
505 
506  BUG_ON(!context);
507 
508  dev = context->dev;
509  netdev = dev->netdev;
510 
511  /* free up our allocated buffer */
512  usb_free_coherent(urb->dev, urb->transfer_buffer_length,
513  urb->transfer_buffer, urb->transfer_dma);
514 
515  atomic_dec(&dev->active_tx_urbs);
516 
517  if (!netif_device_present(netdev))
518  return;
519 
520  if (urb->status)
521  netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
522 
523  netdev->trans_start = jiffies;
524 
525  /* transmission complete interrupt */
526  netdev->stats.tx_packets++;
527  netdev->stats.tx_bytes += context->dlc;
528 
529  can_get_echo_skb(netdev, context->echo_index);
530 
531  /* Release context */
532  context->echo_index = MAX_TX_URBS;
533 
534  if (netif_queue_stopped(netdev))
535  netif_wake_queue(netdev);
536 }
537 
538 /*
539  * Send the given CPC command synchronously
540  */
541 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
542 {
543  int actual_length;
544 
545  /* Copy payload */
547  msg->length + CPC_MSG_HEADER_LEN);
548 
549  /* Clear header */
550  memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
551 
552  return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
553  &dev->tx_msg_buffer[0],
555  &actual_length, 1000);
556 }
557 
558 /*
559  * Change CAN controllers' mode register
560  */
561 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
562 {
563  dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
564 
565  return ems_usb_command_msg(dev, &dev->active_params);
566 }
567 
568 /*
569  * Send a CPC_Control command to change behaviour when interface receives a CAN
570  * message, bus error or CAN state changed notifications.
571  */
572 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
573 {
574  struct ems_cpc_msg cmd;
575 
576  cmd.type = CPC_CMD_TYPE_CONTROL;
577  cmd.length = CPC_MSG_HEADER_LEN + 1;
578 
579  cmd.msgid = 0;
580 
581  cmd.msg.generic[0] = val;
582 
583  return ems_usb_command_msg(dev, &cmd);
584 }
585 
586 /*
587  * Start interface
588  */
589 static int ems_usb_start(struct ems_usb *dev)
590 {
591  struct net_device *netdev = dev->netdev;
592  int err, i;
593 
594  dev->intr_in_buffer[0] = 0;
595  dev->free_slots = 15; /* initial size */
596 
597  for (i = 0; i < MAX_RX_URBS; i++) {
598  struct urb *urb = NULL;
599  u8 *buf = NULL;
600 
601  /* create a URB, and a buffer for it */
602  urb = usb_alloc_urb(0, GFP_KERNEL);
603  if (!urb) {
604  netdev_err(netdev, "No memory left for URBs\n");
605  err = -ENOMEM;
606  break;
607  }
608 
610  &urb->transfer_dma);
611  if (!buf) {
612  netdev_err(netdev, "No memory left for USB buffer\n");
613  usb_free_urb(urb);
614  err = -ENOMEM;
615  break;
616  }
617 
618  usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
619  buf, RX_BUFFER_SIZE,
620  ems_usb_read_bulk_callback, dev);
621  urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
622  usb_anchor_urb(urb, &dev->rx_submitted);
623 
624  err = usb_submit_urb(urb, GFP_KERNEL);
625  if (err) {
626  usb_unanchor_urb(urb);
628  urb->transfer_dma);
629  break;
630  }
631 
632  /* Drop reference, USB core will take care of freeing it */
633  usb_free_urb(urb);
634  }
635 
636  /* Did we submit any URBs */
637  if (i == 0) {
638  netdev_warn(netdev, "couldn't setup read URBs\n");
639  return err;
640  }
641 
642  /* Warn if we've couldn't transmit all the URBs */
643  if (i < MAX_RX_URBS)
644  netdev_warn(netdev, "rx performance may be slow\n");
645 
646  /* Setup and start interrupt URB */
647  usb_fill_int_urb(dev->intr_urb, dev->udev,
648  usb_rcvintpipe(dev->udev, 1),
649  dev->intr_in_buffer,
651  ems_usb_read_interrupt_callback, dev, 1);
652 
653  err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
654  if (err) {
655  netdev_warn(netdev, "intr URB submit failed: %d\n", err);
656 
657  return err;
658  }
659 
660  /* CPC-USB will transfer received message to host */
661  err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
662  if (err)
663  goto failed;
664 
665  /* CPC-USB will transfer CAN state changes to host */
666  err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
667  if (err)
668  goto failed;
669 
670  /* CPC-USB will transfer bus errors to host */
671  err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
672  if (err)
673  goto failed;
674 
675  err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
676  if (err)
677  goto failed;
678 
679  dev->can.state = CAN_STATE_ERROR_ACTIVE;
680 
681  return 0;
682 
683 failed:
684  netdev_warn(netdev, "couldn't submit control: %d\n", err);
685 
686  return err;
687 }
688 
689 static void unlink_all_urbs(struct ems_usb *dev)
690 {
691  int i;
692 
693  usb_unlink_urb(dev->intr_urb);
694 
696 
698  atomic_set(&dev->active_tx_urbs, 0);
699 
700  for (i = 0; i < MAX_TX_URBS; i++)
701  dev->tx_contexts[i].echo_index = MAX_TX_URBS;
702 }
703 
704 static int ems_usb_open(struct net_device *netdev)
705 {
706  struct ems_usb *dev = netdev_priv(netdev);
707  int err;
708 
709  err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
710  if (err)
711  return err;
712 
713  /* common open */
714  err = open_candev(netdev);
715  if (err)
716  return err;
717 
718  /* finally start device */
719  err = ems_usb_start(dev);
720  if (err) {
721  if (err == -ENODEV)
723 
724  netdev_warn(netdev, "couldn't start device: %d\n", err);
725 
726  close_candev(netdev);
727 
728  return err;
729  }
730 
731  dev->open_time = jiffies;
732 
733  netif_start_queue(netdev);
734 
735  return 0;
736 }
737 
738 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
739 {
740  struct ems_usb *dev = netdev_priv(netdev);
741  struct ems_tx_urb_context *context = NULL;
742  struct net_device_stats *stats = &netdev->stats;
743  struct can_frame *cf = (struct can_frame *)skb->data;
744  struct ems_cpc_msg *msg;
745  struct urb *urb;
746  u8 *buf;
747  int i, err;
749  + sizeof(struct cpc_can_msg);
750 
751  if (can_dropped_invalid_skb(netdev, skb))
752  return NETDEV_TX_OK;
753 
754  /* create a URB, and a buffer for it, and copy the data to the URB */
755  urb = usb_alloc_urb(0, GFP_ATOMIC);
756  if (!urb) {
757  netdev_err(netdev, "No memory left for URBs\n");
758  goto nomem;
759  }
760 
761  buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
762  if (!buf) {
763  netdev_err(netdev, "No memory left for USB buffer\n");
764  usb_free_urb(urb);
765  goto nomem;
766  }
767 
768  msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
769 
770  msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
771  msg->msg.can_msg.length = cf->can_dlc;
772 
773  if (cf->can_id & CAN_RTR_FLAG) {
774  msg->type = cf->can_id & CAN_EFF_FLAG ?
776 
778  } else {
779  msg->type = cf->can_id & CAN_EFF_FLAG ?
781 
782  for (i = 0; i < cf->can_dlc; i++)
783  msg->msg.can_msg.msg[i] = cf->data[i];
784 
785  msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
786  }
787 
788  /* Respect byte order */
789  msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
790 
791  for (i = 0; i < MAX_TX_URBS; i++) {
792  if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
793  context = &dev->tx_contexts[i];
794  break;
795  }
796  }
797 
798  /*
799  * May never happen! When this happens we'd more URBs in flight as
800  * allowed (MAX_TX_URBS).
801  */
802  if (!context) {
803  usb_unanchor_urb(urb);
804  usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
805 
806  netdev_warn(netdev, "couldn't find free context\n");
807 
808  return NETDEV_TX_BUSY;
809  }
810 
811  context->dev = dev;
812  context->echo_index = i;
813  context->dlc = cf->can_dlc;
814 
815  usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
816  size, ems_usb_write_bulk_callback, context);
817  urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
818  usb_anchor_urb(urb, &dev->tx_submitted);
819 
820  can_put_echo_skb(skb, netdev, context->echo_index);
821 
822  atomic_inc(&dev->active_tx_urbs);
823 
824  err = usb_submit_urb(urb, GFP_ATOMIC);
825  if (unlikely(err)) {
826  can_free_echo_skb(netdev, context->echo_index);
827 
828  usb_unanchor_urb(urb);
829  usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
830  dev_kfree_skb(skb);
831 
832  atomic_dec(&dev->active_tx_urbs);
833 
834  if (err == -ENODEV) {
835  netif_device_detach(netdev);
836  } else {
837  netdev_warn(netdev, "failed tx_urb %d\n", err);
838 
839  stats->tx_dropped++;
840  }
841  } else {
842  netdev->trans_start = jiffies;
843 
844  /* Slow down tx path */
845  if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
846  dev->free_slots < 5) {
847  netif_stop_queue(netdev);
848  }
849  }
850 
851  /*
852  * Release our reference to this URB, the USB core will eventually free
853  * it entirely.
854  */
855  usb_free_urb(urb);
856 
857  return NETDEV_TX_OK;
858 
859 nomem:
860  dev_kfree_skb(skb);
861  stats->tx_dropped++;
862 
863  return NETDEV_TX_OK;
864 }
865 
866 static int ems_usb_close(struct net_device *netdev)
867 {
868  struct ems_usb *dev = netdev_priv(netdev);
869 
870  /* Stop polling */
871  unlink_all_urbs(dev);
872 
873  netif_stop_queue(netdev);
874 
875  /* Set CAN controller to reset mode */
876  if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
877  netdev_warn(netdev, "couldn't stop device");
878 
879  close_candev(netdev);
880 
881  dev->open_time = 0;
882 
883  return 0;
884 }
885 
886 static const struct net_device_ops ems_usb_netdev_ops = {
887  .ndo_open = ems_usb_open,
888  .ndo_stop = ems_usb_close,
889  .ndo_start_xmit = ems_usb_start_xmit,
890 };
891 
892 static const struct can_bittiming_const ems_usb_bittiming_const = {
893  .name = "ems_usb",
894  .tseg1_min = 1,
895  .tseg1_max = 16,
896  .tseg2_min = 1,
897  .tseg2_max = 8,
898  .sjw_max = 4,
899  .brp_min = 1,
900  .brp_max = 64,
901  .brp_inc = 1,
902 };
903 
904 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
905 {
906  struct ems_usb *dev = netdev_priv(netdev);
907 
908  if (!dev->open_time)
909  return -EINVAL;
910 
911  switch (mode) {
912  case CAN_MODE_START:
913  if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
914  netdev_warn(netdev, "couldn't start device");
915 
916  if (netif_queue_stopped(netdev))
917  netif_wake_queue(netdev);
918  break;
919 
920  default:
921  return -EOPNOTSUPP;
922  }
923 
924  return 0;
925 }
926 
927 static int ems_usb_set_bittiming(struct net_device *netdev)
928 {
929  struct ems_usb *dev = netdev_priv(netdev);
930  struct can_bittiming *bt = &dev->can.bittiming;
931  u8 btr0, btr1;
932 
933  btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
934  btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
935  (((bt->phase_seg2 - 1) & 0x7) << 4);
936  if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
937  btr1 |= 0x80;
938 
939  netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
940 
941  dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
942  dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
943 
944  return ems_usb_command_msg(dev, &dev->active_params);
945 }
946 
947 static void init_params_sja1000(struct ems_cpc_msg *msg)
948 {
949  struct cpc_sja1000_params *sja1000 =
950  &msg->msg.can_params.cc_params.sja1000;
951 
953  msg->length = sizeof(struct cpc_can_params);
954  msg->msgid = 0;
955 
956  msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
957 
958  /* Acceptance filter open */
959  sja1000->acc_code0 = 0x00;
960  sja1000->acc_code1 = 0x00;
961  sja1000->acc_code2 = 0x00;
962  sja1000->acc_code3 = 0x00;
963 
964  /* Acceptance filter open */
965  sja1000->acc_mask0 = 0xFF;
966  sja1000->acc_mask1 = 0xFF;
967  sja1000->acc_mask2 = 0xFF;
968  sja1000->acc_mask3 = 0xFF;
969 
970  sja1000->btr0 = 0;
971  sja1000->btr1 = 0;
972 
974  sja1000->mode = SJA1000_MOD_RM;
975 }
976 
977 /*
978  * probe function for new CPC-USB devices
979  */
980 static int ems_usb_probe(struct usb_interface *intf,
981  const struct usb_device_id *id)
982 {
983  struct net_device *netdev;
984  struct ems_usb *dev;
985  int i, err = -ENOMEM;
986 
987  netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
988  if (!netdev) {
989  dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
990  return -ENOMEM;
991  }
992 
993  dev = netdev_priv(netdev);
994 
995  dev->udev = interface_to_usbdev(intf);
996  dev->netdev = netdev;
997 
998  dev->can.state = CAN_STATE_STOPPED;
999  dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1000  dev->can.bittiming_const = &ems_usb_bittiming_const;
1001  dev->can.do_set_bittiming = ems_usb_set_bittiming;
1002  dev->can.do_set_mode = ems_usb_set_mode;
1003  dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1004 
1005  netdev->netdev_ops = &ems_usb_netdev_ops;
1006 
1007  netdev->flags |= IFF_ECHO; /* we support local echo */
1008 
1009  init_usb_anchor(&dev->rx_submitted);
1010 
1011  init_usb_anchor(&dev->tx_submitted);
1012  atomic_set(&dev->active_tx_urbs, 0);
1013 
1014  for (i = 0; i < MAX_TX_URBS; i++)
1015  dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1016 
1017  dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1018  if (!dev->intr_urb) {
1019  dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1020  goto cleanup_candev;
1021  }
1022 
1024  if (!dev->intr_in_buffer) {
1025  dev_err(&intf->dev, "Couldn't alloc Intr buffer\n");
1026  goto cleanup_intr_urb;
1027  }
1028 
1029  dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1030  sizeof(struct ems_cpc_msg), GFP_KERNEL);
1031  if (!dev->tx_msg_buffer) {
1032  dev_err(&intf->dev, "Couldn't alloc Tx buffer\n");
1033  goto cleanup_intr_in_buffer;
1034  }
1035 
1036  usb_set_intfdata(intf, dev);
1037 
1038  SET_NETDEV_DEV(netdev, &intf->dev);
1039 
1040  init_params_sja1000(&dev->active_params);
1041 
1042  err = ems_usb_command_msg(dev, &dev->active_params);
1043  if (err) {
1044  netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1045  goto cleanup_tx_msg_buffer;
1046  }
1047 
1048  err = register_candev(netdev);
1049  if (err) {
1050  netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1051  goto cleanup_tx_msg_buffer;
1052  }
1053 
1054  return 0;
1055 
1056 cleanup_tx_msg_buffer:
1057  kfree(dev->tx_msg_buffer);
1058 
1059 cleanup_intr_in_buffer:
1060  kfree(dev->intr_in_buffer);
1061 
1062 cleanup_intr_urb:
1063  usb_free_urb(dev->intr_urb);
1064 
1065 cleanup_candev:
1066  free_candev(netdev);
1067 
1068  return err;
1069 }
1070 
1071 /*
1072  * called by the usb core when the device is removed from the system
1073  */
1074 static void ems_usb_disconnect(struct usb_interface *intf)
1075 {
1076  struct ems_usb *dev = usb_get_intfdata(intf);
1077 
1078  usb_set_intfdata(intf, NULL);
1079 
1080  if (dev) {
1081  unregister_netdev(dev->netdev);
1082  free_candev(dev->netdev);
1083 
1084  unlink_all_urbs(dev);
1085 
1086  usb_free_urb(dev->intr_urb);
1087 
1088  kfree(dev->intr_in_buffer);
1089  }
1090 }
1091 
1092 /* usb specific object needed to register this driver with the usb subsystem */
1093 static struct usb_driver ems_usb_driver = {
1094  .name = "ems_usb",
1095  .probe = ems_usb_probe,
1096  .disconnect = ems_usb_disconnect,
1097  .id_table = ems_usb_table,
1098 };
1099 
1100 module_usb_driver(ems_usb_driver);