Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fmdrv_common.c
Go to the documentation of this file.
1 /*
2  * FM Driver for Connectivity chip of Texas Instruments.
3  *
4  * This sub-module of FM driver is common for FM RX and TX
5  * functionality. This module is responsible for:
6  * 1) Forming group of Channel-8 commands to perform particular
7  * functionality (eg., frequency set require more than
8  * one Channel-8 command to be sent to the chip).
9  * 2) Sending each Channel-8 command to the chip and reading
10  * response back over Shared Transport.
11  * 3) Managing TX and RX Queues and Tasklets.
12  * 4) Handling FM Interrupt packet and taking appropriate action.
13  * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  * firmware files based on mode selection)
15  *
16  * Copyright (C) 2011 Texas Instruments
17  * Author: Raja Mani <[email protected]>
18  * Author: Manjunatha Halli <[email protected]>
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License version 2 as
22  * published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44 
45 /* Region info */
46 static struct region_info region_configs[] = {
47  /* Europe/US */
48  {
49  .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50  .bot_freq = 87500, /* 87.5 MHz */
51  .top_freq = 108000, /* 108 MHz */
52  .fm_band = 0,
53  },
54  /* Japan */
55  {
56  .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57  .bot_freq = 76000, /* 76 MHz */
58  .top_freq = 90000, /* 90 MHz */
59  .fm_band = 1,
60  },
61 };
62 
63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67 
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72 
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77 
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104 
105 /*
106  * When FM common module receives interrupt packet, following handlers
107  * will be executed one after another to service the interrupt(s)
108  */
112 
113  /* HW malfunction irq handler */
115 
116  /* RDS threshold reached irq handler */
121 
122  /* Tune operation ended irq handler */
124 
125  /* TX power enable irq handler */
127 
128  /* Low RSSI irq handler */
143 
144  /* Interrupt process post action */
147 };
148 
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151  fm_irq_send_flag_getcmd,
152  fm_irq_handle_flag_getcmd_resp,
153  fm_irq_handle_hw_malfunction,
154  fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155  fm_irq_send_rdsdata_getcmd,
156  fm_irq_handle_rdsdata_getcmd_resp,
157  fm_irq_handle_rds_finish,
158  fm_irq_handle_tune_op_ended,
159  fm_irq_handle_power_enb, /* TX power enable irq handler */
160  fm_irq_handle_low_rssi_start,
161  fm_irq_afjump_set_pi,
162  fm_irq_handle_set_pi_resp,
163  fm_irq_afjump_set_pimask,
164  fm_irq_handle_set_pimask_resp,
165  fm_irq_afjump_setfreq,
166  fm_irq_handle_setfreq_resp,
167  fm_irq_afjump_enableint,
168  fm_irq_afjump_enableint_resp,
169  fm_irq_start_afjump,
170  fm_irq_handle_start_afjump_resp,
171  fm_irq_afjump_rd_freq,
172  fm_irq_afjump_rd_freq_resp,
173  fm_irq_handle_low_rssi_finish,
174  fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175  fm_irq_handle_intmsk_cmd_resp
176 };
177 
178 long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180 
181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183  fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185 
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189  fmdev->irq_info.stage = stage;
190  fm_irq_call(fmdev);
191 }
192 
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195  fmdev->irq_info.stage = stage;
196  mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198 
199 #ifdef FM_DUMP_TXRX_PKT
200  /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203  int len, len_org;
204  u8 index;
205  struct fm_cmd_msg_hdr *cmd_hdr;
206 
207  cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208  printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209  fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210  cmd_hdr->len, cmd_hdr->op,
211  cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212 
213  len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214  if (len_org > 0) {
215  printk("\n data(%d): ", cmd_hdr->dlen);
216  len = min(len_org, 14);
217  for (index = 0; index < len; index++)
218  printk("%x ",
219  skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220  printk("%s", (len_org > 14) ? ".." : "");
221  }
222  printk("\n");
223 }
224 
225  /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228  int len, len_org;
229  u8 index;
230  struct fm_event_msg_hdr *evt_hdr;
231 
232  evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233  printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234  "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235  evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236  (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237 
238  len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239  if (len_org > 0) {
240  printk("\n data(%d): ", evt_hdr->dlen);
241  len = min(len_org, 14);
242  for (index = 0; index < len; index++)
243  printk("%x ",
244  skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245  printk("%s", (len_org > 14) ? ".." : "");
246  }
247  printk("\n");
248 }
249 #endif
250 
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253  fmdev->rx.region = region_configs[region_to_set];
254 }
255 
256 /*
257  * FM common sub-module will schedule this tasklet whenever it receives
258  * FM packet from ST driver.
259  */
260 static void recv_tasklet(unsigned long arg)
261 {
262  struct fmdev *fmdev;
263  struct fm_irq *irq_info;
264  struct fm_event_msg_hdr *evt_hdr;
265  struct sk_buff *skb;
267  unsigned long flags;
268 
269  fmdev = (struct fmdev *)arg;
270  irq_info = &fmdev->irq_info;
271  /* Process all packets in the RX queue */
272  while ((skb = skb_dequeue(&fmdev->rx_q))) {
273  if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274  fmerr("skb(%p) has only %d bytes, "
275  "at least need %zu bytes to decode\n", skb,
276  skb->len, sizeof(struct fm_event_msg_hdr));
277  kfree_skb(skb);
278  continue;
279  }
280 
281  evt_hdr = (void *)skb->data;
282  num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283 
284  /* FM interrupt packet? */
285  if (evt_hdr->op == FM_INTERRUPT) {
286  /* FM interrupt handler started already? */
287  if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288  set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289  if (irq_info->stage != 0) {
290  fmerr("Inval stage resetting to zero\n");
291  irq_info->stage = 0;
292  }
293 
294  /*
295  * Execute first function in interrupt handler
296  * table.
297  */
298  irq_info->handlers[irq_info->stage](fmdev);
299  } else {
301  }
302  kfree_skb(skb);
303  }
304  /* Anyone waiting for this with completion handler? */
305  else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306 
307  spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308  fmdev->resp_skb = skb;
309  spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310  complete(fmdev->resp_comp);
311 
312  fmdev->resp_comp = NULL;
313  atomic_set(&fmdev->tx_cnt, 1);
314  }
315  /* Is this for interrupt handler? */
316  else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317  if (fmdev->resp_skb != NULL)
318  fmerr("Response SKB ptr not NULL\n");
319 
320  spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321  fmdev->resp_skb = skb;
322  spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323 
324  /* Execute interrupt handler where state index points */
325  irq_info->handlers[irq_info->stage](fmdev);
326 
327  kfree_skb(skb);
328  atomic_set(&fmdev->tx_cnt, 1);
329  } else {
330  fmerr("Nobody claimed SKB(%p),purging\n", skb);
331  }
332 
333  /*
334  * Check flow control field. If Num_FM_HCI_Commands field is
335  * not zero, schedule FM TX tasklet.
336  */
337  if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338  if (!skb_queue_empty(&fmdev->tx_q))
339  tasklet_schedule(&fmdev->tx_task);
340  }
341 }
342 
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
345 {
346  struct fmdev *fmdev;
347  struct sk_buff *skb;
348  int len;
349 
350  fmdev = (struct fmdev *)arg;
351 
352  if (!atomic_read(&fmdev->tx_cnt))
353  return;
354 
355  /* Check, is there any timeout happened to last transmitted packet */
356  if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357  fmerr("TX timeout occurred\n");
358  atomic_set(&fmdev->tx_cnt, 1);
359  }
360 
361  /* Send queued FM TX packets */
362  skb = skb_dequeue(&fmdev->tx_q);
363  if (!skb)
364  return;
365 
366  atomic_dec(&fmdev->tx_cnt);
367  fmdev->pre_op = fm_cb(skb)->fm_op;
368 
369  if (fmdev->resp_comp != NULL)
370  fmerr("Response completion handler is not NULL\n");
371 
372  fmdev->resp_comp = fm_cb(skb)->completion;
373 
374  /* Write FM packet to ST driver */
375  len = g_st_write(skb);
376  if (len < 0) {
377  kfree_skb(skb);
378  fmdev->resp_comp = NULL;
379  fmerr("TX tasklet failed to send skb(%p)\n", skb);
380  atomic_set(&fmdev->tx_cnt, 1);
381  } else {
382  fmdev->last_tx_jiffies = jiffies;
383  }
384 }
385 
386 /*
387  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388  * transmission
389  */
390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391  int payload_len, struct completion *wait_completion)
392 {
393  struct sk_buff *skb;
394  struct fm_cmd_msg_hdr *hdr;
395  int size;
396 
397  if (fm_op >= FM_INTERRUPT) {
398  fmerr("Invalid fm opcode - %d\n", fm_op);
399  return -EINVAL;
400  }
401  if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402  fmerr("Payload data is NULL during fw download\n");
403  return -EINVAL;
404  }
405  if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406  size =
407  FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408  else
409  size = payload_len;
410 
411  skb = alloc_skb(size, GFP_ATOMIC);
412  if (!skb) {
413  fmerr("No memory to create new SKB\n");
414  return -ENOMEM;
415  }
416  /*
417  * Don't fill FM header info for the commands which come from
418  * FM firmware file.
419  */
420  if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421  test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422  /* Fill command header info */
423  hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424  hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
425 
426  /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427  hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428 
429  /* FM opcode */
430  hdr->op = fm_op;
431 
432  /* read/write type */
433  hdr->rd_wr = type;
434  hdr->dlen = payload_len;
435  fm_cb(skb)->fm_op = fm_op;
436 
437  /*
438  * If firmware download has finished and the command is
439  * not a read command then payload is != NULL - a write
440  * command with u16 payload - convert to be16
441  */
442  if (payload != NULL)
443  *(u16 *)payload = cpu_to_be16(*(u16 *)payload);
444 
445  } else if (payload != NULL) {
446  fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447  }
448  if (payload != NULL)
449  memcpy(skb_put(skb, payload_len), payload, payload_len);
450 
451  fm_cb(skb)->completion = wait_completion;
452  skb_queue_tail(&fmdev->tx_q, skb);
453  tasklet_schedule(&fmdev->tx_task);
454 
455  return 0;
456 }
457 
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460  unsigned int payload_len, void *response, int *response_len)
461 {
462  struct sk_buff *skb;
463  struct fm_event_msg_hdr *evt_hdr;
464  unsigned long flags;
465  int ret;
466 
467  init_completion(&fmdev->maintask_comp);
468  ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469  &fmdev->maintask_comp);
470  if (ret)
471  return ret;
472 
475  fmerr("Timeout(%d sec),didn't get reg"
476  "completion signal from RX tasklet\n",
478  return -ETIMEDOUT;
479  }
480  if (!fmdev->resp_skb) {
481  fmerr("Response SKB is missing\n");
482  return -EFAULT;
483  }
484  spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485  skb = fmdev->resp_skb;
486  fmdev->resp_skb = NULL;
487  spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488 
489  evt_hdr = (void *)skb->data;
490  if (evt_hdr->status != 0) {
491  fmerr("Received event pkt status(%d) is not zero\n",
492  evt_hdr->status);
493  kfree_skb(skb);
494  return -EIO;
495  }
496  /* Send response data to caller */
497  if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498  /* Skip header info and copy only response data */
499  skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500  memcpy(response, skb->data, evt_hdr->dlen);
501  *response_len = evt_hdr->dlen;
502  } else if (response_len != NULL && evt_hdr->dlen == 0) {
503  *response_len = 0;
504  }
505  kfree_skb(skb);
506 
507  return 0;
508 }
509 
510 /* --- Helper functions used in FM interrupt handlers ---*/
511 static inline int check_cmdresp_status(struct fmdev *fmdev,
512  struct sk_buff **skb)
513 {
514  struct fm_event_msg_hdr *fm_evt_hdr;
515  unsigned long flags;
516 
517  del_timer(&fmdev->irq_info.timer);
518 
519  spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520  *skb = fmdev->resp_skb;
521  fmdev->resp_skb = NULL;
522  spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523 
524  fm_evt_hdr = (void *)(*skb)->data;
525  if (fm_evt_hdr->status != 0) {
526  fmerr("irq: opcode %x response status is not zero "
527  "Initiating irq recovery process\n",
528  fm_evt_hdr->op);
529 
530  mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531  return -1;
532  }
533 
534  return 0;
535 }
536 
537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538 {
539  struct sk_buff *skb;
540 
541  if (!check_cmdresp_status(fmdev, &skb))
542  fm_irq_call_stage(fmdev, stage);
543 }
544 
545 /*
546  * Interrupt process timeout handler.
547  * One of the irq handler did not get proper response from the chip. So take
548  * recovery action here. FM interrupts are disabled in the beginning of
549  * interrupt process. Therefore reset stage index to re-enable default
550  * interrupts. So that next interrupt will be processed as usual.
551  */
552 static void int_timeout_handler(unsigned long data)
553 {
554  struct fmdev *fmdev;
555  struct fm_irq *fmirq;
556 
557  fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558  fmdev = (struct fmdev *)data;
559  fmirq = &fmdev->irq_info;
560  fmirq->retry++;
561 
562  if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563  /* Stop recovery action (interrupt reenable process) and
564  * reset stage index & retry count values */
565  fmirq->stage = 0;
566  fmirq->retry = 0;
567  fmerr("Recovery action failed during"
568  "irq processing, max retry reached\n");
569  return;
570  }
571  fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572 }
573 
574 /* --------- FM interrupt handlers ------------*/
575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576 {
577  u16 flag;
578 
579  /* Send FLAG_GET command , to know the source of interrupt */
580  if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581  fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582 }
583 
584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585 {
586  struct sk_buff *skb;
587  struct fm_event_msg_hdr *fm_evt_hdr;
588 
589  if (check_cmdresp_status(fmdev, &skb))
590  return;
591 
592  fm_evt_hdr = (void *)skb->data;
593 
594  /* Skip header info and copy only response data */
595  skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596  memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597 
598  fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599  fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600 
601  /* Continue next function in interrupt handler table */
602  fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603 }
604 
605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606 {
607  if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608  fmerr("irq: HW MAL int received - do nothing\n");
609 
610  /* Continue next function in interrupt handler table */
611  fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612 }
613 
614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615 {
616  if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617  fmdbg("irq: rds threshold reached\n");
618  fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619  } else {
620  /* Continue next function in interrupt handler table */
621  fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622  }
623 
624  fm_irq_call(fmdev);
625 }
626 
627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628 {
629  /* Send the command to read RDS data from the chip */
630  if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
632  fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633 }
634 
635 /* Keeps track of current RX channel AF (Alternate Frequency) */
636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637 {
638  struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639  u8 reg_idx = fmdev->rx.region.fm_band;
640  u8 index;
641  u32 freq;
642 
643  /* First AF indicates the number of AF follows. Reset the list */
644  if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645  fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646  fmdev->rx.stat_info.afcache_size = 0;
647  fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648  return;
649  }
650 
651  if (af < FM_RDS_MIN_AF)
652  return;
653  if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654  return;
655  if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656  return;
657 
658  freq = fmdev->rx.region.bot_freq + (af * 100);
659  if (freq == fmdev->rx.freq) {
660  fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661  fmdev->rx.freq, freq);
662  return;
663  }
664  /* Do check in AF cache */
665  for (index = 0; index < stat_info->afcache_size; index++) {
666  if (stat_info->af_cache[index] == freq)
667  break;
668  }
669  /* Reached the limit of the list - ignore the next AF */
670  if (index == stat_info->af_list_max) {
671  fmdbg("AF cache is full\n");
672  return;
673  }
674  /*
675  * If we reached the end of the list then this AF is not
676  * in the list - add it.
677  */
678  if (index == stat_info->afcache_size) {
679  fmdbg("Storing AF %d to cache index %d\n", freq, index);
680  stat_info->af_cache[index] = freq;
681  stat_info->afcache_size++;
682  }
683 }
684 
685 /*
686  * Converts RDS buffer data from big endian format
687  * to little endian format.
688  */
689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690  struct fm_rdsdata_format *rds_format)
691 {
692  u8 byte1;
693  u8 index = 0;
694  u8 *rds_buff;
695 
696  /*
697  * Since in Orca the 2 RDS Data bytes are in little endian and
698  * in Dolphin they are in big endian, the parsing of the RDS data
699  * is chip dependent
700  */
701  if (fmdev->asci_id != 0x6350) {
702  rds_buff = &rds_format->data.groupdatabuff.buff[0];
703  while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704  byte1 = rds_buff[index];
705  rds_buff[index] = rds_buff[index + 1];
706  rds_buff[index + 1] = byte1;
707  index += 2;
708  }
709  }
710 }
711 
712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713 {
714  struct sk_buff *skb;
715  struct fm_rdsdata_format rds_fmt;
716  struct fm_rds *rds = &fmdev->rx.rds;
717  unsigned long group_idx, flags;
718  u8 *rds_data, meta_data, tmpbuf[3];
719  u8 type, blk_idx;
720  u16 cur_picode;
721  u32 rds_len;
722 
723  if (check_cmdresp_status(fmdev, &skb))
724  return;
725 
726  /* Skip header info */
727  skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728  rds_data = skb->data;
729  rds_len = skb->len;
730 
731  /* Parse the RDS data */
732  while (rds_len >= FM_RDS_BLK_SIZE) {
733  meta_data = rds_data[2];
734  /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735  type = (meta_data & 0x07);
736 
737  /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738  blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739  fmdbg("Block index:%d(%s)\n", blk_idx,
740  (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741 
742  if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743  break;
744 
745  if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) {
746  fmdbg("Block sequence mismatch\n");
747  rds->last_blk_idx = -1;
748  break;
749  }
750 
751  /* Skip checkword (control) byte and copy only data byte */
752  memcpy(&rds_fmt.data.groupdatabuff.
753  buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754  rds_data, (FM_RDS_BLK_SIZE - 1));
755 
756  rds->last_blk_idx = blk_idx;
757 
758  /* If completed a whole group then handle it */
759  if (blk_idx == FM_RDS_BLK_IDX_D) {
760  fmdbg("Good block received\n");
761  fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762 
763  /*
764  * Extract PI code and store in local cache.
765  * We need this during AF switch processing.
766  */
767  cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768  if (fmdev->rx.stat_info.picode != cur_picode)
769  fmdev->rx.stat_info.picode = cur_picode;
770 
771  fmdbg("picode:%d\n", cur_picode);
772 
773  group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774  fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775  (group_idx % 2) ? "B" : "A");
776 
777  group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778  if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779  fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780  fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781  }
782  }
783  rds_len -= FM_RDS_BLK_SIZE;
784  rds_data += FM_RDS_BLK_SIZE;
785  }
786 
787  /* Copy raw rds data to internal rds buffer */
788  rds_data = skb->data;
789  rds_len = skb->len;
790 
791  spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792  while (rds_len > 0) {
793  /*
794  * Fill RDS buffer as per V4L2 specification.
795  * Store control byte
796  */
797  type = (rds_data[2] & 0x07);
798  blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799  tmpbuf[2] = blk_idx; /* Offset name */
800  tmpbuf[2] |= blk_idx << 3; /* Received offset */
801 
802  /* Store data byte */
803  tmpbuf[0] = rds_data[0];
804  tmpbuf[1] = rds_data[1];
805 
806  memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807  rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808 
809  /* Check for overflow & start over */
810  if (rds->wr_idx == rds->rd_idx) {
811  fmdbg("RDS buffer overflow\n");
812  rds->wr_idx = 0;
813  rds->rd_idx = 0;
814  break;
815  }
816  rds_len -= FM_RDS_BLK_SIZE;
817  rds_data += FM_RDS_BLK_SIZE;
818  }
819  spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820 
821  /* Wakeup read queue */
822  if (rds->wr_idx != rds->rd_idx)
824 
825  fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826 }
827 
828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829 {
830  fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831 }
832 
833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834 {
835  if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836  irq_info.mask) {
837  fmdbg("irq: tune ended/bandlimit reached\n");
839  fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840  } else {
841  complete(&fmdev->maintask_comp);
842  fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843  }
844  } else
845  fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846 
847  fm_irq_call(fmdev);
848 }
849 
850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851 {
852  if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853  fmdbg("irq: Power Enabled/Disabled\n");
854  complete(&fmdev->maintask_comp);
855  }
856 
857  fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858 }
859 
860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861 {
862  if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863  (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864  (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865  (fmdev->rx.stat_info.afcache_size != 0)) {
866  fmdbg("irq: rssi level has fallen below threshold level\n");
867 
868  /* Disable further low RSSI interrupts */
869  fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870 
871  fmdev->rx.afjump_idx = 0;
872  fmdev->rx.freq_before_jump = fmdev->rx.freq;
873  fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874  } else {
875  /* Continue next function in interrupt handler table */
876  fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877  }
878 
879  fm_irq_call(fmdev);
880 }
881 
882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883 {
884  u16 payload;
885 
886  /* Set PI code - must be updated if the AF list is not empty */
887  payload = fmdev->rx.stat_info.picode;
888  if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890 }
891 
892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893 {
894  fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895 }
896 
897 /*
898  * Set PI mask.
899  * 0xFFFF = Enable PI code matching
900  * 0x0000 = Disable PI code matching
901  */
902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903 {
904  u16 payload;
905 
906  payload = 0x0000;
907  if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909 }
910 
911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912 {
913  fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914 }
915 
916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917 {
918  u16 frq_index;
919  u16 payload;
920 
921  fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922  frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923  fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924 
925  payload = frq_index;
926  if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928 }
929 
930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931 {
932  fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933 }
934 
935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936 {
937  u16 payload;
938 
939  /* Enable FR (tuning operation ended) interrupt */
940  payload = FM_FR_EVENT;
941  if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943 }
944 
945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946 {
947  fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948 }
949 
950 static void fm_irq_start_afjump(struct fmdev *fmdev)
951 {
952  u16 payload;
953 
954  payload = FM_TUNER_AF_JUMP_MODE;
955  if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956  sizeof(payload), NULL))
957  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958 }
959 
960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961 {
962  struct sk_buff *skb;
963 
964  if (check_cmdresp_status(fmdev, &skb))
965  return;
966 
967  fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
970 }
971 
972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973 {
974  u16 payload;
975 
976  if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977  fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978 }
979 
980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981 {
982  struct sk_buff *skb;
983  u16 read_freq;
984  u32 curr_freq, jumped_freq;
985 
986  if (check_cmdresp_status(fmdev, &skb))
987  return;
988 
989  /* Skip header info and copy only response data */
990  skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991  memcpy(&read_freq, skb->data, sizeof(read_freq));
992  read_freq = be16_to_cpu(read_freq);
993  curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994 
995  jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996 
997  /* If the frequency was changed the jump succeeded */
998  if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999  fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000  fmdev->rx.freq = curr_freq;
1001  fm_rx_reset_rds_cache(fmdev);
1002 
1003  /* AF feature is on, enable low level RSSI interrupt */
1004  if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005  fmdev->irq_info.mask |= FM_LEV_EVENT;
1006 
1007  fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008  } else { /* jump to the next freq in the AF list */
1009  fmdev->rx.afjump_idx++;
1010 
1011  /* If we reached the end of the list - stop searching */
1012  if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013  fmdbg("AF switch processing failed\n");
1014  fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015  } else { /* AF List is not over - try next one */
1016 
1017  fmdbg("Trying next freq in AF cache\n");
1018  fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019  }
1020  }
1021  fm_irq_call(fmdev);
1022 }
1023 
1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025 {
1026  fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027 }
1028 
1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030 {
1031  u16 payload;
1032 
1033  /* Re-enable FM interrupts */
1034  payload = fmdev->irq_info.mask;
1035 
1036  if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037  sizeof(payload), NULL))
1038  fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039 }
1040 
1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042 {
1043  struct sk_buff *skb;
1044 
1045  if (check_cmdresp_status(fmdev, &skb))
1046  return;
1047  /*
1048  * This is last function in interrupt table to be executed.
1049  * So, reset stage index to 0.
1050  */
1051  fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052 
1053  /* Start processing any pending interrupt */
1055  fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056  else
1057  clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058 }
1059 
1060 /* Returns availability of RDS data in internel buffer */
1061 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062  struct poll_table_struct *pts)
1063 {
1064  poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065  if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066  return 0;
1067 
1068  return -EAGAIN;
1069 }
1070 
1071 /* Copies RDS data from internal buffer to user buffer */
1072 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073  u8 __user *buf, size_t count)
1074 {
1075  u32 block_count;
1076  unsigned long flags;
1077  int ret;
1078 
1079  if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1080  if (file->f_flags & O_NONBLOCK)
1081  return -EWOULDBLOCK;
1082 
1083  ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1084  (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1085  if (ret)
1086  return -EINTR;
1087  }
1088 
1089  /* Calculate block count from byte count */
1090  count /= 3;
1091  block_count = 0;
1092  ret = 0;
1093 
1094  spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1095 
1096  while (block_count < count) {
1097  if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx)
1098  break;
1099 
1100  if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1101  FM_RDS_BLK_SIZE))
1102  break;
1103 
1104  fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105  if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106  fmdev->rx.rds.rd_idx = 0;
1107 
1108  block_count++;
1109  buf += FM_RDS_BLK_SIZE;
1110  ret += FM_RDS_BLK_SIZE;
1111  }
1112  spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1113  return ret;
1114 }
1115 
1116 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1117 {
1118  switch (fmdev->curr_fmmode) {
1119  case FM_MODE_RX:
1120  return fm_rx_set_freq(fmdev, freq_to_set);
1121 
1122  case FM_MODE_TX:
1123  return fm_tx_set_freq(fmdev, freq_to_set);
1124 
1125  default:
1126  return -EINVAL;
1127  }
1128 }
1129 
1130 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1131 {
1132  if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1133  fmerr("RX frequency is not set\n");
1134  return -EPERM;
1135  }
1136  if (cur_tuned_frq == NULL) {
1137  fmerr("Invalid memory\n");
1138  return -ENOMEM;
1139  }
1140 
1141  switch (fmdev->curr_fmmode) {
1142  case FM_MODE_RX:
1143  *cur_tuned_frq = fmdev->rx.freq;
1144  return 0;
1145 
1146  case FM_MODE_TX:
1147  *cur_tuned_frq = 0; /* TODO : Change this later */
1148  return 0;
1149 
1150  default:
1151  return -EINVAL;
1152  }
1153 
1154 }
1155 
1156 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1157 {
1158  switch (fmdev->curr_fmmode) {
1159  case FM_MODE_RX:
1160  return fm_rx_set_region(fmdev, region_to_set);
1161 
1162  case FM_MODE_TX:
1163  return fm_tx_set_region(fmdev, region_to_set);
1164 
1165  default:
1166  return -EINVAL;
1167  }
1168 }
1169 
1170 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1171 {
1172  switch (fmdev->curr_fmmode) {
1173  case FM_MODE_RX:
1174  return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1175 
1176  case FM_MODE_TX:
1177  return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1178 
1179  default:
1180  return -EINVAL;
1181  }
1182 }
1183 
1184 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1185 {
1186  switch (fmdev->curr_fmmode) {
1187  case FM_MODE_RX:
1188  return fm_rx_set_stereo_mono(fmdev, mode);
1189 
1190  case FM_MODE_TX:
1191  return fm_tx_set_stereo_mono(fmdev, mode);
1192 
1193  default:
1194  return -EINVAL;
1195  }
1196 }
1197 
1198 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1199 {
1200  switch (fmdev->curr_fmmode) {
1201  case FM_MODE_RX:
1202  return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1203 
1204  case FM_MODE_TX:
1205  return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1206 
1207  default:
1208  return -EINVAL;
1209  }
1210 }
1211 
1212 /* Sends power off command to the chip */
1213 static int fm_power_down(struct fmdev *fmdev)
1214 {
1215  u16 payload;
1216  int ret;
1217 
1218  if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1219  fmerr("FM core is not ready\n");
1220  return -EPERM;
1221  }
1222  if (fmdev->curr_fmmode == FM_MODE_OFF) {
1223  fmdbg("FM chip is already in OFF state\n");
1224  return 0;
1225  }
1226 
1227  payload = 0x0;
1228  ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1229  sizeof(payload), NULL, NULL);
1230  if (ret < 0)
1231  return ret;
1232 
1233  return fmc_release(fmdev);
1234 }
1235 
1236 /* Reads init command from FM firmware file and loads to the chip */
1237 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1238 {
1239  const struct firmware *fw_entry;
1240  struct bts_header *fw_header;
1241  struct bts_action *action;
1242  struct bts_action_delay *delay;
1243  u8 *fw_data;
1244  int ret, fw_len, cmd_cnt;
1245 
1246  cmd_cnt = 0;
1247  set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1248 
1249  ret = request_firmware(&fw_entry, fw_name,
1250  &fmdev->radio_dev->dev);
1251  if (ret < 0) {
1252  fmerr("Unable to read firmware(%s) content\n", fw_name);
1253  return ret;
1254  }
1255  fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1256 
1257  fw_data = (void *)fw_entry->data;
1258  fw_len = fw_entry->size;
1259 
1260  fw_header = (struct bts_header *)fw_data;
1261  if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1262  fmerr("%s not a legal TI firmware file\n", fw_name);
1263  ret = -EINVAL;
1264  goto rel_fw;
1265  }
1266  fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1267 
1268  /* Skip file header info , we already verified it */
1269  fw_data += sizeof(struct bts_header);
1270  fw_len -= sizeof(struct bts_header);
1271 
1272  while (fw_data && fw_len > 0) {
1273  action = (struct bts_action *)fw_data;
1274 
1275  switch (action->type) {
1276  case ACTION_SEND_COMMAND: /* Send */
1277  if (fmc_send_cmd(fmdev, 0, 0, action->data,
1278  action->size, NULL, NULL))
1279  goto rel_fw;
1280 
1281  cmd_cnt++;
1282  break;
1283 
1284  case ACTION_DELAY: /* Delay */
1285  delay = (struct bts_action_delay *)action->data;
1286  mdelay(delay->msec);
1287  break;
1288  }
1289 
1290  fw_data += (sizeof(struct bts_action) + (action->size));
1291  fw_len -= (sizeof(struct bts_action) + (action->size));
1292  }
1293  fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1294 rel_fw:
1295  release_firmware(fw_entry);
1297 
1298  return ret;
1299 }
1300 
1301 /* Loads default RX configuration to the chip */
1302 static int load_default_rx_configuration(struct fmdev *fmdev)
1303 {
1304  int ret;
1305 
1306  ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1307  if (ret < 0)
1308  return ret;
1309 
1311 }
1312 
1313 /* Does FM power on sequence */
1314 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1315 {
1316  u16 payload, asic_id, asic_ver;
1317  int resp_len, ret;
1318  u8 fw_name[50];
1319 
1320  if (mode >= FM_MODE_ENTRY_MAX) {
1321  fmerr("Invalid firmware download option\n");
1322  return -EINVAL;
1323  }
1324 
1325  /*
1326  * Initialize FM common module. FM GPIO toggling is
1327  * taken care in Shared Transport driver.
1328  */
1329  ret = fmc_prepare(fmdev);
1330  if (ret < 0) {
1331  fmerr("Unable to prepare FM Common\n");
1332  return ret;
1333  }
1334 
1335  payload = FM_ENABLE;
1336  if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1337  sizeof(payload), NULL, NULL))
1338  goto rel;
1339 
1340  /* Allow the chip to settle down in Channel-8 mode */
1341  msleep(20);
1342 
1343  if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1344  sizeof(asic_id), &asic_id, &resp_len))
1345  goto rel;
1346 
1347  if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1348  sizeof(asic_ver), &asic_ver, &resp_len))
1349  goto rel;
1350 
1351  fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1352  be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1353 
1354  sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1355  be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1356 
1357  ret = fm_download_firmware(fmdev, fw_name);
1358  if (ret < 0) {
1359  fmdbg("Failed to download firmware file %s\n", fw_name);
1360  goto rel;
1361  }
1362  sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1364  be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1365 
1366  ret = fm_download_firmware(fmdev, fw_name);
1367  if (ret < 0) {
1368  fmdbg("Failed to download firmware file %s\n", fw_name);
1369  goto rel;
1370  } else
1371  return ret;
1372 rel:
1373  return fmc_release(fmdev);
1374 }
1375 
1376 /* Set FM Modes(TX, RX, OFF) */
1377 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1378 {
1379  int ret = 0;
1380 
1381  if (fm_mode >= FM_MODE_ENTRY_MAX) {
1382  fmerr("Invalid FM mode\n");
1383  return -EINVAL;
1384  }
1385  if (fmdev->curr_fmmode == fm_mode) {
1386  fmdbg("Already fm is in mode(%d)\n", fm_mode);
1387  return ret;
1388  }
1389 
1390  switch (fm_mode) {
1391  case FM_MODE_OFF: /* OFF Mode */
1392  ret = fm_power_down(fmdev);
1393  if (ret < 0) {
1394  fmerr("Failed to set OFF mode\n");
1395  return ret;
1396  }
1397  break;
1398 
1399  case FM_MODE_TX: /* TX Mode */
1400  case FM_MODE_RX: /* RX Mode */
1401  /* Power down before switching to TX or RX mode */
1402  if (fmdev->curr_fmmode != FM_MODE_OFF) {
1403  ret = fm_power_down(fmdev);
1404  if (ret < 0) {
1405  fmerr("Failed to set OFF mode\n");
1406  return ret;
1407  }
1408  msleep(30);
1409  }
1410  ret = fm_power_up(fmdev, fm_mode);
1411  if (ret < 0) {
1412  fmerr("Failed to load firmware\n");
1413  return ret;
1414  }
1415  }
1416  fmdev->curr_fmmode = fm_mode;
1417 
1418  /* Set default configuration */
1419  if (fmdev->curr_fmmode == FM_MODE_RX) {
1420  fmdbg("Loading default rx configuration..\n");
1421  ret = load_default_rx_configuration(fmdev);
1422  if (ret < 0)
1423  fmerr("Failed to load default values\n");
1424  }
1425 
1426  return ret;
1427 }
1428 
1429 /* Returns current FM mode (TX, RX, OFF) */
1430 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1431 {
1432  if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1433  fmerr("FM core is not ready\n");
1434  return -EPERM;
1435  }
1436  if (fmmode == NULL) {
1437  fmerr("Invalid memory\n");
1438  return -ENOMEM;
1439  }
1440 
1441  *fmmode = fmdev->curr_fmmode;
1442  return 0;
1443 }
1444 
1445 /* Called by ST layer when FM packet is available */
1446 static long fm_st_receive(void *arg, struct sk_buff *skb)
1447 {
1448  struct fmdev *fmdev;
1449 
1450  fmdev = (struct fmdev *)arg;
1451 
1452  if (skb == NULL) {
1453  fmerr("Invalid SKB received from ST\n");
1454  return -EFAULT;
1455  }
1456 
1457  if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1458  fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1459  return -EINVAL;
1460  }
1461 
1462  memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1463  skb_queue_tail(&fmdev->rx_q, skb);
1464  tasklet_schedule(&fmdev->rx_task);
1465 
1466  return 0;
1467 }
1468 
1469 /*
1470  * Called by ST layer to indicate protocol registration completion
1471  * status.
1472  */
1473 static void fm_st_reg_comp_cb(void *arg, char data)
1474 {
1475  struct fmdev *fmdev;
1476 
1477  fmdev = (struct fmdev *)arg;
1478  fmdev->streg_cbdata = data;
1479  complete(&wait_for_fmdrv_reg_comp);
1480 }
1481 
1482 /*
1483  * This function will be called from FM V4L2 open function.
1484  * Register with ST driver and initialize driver data.
1485  */
1486 int fmc_prepare(struct fmdev *fmdev)
1487 {
1488  static struct st_proto_s fm_st_proto;
1489  int ret;
1490 
1491  if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1492  fmdbg("FM Core is already up\n");
1493  return 0;
1494  }
1495 
1496  memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1497  fm_st_proto.recv = fm_st_receive;
1498  fm_st_proto.match_packet = NULL;
1499  fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1500  fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1501  fm_st_proto.priv_data = fmdev;
1502  fm_st_proto.chnl_id = 0x08;
1503  fm_st_proto.max_frame_size = 0xff;
1504  fm_st_proto.hdr_len = 1;
1505  fm_st_proto.offset_len_in_hdr = 0;
1506  fm_st_proto.len_size = 1;
1507  fm_st_proto.reserve = 1;
1508 
1509  ret = st_register(&fm_st_proto);
1510  if (ret == -EINPROGRESS) {
1511  init_completion(&wait_for_fmdrv_reg_comp);
1512  fmdev->streg_cbdata = -EINPROGRESS;
1513  fmdbg("%s waiting for ST reg completion signal\n", __func__);
1514 
1515  if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1516  FM_ST_REG_TIMEOUT)) {
1517  fmerr("Timeout(%d sec), didn't get reg "
1518  "completion signal from ST\n",
1520  return -ETIMEDOUT;
1521  }
1522  if (fmdev->streg_cbdata != 0) {
1523  fmerr("ST reg comp CB called with error "
1524  "status %d\n", fmdev->streg_cbdata);
1525  return -EAGAIN;
1526  }
1527 
1528  ret = 0;
1529  } else if (ret == -1) {
1530  fmerr("st_register failed %d\n", ret);
1531  return -EAGAIN;
1532  }
1533 
1534  if (fm_st_proto.write != NULL) {
1535  g_st_write = fm_st_proto.write;
1536  } else {
1537  fmerr("Failed to get ST write func pointer\n");
1538  ret = st_unregister(&fm_st_proto);
1539  if (ret < 0)
1540  fmerr("st_unregister failed %d\n", ret);
1541  return -EAGAIN;
1542  }
1543 
1544  spin_lock_init(&fmdev->rds_buff_lock);
1545  spin_lock_init(&fmdev->resp_skb_lock);
1546 
1547  /* Initialize TX queue and TX tasklet */
1548  skb_queue_head_init(&fmdev->tx_q);
1549  tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1550 
1551  /* Initialize RX Queue and RX tasklet */
1552  skb_queue_head_init(&fmdev->rx_q);
1553  tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1554 
1555  fmdev->irq_info.stage = 0;
1556  atomic_set(&fmdev->tx_cnt, 1);
1557  fmdev->resp_comp = NULL;
1558 
1559  init_timer(&fmdev->irq_info.timer);
1560  fmdev->irq_info.timer.function = &int_timeout_handler;
1561  fmdev->irq_info.timer.data = (unsigned long)fmdev;
1562  /*TODO: add FM_STIC_EVENT later */
1563  fmdev->irq_info.mask = FM_MAL_EVENT;
1564 
1565  /* Region info */
1566  memcpy(&fmdev->rx.region, &region_configs[default_radio_region],
1567  sizeof(struct region_info));
1568 
1569  fmdev->rx.mute_mode = FM_MUTE_OFF;
1570  fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1571  fmdev->rx.rds.flag = FM_RDS_DISABLE;
1572  fmdev->rx.freq = FM_UNDEFINED_FREQ;
1573  fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1574  fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1575  fmdev->irq_info.retry = 0;
1576 
1577  fm_rx_reset_rds_cache(fmdev);
1578  init_waitqueue_head(&fmdev->rx.rds.read_queue);
1579 
1580  fm_rx_reset_station_info(fmdev);
1581  set_bit(FM_CORE_READY, &fmdev->flag);
1582 
1583  return ret;
1584 }
1585 
1586 /*
1587  * This function will be called from FM V4L2 release function.
1588  * Unregister from ST driver.
1589  */
1590 int fmc_release(struct fmdev *fmdev)
1591 {
1592  static struct st_proto_s fm_st_proto;
1593  int ret;
1594 
1595  if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1596  fmdbg("FM Core is already down\n");
1597  return 0;
1598  }
1599  /* Service pending read */
1600  wake_up_interruptible(&fmdev->rx.rds.read_queue);
1601 
1602  tasklet_kill(&fmdev->tx_task);
1603  tasklet_kill(&fmdev->rx_task);
1604 
1605  skb_queue_purge(&fmdev->tx_q);
1606  skb_queue_purge(&fmdev->rx_q);
1607 
1608  fmdev->resp_comp = NULL;
1609  fmdev->rx.freq = 0;
1610 
1611  memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1612  fm_st_proto.chnl_id = 0x08;
1613 
1614  ret = st_unregister(&fm_st_proto);
1615 
1616  if (ret < 0)
1617  fmerr("Failed to de-register FM from ST %d\n", ret);
1618  else
1619  fmdbg("Successfully unregistered from ST\n");
1620 
1621  clear_bit(FM_CORE_READY, &fmdev->flag);
1622  return ret;
1623 }
1624 
1625 /*
1626  * Module init function. Ask FM V4L module to register video device.
1627  * Allocate memory for FM driver context and RX RDS buffer.
1628  */
1629 static int __init fm_drv_init(void)
1630 {
1631  struct fmdev *fmdev = NULL;
1632  int ret = -ENOMEM;
1633 
1634  fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1635 
1636  fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1637  if (NULL == fmdev) {
1638  fmerr("Can't allocate operation structure memory\n");
1639  return ret;
1640  }
1641  fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1642  fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1643  if (NULL == fmdev->rx.rds.buff) {
1644  fmerr("Can't allocate rds ring buffer\n");
1645  goto rel_dev;
1646  }
1647 
1648  ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1649  if (ret < 0)
1650  goto rel_rdsbuf;
1651 
1652  fmdev->irq_info.handlers = int_handler_table;
1653  fmdev->curr_fmmode = FM_MODE_OFF;
1654  fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1655  fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1656  return ret;
1657 
1658 rel_rdsbuf:
1659  kfree(fmdev->rx.rds.buff);
1660 rel_dev:
1661  kfree(fmdev);
1662 
1663  return ret;
1664 }
1665 
1666 /* Module exit function. Ask FM V4L module to unregister video device */
1667 static void __exit fm_drv_exit(void)
1668 {
1669  struct fmdev *fmdev = NULL;
1670 
1671  fmdev = fm_v4l2_deinit_video_device();
1672  if (fmdev != NULL) {
1673  kfree(fmdev->rx.rds.buff);
1674  kfree(fmdev);
1675  }
1676 }
1677 
1678 module_init(fm_drv_init);
1679 module_exit(fm_drv_exit);
1680 
1681 /* ------------- Module Info ------------- */
1682 MODULE_AUTHOR("Manjunatha Halli <[email protected]>");
1683 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1685 MODULE_LICENSE("GPL");