Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
file.c
Go to the documentation of this file.
1 /*
2  * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 
31 #include <asm/page.h>
32 #include <asm/uaccess.h>
33 
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "inode.h"
37 #include "debug.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "ntfs.h"
42 
61 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 {
63  if (sizeof(unsigned long) < 8) {
64  if (i_size_read(vi) > MAX_LFS_FILESIZE)
65  return -EOVERFLOW;
66  }
67  return generic_file_open(vi, filp);
68 }
69 
70 #ifdef NTFS_RW
71 
110 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
111 {
112  s64 old_init_size;
113  loff_t old_i_size;
114  pgoff_t index, end_index;
115  unsigned long flags;
116  struct inode *vi = VFS_I(ni);
117  ntfs_inode *base_ni;
118  MFT_RECORD *m = NULL;
119  ATTR_RECORD *a;
121  struct address_space *mapping;
122  struct page *page = NULL;
123  u8 *kattr;
124  int err;
125  u32 attr_len;
126 
127  read_lock_irqsave(&ni->size_lock, flags);
128  old_init_size = ni->initialized_size;
129  old_i_size = i_size_read(vi);
130  BUG_ON(new_init_size > ni->allocated_size);
131  read_unlock_irqrestore(&ni->size_lock, flags);
132  ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
133  "old_initialized_size 0x%llx, "
134  "new_initialized_size 0x%llx, i_size 0x%llx.",
135  vi->i_ino, (unsigned)le32_to_cpu(ni->type),
136  (unsigned long long)old_init_size,
137  (unsigned long long)new_init_size, old_i_size);
138  if (!NInoAttr(ni))
139  base_ni = ni;
140  else
141  base_ni = ni->ext.base_ntfs_ino;
142  /* Use goto to reduce indentation and we need the label below anyway. */
143  if (NInoNonResident(ni))
144  goto do_non_resident_extend;
145  BUG_ON(old_init_size != old_i_size);
146  m = map_mft_record(base_ni);
147  if (IS_ERR(m)) {
148  err = PTR_ERR(m);
149  m = NULL;
150  goto err_out;
151  }
152  ctx = ntfs_attr_get_search_ctx(base_ni, m);
153  if (unlikely(!ctx)) {
154  err = -ENOMEM;
155  goto err_out;
156  }
157  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
158  CASE_SENSITIVE, 0, NULL, 0, ctx);
159  if (unlikely(err)) {
160  if (err == -ENOENT)
161  err = -EIO;
162  goto err_out;
163  }
164  m = ctx->mrec;
165  a = ctx->attr;
166  BUG_ON(a->non_resident);
167  /* The total length of the attribute value. */
168  attr_len = le32_to_cpu(a->data.resident.value_length);
169  BUG_ON(old_i_size != (loff_t)attr_len);
170  /*
171  * Do the zeroing in the mft record and update the attribute size in
172  * the mft record.
173  */
174  kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
175  memset(kattr + attr_len, 0, new_init_size - attr_len);
176  a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
177  /* Finally, update the sizes in the vfs and ntfs inodes. */
178  write_lock_irqsave(&ni->size_lock, flags);
179  i_size_write(vi, new_init_size);
180  ni->initialized_size = new_init_size;
181  write_unlock_irqrestore(&ni->size_lock, flags);
182  goto done;
183 do_non_resident_extend:
184  /*
185  * If the new initialized size @new_init_size exceeds the current file
186  * size (vfs inode->i_size), we need to extend the file size to the
187  * new initialized size.
188  */
189  if (new_init_size > old_i_size) {
190  m = map_mft_record(base_ni);
191  if (IS_ERR(m)) {
192  err = PTR_ERR(m);
193  m = NULL;
194  goto err_out;
195  }
196  ctx = ntfs_attr_get_search_ctx(base_ni, m);
197  if (unlikely(!ctx)) {
198  err = -ENOMEM;
199  goto err_out;
200  }
201  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
202  CASE_SENSITIVE, 0, NULL, 0, ctx);
203  if (unlikely(err)) {
204  if (err == -ENOENT)
205  err = -EIO;
206  goto err_out;
207  }
208  m = ctx->mrec;
209  a = ctx->attr;
210  BUG_ON(!a->non_resident);
211  BUG_ON(old_i_size != (loff_t)
212  sle64_to_cpu(a->data.non_resident.data_size));
213  a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
214  flush_dcache_mft_record_page(ctx->ntfs_ino);
215  mark_mft_record_dirty(ctx->ntfs_ino);
216  /* Update the file size in the vfs inode. */
217  i_size_write(vi, new_init_size);
219  ctx = NULL;
220  unmap_mft_record(base_ni);
221  m = NULL;
222  }
223  mapping = vi->i_mapping;
224  index = old_init_size >> PAGE_CACHE_SHIFT;
225  end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
226  do {
227  /*
228  * Read the page. If the page is not present, this will zero
229  * the uninitialized regions for us.
230  */
231  page = read_mapping_page(mapping, index, NULL);
232  if (IS_ERR(page)) {
233  err = PTR_ERR(page);
234  goto init_err_out;
235  }
236  if (unlikely(PageError(page))) {
237  page_cache_release(page);
238  err = -EIO;
239  goto init_err_out;
240  }
241  /*
242  * Update the initialized size in the ntfs inode. This is
243  * enough to make ntfs_writepage() work.
244  */
245  write_lock_irqsave(&ni->size_lock, flags);
246  ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
247  if (ni->initialized_size > new_init_size)
248  ni->initialized_size = new_init_size;
249  write_unlock_irqrestore(&ni->size_lock, flags);
250  /* Set the page dirty so it gets written out. */
251  set_page_dirty(page);
252  page_cache_release(page);
253  /*
254  * Play nice with the vm and the rest of the system. This is
255  * very much needed as we can potentially be modifying the
256  * initialised size from a very small value to a really huge
257  * value, e.g.
258  * f = open(somefile, O_TRUNC);
259  * truncate(f, 10GiB);
260  * seek(f, 10GiB);
261  * write(f, 1);
262  * And this would mean we would be marking dirty hundreds of
263  * thousands of pages or as in the above example more than
264  * two and a half million pages!
265  *
266  * TODO: For sparse pages could optimize this workload by using
267  * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
268  * would be set in readpage for sparse pages and here we would
269  * not need to mark dirty any pages which have this bit set.
270  * The only caveat is that we have to clear the bit everywhere
271  * where we allocate any clusters that lie in the page or that
272  * contain the page.
273  *
274  * TODO: An even greater optimization would be for us to only
275  * call readpage() on pages which are not in sparse regions as
276  * determined from the runlist. This would greatly reduce the
277  * number of pages we read and make dirty in the case of sparse
278  * files.
279  */
280  balance_dirty_pages_ratelimited(mapping);
281  cond_resched();
282  } while (++index < end_index);
283  read_lock_irqsave(&ni->size_lock, flags);
284  BUG_ON(ni->initialized_size != new_init_size);
285  read_unlock_irqrestore(&ni->size_lock, flags);
286  /* Now bring in sync the initialized_size in the mft record. */
287  m = map_mft_record(base_ni);
288  if (IS_ERR(m)) {
289  err = PTR_ERR(m);
290  m = NULL;
291  goto init_err_out;
292  }
293  ctx = ntfs_attr_get_search_ctx(base_ni, m);
294  if (unlikely(!ctx)) {
295  err = -ENOMEM;
296  goto init_err_out;
297  }
298  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
299  CASE_SENSITIVE, 0, NULL, 0, ctx);
300  if (unlikely(err)) {
301  if (err == -ENOENT)
302  err = -EIO;
303  goto init_err_out;
304  }
305  m = ctx->mrec;
306  a = ctx->attr;
307  BUG_ON(!a->non_resident);
308  a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
309 done:
310  flush_dcache_mft_record_page(ctx->ntfs_ino);
311  mark_mft_record_dirty(ctx->ntfs_ino);
312  if (ctx)
314  if (m)
315  unmap_mft_record(base_ni);
316  ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
317  (unsigned long long)new_init_size, i_size_read(vi));
318  return 0;
319 init_err_out:
320  write_lock_irqsave(&ni->size_lock, flags);
321  ni->initialized_size = old_init_size;
322  write_unlock_irqrestore(&ni->size_lock, flags);
323 err_out:
324  if (ctx)
326  if (m)
327  unmap_mft_record(base_ni);
328  ntfs_debug("Failed. Returning error code %i.", err);
329  return err;
330 }
331 
354 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
355  int bytes)
356 {
357  const char __user *end;
358  volatile char c;
359 
360  /* Set @end to the first byte outside the last page we care about. */
361  end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
362 
363  while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
364  ;
365 }
366 
372 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
373  size_t iov_ofs, int bytes)
374 {
375  do {
376  const char __user *buf;
377  unsigned len;
378 
379  buf = iov->iov_base + iov_ofs;
380  len = iov->iov_len - iov_ofs;
381  if (len > bytes)
382  len = bytes;
383  ntfs_fault_in_pages_readable(buf, len);
384  bytes -= len;
385  iov++;
386  iov_ofs = 0;
387  } while (bytes);
388 }
389 
406 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
407  pgoff_t index, const unsigned nr_pages, struct page **pages,
408  struct page **cached_page)
409 {
410  int err, nr;
411 
412  BUG_ON(!nr_pages);
413  err = nr = 0;
414  do {
415  pages[nr] = find_lock_page(mapping, index);
416  if (!pages[nr]) {
417  if (!*cached_page) {
418  *cached_page = page_cache_alloc(mapping);
419  if (unlikely(!*cached_page)) {
420  err = -ENOMEM;
421  goto err_out;
422  }
423  }
424  err = add_to_page_cache_lru(*cached_page, mapping, index,
425  GFP_KERNEL);
426  if (unlikely(err)) {
427  if (err == -EEXIST)
428  continue;
429  goto err_out;
430  }
431  pages[nr] = *cached_page;
432  *cached_page = NULL;
433  }
434  index++;
435  nr++;
436  } while (nr < nr_pages);
437 out:
438  return err;
439 err_out:
440  while (nr > 0) {
441  unlock_page(pages[--nr]);
442  page_cache_release(pages[nr]);
443  }
444  goto out;
445 }
446 
447 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
448 {
449  lock_buffer(bh);
450  get_bh(bh);
451  bh->b_end_io = end_buffer_read_sync;
452  return submit_bh(READ, bh);
453 }
454 
480 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
481  unsigned nr_pages, s64 pos, size_t bytes)
482 {
483  VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
484  LCN lcn;
485  s64 bh_pos, vcn_len, end, initialized_size;
486  sector_t lcn_block;
487  struct page *page;
488  struct inode *vi;
489  ntfs_inode *ni, *base_ni = NULL;
490  ntfs_volume *vol;
491  runlist_element *rl, *rl2;
492  struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
493  ntfs_attr_search_ctx *ctx = NULL;
494  MFT_RECORD *m = NULL;
495  ATTR_RECORD *a = NULL;
496  unsigned long flags;
497  u32 attr_rec_len = 0;
498  unsigned blocksize, u;
499  int err, mp_size;
500  bool rl_write_locked, was_hole, is_retry;
501  unsigned char blocksize_bits;
502  struct {
503  u8 runlist_merged:1;
504  u8 mft_attr_mapped:1;
505  u8 mp_rebuilt:1;
506  u8 attr_switched:1;
507  } status = { 0, 0, 0, 0 };
508 
509  BUG_ON(!nr_pages);
510  BUG_ON(!pages);
511  BUG_ON(!*pages);
512  vi = pages[0]->mapping->host;
513  ni = NTFS_I(vi);
514  vol = ni->vol;
515  ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
516  "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
517  vi->i_ino, ni->type, pages[0]->index, nr_pages,
518  (long long)pos, bytes);
519  blocksize = vol->sb->s_blocksize;
520  blocksize_bits = vol->sb->s_blocksize_bits;
521  u = 0;
522  do {
523  page = pages[u];
524  BUG_ON(!page);
525  /*
526  * create_empty_buffers() will create uptodate/dirty buffers if
527  * the page is uptodate/dirty.
528  */
529  if (!page_has_buffers(page)) {
530  create_empty_buffers(page, blocksize, 0);
531  if (unlikely(!page_has_buffers(page)))
532  return -ENOMEM;
533  }
534  } while (++u < nr_pages);
535  rl_write_locked = false;
536  rl = NULL;
537  err = 0;
538  vcn = lcn = -1;
539  vcn_len = 0;
540  lcn_block = -1;
541  was_hole = false;
542  cpos = pos >> vol->cluster_size_bits;
543  end = pos + bytes;
544  cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
545  /*
546  * Loop over each page and for each page over each buffer. Use goto to
547  * reduce indentation.
548  */
549  u = 0;
550 do_next_page:
551  page = pages[u];
552  bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
553  bh = head = page_buffers(page);
554  do {
555  VCN cdelta;
556  s64 bh_end;
557  unsigned bh_cofs;
558 
559  /* Clear buffer_new on all buffers to reinitialise state. */
560  if (buffer_new(bh))
561  clear_buffer_new(bh);
562  bh_end = bh_pos + blocksize;
563  bh_cpos = bh_pos >> vol->cluster_size_bits;
564  bh_cofs = bh_pos & vol->cluster_size_mask;
565  if (buffer_mapped(bh)) {
566  /*
567  * The buffer is already mapped. If it is uptodate,
568  * ignore it.
569  */
570  if (buffer_uptodate(bh))
571  continue;
572  /*
573  * The buffer is not uptodate. If the page is uptodate
574  * set the buffer uptodate and otherwise ignore it.
575  */
576  if (PageUptodate(page)) {
577  set_buffer_uptodate(bh);
578  continue;
579  }
580  /*
581  * Neither the page nor the buffer are uptodate. If
582  * the buffer is only partially being written to, we
583  * need to read it in before the write, i.e. now.
584  */
585  if ((bh_pos < pos && bh_end > pos) ||
586  (bh_pos < end && bh_end > end)) {
587  /*
588  * If the buffer is fully or partially within
589  * the initialized size, do an actual read.
590  * Otherwise, simply zero the buffer.
591  */
592  read_lock_irqsave(&ni->size_lock, flags);
593  initialized_size = ni->initialized_size;
594  read_unlock_irqrestore(&ni->size_lock, flags);
595  if (bh_pos < initialized_size) {
596  ntfs_submit_bh_for_read(bh);
597  *wait_bh++ = bh;
598  } else {
599  zero_user(page, bh_offset(bh),
600  blocksize);
601  set_buffer_uptodate(bh);
602  }
603  }
604  continue;
605  }
606  /* Unmapped buffer. Need to map it. */
607  bh->b_bdev = vol->sb->s_bdev;
608  /*
609  * If the current buffer is in the same clusters as the map
610  * cache, there is no need to check the runlist again. The
611  * map cache is made up of @vcn, which is the first cached file
612  * cluster, @vcn_len which is the number of cached file
613  * clusters, @lcn is the device cluster corresponding to @vcn,
614  * and @lcn_block is the block number corresponding to @lcn.
615  */
616  cdelta = bh_cpos - vcn;
617  if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
618 map_buffer_cached:
619  BUG_ON(lcn < 0);
620  bh->b_blocknr = lcn_block +
621  (cdelta << (vol->cluster_size_bits -
622  blocksize_bits)) +
623  (bh_cofs >> blocksize_bits);
624  set_buffer_mapped(bh);
625  /*
626  * If the page is uptodate so is the buffer. If the
627  * buffer is fully outside the write, we ignore it if
628  * it was already allocated and we mark it dirty so it
629  * gets written out if we allocated it. On the other
630  * hand, if we allocated the buffer but we are not
631  * marking it dirty we set buffer_new so we can do
632  * error recovery.
633  */
634  if (PageUptodate(page)) {
635  if (!buffer_uptodate(bh))
636  set_buffer_uptodate(bh);
637  if (unlikely(was_hole)) {
638  /* We allocated the buffer. */
639  unmap_underlying_metadata(bh->b_bdev,
640  bh->b_blocknr);
641  if (bh_end <= pos || bh_pos >= end)
642  mark_buffer_dirty(bh);
643  else
644  set_buffer_new(bh);
645  }
646  continue;
647  }
648  /* Page is _not_ uptodate. */
649  if (likely(!was_hole)) {
650  /*
651  * Buffer was already allocated. If it is not
652  * uptodate and is only partially being written
653  * to, we need to read it in before the write,
654  * i.e. now.
655  */
656  if (!buffer_uptodate(bh) && bh_pos < end &&
657  bh_end > pos &&
658  (bh_pos < pos ||
659  bh_end > end)) {
660  /*
661  * If the buffer is fully or partially
662  * within the initialized size, do an
663  * actual read. Otherwise, simply zero
664  * the buffer.
665  */
667  flags);
668  initialized_size = ni->initialized_size;
670  flags);
671  if (bh_pos < initialized_size) {
672  ntfs_submit_bh_for_read(bh);
673  *wait_bh++ = bh;
674  } else {
675  zero_user(page, bh_offset(bh),
676  blocksize);
677  set_buffer_uptodate(bh);
678  }
679  }
680  continue;
681  }
682  /* We allocated the buffer. */
683  unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
684  /*
685  * If the buffer is fully outside the write, zero it,
686  * set it uptodate, and mark it dirty so it gets
687  * written out. If it is partially being written to,
688  * zero region surrounding the write but leave it to
689  * commit write to do anything else. Finally, if the
690  * buffer is fully being overwritten, do nothing.
691  */
692  if (bh_end <= pos || bh_pos >= end) {
693  if (!buffer_uptodate(bh)) {
694  zero_user(page, bh_offset(bh),
695  blocksize);
696  set_buffer_uptodate(bh);
697  }
698  mark_buffer_dirty(bh);
699  continue;
700  }
701  set_buffer_new(bh);
702  if (!buffer_uptodate(bh) &&
703  (bh_pos < pos || bh_end > end)) {
704  u8 *kaddr;
705  unsigned pofs;
706 
707  kaddr = kmap_atomic(page);
708  if (bh_pos < pos) {
709  pofs = bh_pos & ~PAGE_CACHE_MASK;
710  memset(kaddr + pofs, 0, pos - bh_pos);
711  }
712  if (bh_end > end) {
713  pofs = end & ~PAGE_CACHE_MASK;
714  memset(kaddr + pofs, 0, bh_end - end);
715  }
716  kunmap_atomic(kaddr);
717  flush_dcache_page(page);
718  }
719  continue;
720  }
721  /*
722  * Slow path: this is the first buffer in the cluster. If it
723  * is outside allocated size and is not uptodate, zero it and
724  * set it uptodate.
725  */
726  read_lock_irqsave(&ni->size_lock, flags);
727  initialized_size = ni->allocated_size;
728  read_unlock_irqrestore(&ni->size_lock, flags);
729  if (bh_pos > initialized_size) {
730  if (PageUptodate(page)) {
731  if (!buffer_uptodate(bh))
732  set_buffer_uptodate(bh);
733  } else if (!buffer_uptodate(bh)) {
734  zero_user(page, bh_offset(bh), blocksize);
735  set_buffer_uptodate(bh);
736  }
737  continue;
738  }
739  is_retry = false;
740  if (!rl) {
741  down_read(&ni->runlist.lock);
742 retry_remap:
743  rl = ni->runlist.rl;
744  }
745  if (likely(rl != NULL)) {
746  /* Seek to element containing target cluster. */
747  while (rl->length && rl[1].vcn <= bh_cpos)
748  rl++;
749  lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
750  if (likely(lcn >= 0)) {
751  /*
752  * Successful remap, setup the map cache and
753  * use that to deal with the buffer.
754  */
755  was_hole = false;
756  vcn = bh_cpos;
757  vcn_len = rl[1].vcn - vcn;
758  lcn_block = lcn << (vol->cluster_size_bits -
759  blocksize_bits);
760  cdelta = 0;
761  /*
762  * If the number of remaining clusters touched
763  * by the write is smaller or equal to the
764  * number of cached clusters, unlock the
765  * runlist as the map cache will be used from
766  * now on.
767  */
768  if (likely(vcn + vcn_len >= cend)) {
769  if (rl_write_locked) {
770  up_write(&ni->runlist.lock);
771  rl_write_locked = false;
772  } else
773  up_read(&ni->runlist.lock);
774  rl = NULL;
775  }
776  goto map_buffer_cached;
777  }
778  } else
779  lcn = LCN_RL_NOT_MAPPED;
780  /*
781  * If it is not a hole and not out of bounds, the runlist is
782  * probably unmapped so try to map it now.
783  */
784  if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
785  if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
786  /* Attempt to map runlist. */
787  if (!rl_write_locked) {
788  /*
789  * We need the runlist locked for
790  * writing, so if it is locked for
791  * reading relock it now and retry in
792  * case it changed whilst we dropped
793  * the lock.
794  */
795  up_read(&ni->runlist.lock);
796  down_write(&ni->runlist.lock);
797  rl_write_locked = true;
798  goto retry_remap;
799  }
800  err = ntfs_map_runlist_nolock(ni, bh_cpos,
801  NULL);
802  if (likely(!err)) {
803  is_retry = true;
804  goto retry_remap;
805  }
806  /*
807  * If @vcn is out of bounds, pretend @lcn is
808  * LCN_ENOENT. As long as the buffer is out
809  * of bounds this will work fine.
810  */
811  if (err == -ENOENT) {
812  lcn = LCN_ENOENT;
813  err = 0;
814  goto rl_not_mapped_enoent;
815  }
816  } else
817  err = -EIO;
818  /* Failed to map the buffer, even after retrying. */
819  bh->b_blocknr = -1;
820  ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
821  "attribute type 0x%x, vcn 0x%llx, "
822  "vcn offset 0x%x, because its "
823  "location on disk could not be "
824  "determined%s (error code %i).",
825  ni->mft_no, ni->type,
826  (unsigned long long)bh_cpos,
827  (unsigned)bh_pos &
828  vol->cluster_size_mask,
829  is_retry ? " even after retrying" : "",
830  err);
831  break;
832  }
833 rl_not_mapped_enoent:
834  /*
835  * The buffer is in a hole or out of bounds. We need to fill
836  * the hole, unless the buffer is in a cluster which is not
837  * touched by the write, in which case we just leave the buffer
838  * unmapped. This can only happen when the cluster size is
839  * less than the page cache size.
840  */
841  if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
842  bh_cend = (bh_end + vol->cluster_size - 1) >>
843  vol->cluster_size_bits;
844  if ((bh_cend <= cpos || bh_cpos >= cend)) {
845  bh->b_blocknr = -1;
846  /*
847  * If the buffer is uptodate we skip it. If it
848  * is not but the page is uptodate, we can set
849  * the buffer uptodate. If the page is not
850  * uptodate, we can clear the buffer and set it
851  * uptodate. Whether this is worthwhile is
852  * debatable and this could be removed.
853  */
854  if (PageUptodate(page)) {
855  if (!buffer_uptodate(bh))
856  set_buffer_uptodate(bh);
857  } else if (!buffer_uptodate(bh)) {
858  zero_user(page, bh_offset(bh),
859  blocksize);
860  set_buffer_uptodate(bh);
861  }
862  continue;
863  }
864  }
865  /*
866  * Out of bounds buffer is invalid if it was not really out of
867  * bounds.
868  */
869  BUG_ON(lcn != LCN_HOLE);
870  /*
871  * We need the runlist locked for writing, so if it is locked
872  * for reading relock it now and retry in case it changed
873  * whilst we dropped the lock.
874  */
875  BUG_ON(!rl);
876  if (!rl_write_locked) {
877  up_read(&ni->runlist.lock);
878  down_write(&ni->runlist.lock);
879  rl_write_locked = true;
880  goto retry_remap;
881  }
882  /* Find the previous last allocated cluster. */
883  BUG_ON(rl->lcn != LCN_HOLE);
884  lcn = -1;
885  rl2 = rl;
886  while (--rl2 >= ni->runlist.rl) {
887  if (rl2->lcn >= 0) {
888  lcn = rl2->lcn + rl2->length;
889  break;
890  }
891  }
892  rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
893  false);
894  if (IS_ERR(rl2)) {
895  err = PTR_ERR(rl2);
896  ntfs_debug("Failed to allocate cluster, error code %i.",
897  err);
898  break;
899  }
900  lcn = rl2->lcn;
901  rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
902  if (IS_ERR(rl)) {
903  err = PTR_ERR(rl);
904  if (err != -ENOMEM)
905  err = -EIO;
906  if (ntfs_cluster_free_from_rl(vol, rl2)) {
907  ntfs_error(vol->sb, "Failed to release "
908  "allocated cluster in error "
909  "code path. Run chkdsk to "
910  "recover the lost cluster.");
911  NVolSetErrors(vol);
912  }
913  ntfs_free(rl2);
914  break;
915  }
916  ni->runlist.rl = rl;
917  status.runlist_merged = 1;
918  ntfs_debug("Allocated cluster, lcn 0x%llx.",
919  (unsigned long long)lcn);
920  /* Map and lock the mft record and get the attribute record. */
921  if (!NInoAttr(ni))
922  base_ni = ni;
923  else
924  base_ni = ni->ext.base_ntfs_ino;
925  m = map_mft_record(base_ni);
926  if (IS_ERR(m)) {
927  err = PTR_ERR(m);
928  break;
929  }
930  ctx = ntfs_attr_get_search_ctx(base_ni, m);
931  if (unlikely(!ctx)) {
932  err = -ENOMEM;
933  unmap_mft_record(base_ni);
934  break;
935  }
936  status.mft_attr_mapped = 1;
937  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
938  CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
939  if (unlikely(err)) {
940  if (err == -ENOENT)
941  err = -EIO;
942  break;
943  }
944  m = ctx->mrec;
945  a = ctx->attr;
946  /*
947  * Find the runlist element with which the attribute extent
948  * starts. Note, we cannot use the _attr_ version because we
949  * have mapped the mft record. That is ok because we know the
950  * runlist fragment must be mapped already to have ever gotten
951  * here, so we can just use the _rl_ version.
952  */
953  vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
954  rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
955  BUG_ON(!rl2);
956  BUG_ON(!rl2->length);
957  BUG_ON(rl2->lcn < LCN_HOLE);
958  highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
959  /*
960  * If @highest_vcn is zero, calculate the real highest_vcn
961  * (which can really be zero).
962  */
963  if (!highest_vcn)
964  highest_vcn = (sle64_to_cpu(
965  a->data.non_resident.allocated_size) >>
966  vol->cluster_size_bits) - 1;
967  /*
968  * Determine the size of the mapping pairs array for the new
969  * extent, i.e. the old extent with the hole filled.
970  */
971  mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
972  highest_vcn);
973  if (unlikely(mp_size <= 0)) {
974  if (!(err = mp_size))
975  err = -EIO;
976  ntfs_debug("Failed to get size for mapping pairs "
977  "array, error code %i.", err);
978  break;
979  }
980  /*
981  * Resize the attribute record to fit the new mapping pairs
982  * array.
983  */
984  attr_rec_len = le32_to_cpu(a->length);
985  err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
986  a->data.non_resident.mapping_pairs_offset));
987  if (unlikely(err)) {
988  BUG_ON(err != -ENOSPC);
989  // TODO: Deal with this by using the current attribute
990  // and fill it with as much of the mapping pairs
991  // array as possible. Then loop over each attribute
992  // extent rewriting the mapping pairs arrays as we go
993  // along and if when we reach the end we have not
994  // enough space, try to resize the last attribute
995  // extent and if even that fails, add a new attribute
996  // extent.
997  // We could also try to resize at each step in the hope
998  // that we will not need to rewrite every single extent.
999  // Note, we may need to decompress some extents to fill
1000  // the runlist as we are walking the extents...
1001  ntfs_error(vol->sb, "Not enough space in the mft "
1002  "record for the extended attribute "
1003  "record. This case is not "
1004  "implemented yet.");
1005  err = -EOPNOTSUPP;
1006  break ;
1007  }
1008  status.mp_rebuilt = 1;
1009  /*
1010  * Generate the mapping pairs array directly into the attribute
1011  * record.
1012  */
1013  err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1014  a->data.non_resident.mapping_pairs_offset),
1015  mp_size, rl2, vcn, highest_vcn, NULL);
1016  if (unlikely(err)) {
1017  ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1018  "attribute type 0x%x, because building "
1019  "the mapping pairs failed with error "
1020  "code %i.", vi->i_ino,
1021  (unsigned)le32_to_cpu(ni->type), err);
1022  err = -EIO;
1023  break;
1024  }
1025  /* Update the highest_vcn but only if it was not set. */
1026  if (unlikely(!a->data.non_resident.highest_vcn))
1027  a->data.non_resident.highest_vcn =
1028  cpu_to_sle64(highest_vcn);
1029  /*
1030  * If the attribute is sparse/compressed, update the compressed
1031  * size in the ntfs_inode structure and the attribute record.
1032  */
1033  if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1034  /*
1035  * If we are not in the first attribute extent, switch
1036  * to it, but first ensure the changes will make it to
1037  * disk later.
1038  */
1039  if (a->data.non_resident.lowest_vcn) {
1040  flush_dcache_mft_record_page(ctx->ntfs_ino);
1041  mark_mft_record_dirty(ctx->ntfs_ino);
1043  err = ntfs_attr_lookup(ni->type, ni->name,
1044  ni->name_len, CASE_SENSITIVE,
1045  0, NULL, 0, ctx);
1046  if (unlikely(err)) {
1047  status.attr_switched = 1;
1048  break;
1049  }
1050  /* @m is not used any more so do not set it. */
1051  a = ctx->attr;
1052  }
1053  write_lock_irqsave(&ni->size_lock, flags);
1054  ni->itype.compressed.size += vol->cluster_size;
1055  a->data.non_resident.compressed_size =
1056  cpu_to_sle64(ni->itype.compressed.size);
1057  write_unlock_irqrestore(&ni->size_lock, flags);
1058  }
1059  /* Ensure the changes make it to disk. */
1060  flush_dcache_mft_record_page(ctx->ntfs_ino);
1061  mark_mft_record_dirty(ctx->ntfs_ino);
1063  unmap_mft_record(base_ni);
1064  /* Successfully filled the hole. */
1065  status.runlist_merged = 0;
1066  status.mft_attr_mapped = 0;
1067  status.mp_rebuilt = 0;
1068  /* Setup the map cache and use that to deal with the buffer. */
1069  was_hole = true;
1070  vcn = bh_cpos;
1071  vcn_len = 1;
1072  lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1073  cdelta = 0;
1074  /*
1075  * If the number of remaining clusters in the @pages is smaller
1076  * or equal to the number of cached clusters, unlock the
1077  * runlist as the map cache will be used from now on.
1078  */
1079  if (likely(vcn + vcn_len >= cend)) {
1080  up_write(&ni->runlist.lock);
1081  rl_write_locked = false;
1082  rl = NULL;
1083  }
1084  goto map_buffer_cached;
1085  } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1086  /* If there are no errors, do the next page. */
1087  if (likely(!err && ++u < nr_pages))
1088  goto do_next_page;
1089  /* If there are no errors, release the runlist lock if we took it. */
1090  if (likely(!err)) {
1091  if (unlikely(rl_write_locked)) {
1092  up_write(&ni->runlist.lock);
1093  rl_write_locked = false;
1094  } else if (unlikely(rl))
1095  up_read(&ni->runlist.lock);
1096  rl = NULL;
1097  }
1098  /* If we issued read requests, let them complete. */
1099  read_lock_irqsave(&ni->size_lock, flags);
1100  initialized_size = ni->initialized_size;
1101  read_unlock_irqrestore(&ni->size_lock, flags);
1102  while (wait_bh > wait) {
1103  bh = *--wait_bh;
1104  wait_on_buffer(bh);
1105  if (likely(buffer_uptodate(bh))) {
1106  page = bh->b_page;
1107  bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1108  bh_offset(bh);
1109  /*
1110  * If the buffer overflows the initialized size, need
1111  * to zero the overflowing region.
1112  */
1113  if (unlikely(bh_pos + blocksize > initialized_size)) {
1114  int ofs = 0;
1115 
1116  if (likely(bh_pos < initialized_size))
1117  ofs = initialized_size - bh_pos;
1118  zero_user_segment(page, bh_offset(bh) + ofs,
1119  blocksize);
1120  }
1121  } else /* if (unlikely(!buffer_uptodate(bh))) */
1122  err = -EIO;
1123  }
1124  if (likely(!err)) {
1125  /* Clear buffer_new on all buffers. */
1126  u = 0;
1127  do {
1128  bh = head = page_buffers(pages[u]);
1129  do {
1130  if (buffer_new(bh))
1131  clear_buffer_new(bh);
1132  } while ((bh = bh->b_this_page) != head);
1133  } while (++u < nr_pages);
1134  ntfs_debug("Done.");
1135  return err;
1136  }
1137  if (status.attr_switched) {
1138  /* Get back to the attribute extent we modified. */
1140  if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1141  CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1142  ntfs_error(vol->sb, "Failed to find required "
1143  "attribute extent of attribute in "
1144  "error code path. Run chkdsk to "
1145  "recover.");
1146  write_lock_irqsave(&ni->size_lock, flags);
1147  ni->itype.compressed.size += vol->cluster_size;
1148  write_unlock_irqrestore(&ni->size_lock, flags);
1149  flush_dcache_mft_record_page(ctx->ntfs_ino);
1150  mark_mft_record_dirty(ctx->ntfs_ino);
1151  /*
1152  * The only thing that is now wrong is the compressed
1153  * size of the base attribute extent which chkdsk
1154  * should be able to fix.
1155  */
1156  NVolSetErrors(vol);
1157  } else {
1158  m = ctx->mrec;
1159  a = ctx->attr;
1160  status.attr_switched = 0;
1161  }
1162  }
1163  /*
1164  * If the runlist has been modified, need to restore it by punching a
1165  * hole into it and we then need to deallocate the on-disk cluster as
1166  * well. Note, we only modify the runlist if we are able to generate a
1167  * new mapping pairs array, i.e. only when the mapped attribute extent
1168  * is not switched.
1169  */
1170  if (status.runlist_merged && !status.attr_switched) {
1171  BUG_ON(!rl_write_locked);
1172  /* Make the file cluster we allocated sparse in the runlist. */
1173  if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1174  ntfs_error(vol->sb, "Failed to punch hole into "
1175  "attribute runlist in error code "
1176  "path. Run chkdsk to recover the "
1177  "lost cluster.");
1178  NVolSetErrors(vol);
1179  } else /* if (success) */ {
1180  status.runlist_merged = 0;
1181  /*
1182  * Deallocate the on-disk cluster we allocated but only
1183  * if we succeeded in punching its vcn out of the
1184  * runlist.
1185  */
1186  down_write(&vol->lcnbmp_lock);
1187  if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1188  ntfs_error(vol->sb, "Failed to release "
1189  "allocated cluster in error "
1190  "code path. Run chkdsk to "
1191  "recover the lost cluster.");
1192  NVolSetErrors(vol);
1193  }
1194  up_write(&vol->lcnbmp_lock);
1195  }
1196  }
1197  /*
1198  * Resize the attribute record to its old size and rebuild the mapping
1199  * pairs array. Note, we only can do this if the runlist has been
1200  * restored to its old state which also implies that the mapped
1201  * attribute extent is not switched.
1202  */
1203  if (status.mp_rebuilt && !status.runlist_merged) {
1204  if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1205  ntfs_error(vol->sb, "Failed to restore attribute "
1206  "record in error code path. Run "
1207  "chkdsk to recover.");
1208  NVolSetErrors(vol);
1209  } else /* if (success) */ {
1210  if (ntfs_mapping_pairs_build(vol, (u8*)a +
1211  le16_to_cpu(a->data.non_resident.
1212  mapping_pairs_offset), attr_rec_len -
1213  le16_to_cpu(a->data.non_resident.
1215  vcn, highest_vcn, NULL)) {
1216  ntfs_error(vol->sb, "Failed to restore "
1217  "mapping pairs array in error "
1218  "code path. Run chkdsk to "
1219  "recover.");
1220  NVolSetErrors(vol);
1221  }
1222  flush_dcache_mft_record_page(ctx->ntfs_ino);
1223  mark_mft_record_dirty(ctx->ntfs_ino);
1224  }
1225  }
1226  /* Release the mft record and the attribute. */
1227  if (status.mft_attr_mapped) {
1229  unmap_mft_record(base_ni);
1230  }
1231  /* Release the runlist lock. */
1232  if (rl_write_locked)
1233  up_write(&ni->runlist.lock);
1234  else if (rl)
1235  up_read(&ni->runlist.lock);
1236  /*
1237  * Zero out any newly allocated blocks to avoid exposing stale data.
1238  * If BH_New is set, we know that the block was newly allocated above
1239  * and that it has not been fully zeroed and marked dirty yet.
1240  */
1241  nr_pages = u;
1242  u = 0;
1243  end = bh_cpos << vol->cluster_size_bits;
1244  do {
1245  page = pages[u];
1246  bh = head = page_buffers(page);
1247  do {
1248  if (u == nr_pages &&
1249  ((s64)page->index << PAGE_CACHE_SHIFT) +
1250  bh_offset(bh) >= end)
1251  break;
1252  if (!buffer_new(bh))
1253  continue;
1254  clear_buffer_new(bh);
1255  if (!buffer_uptodate(bh)) {
1256  if (PageUptodate(page))
1257  set_buffer_uptodate(bh);
1258  else {
1259  zero_user(page, bh_offset(bh),
1260  blocksize);
1261  set_buffer_uptodate(bh);
1262  }
1263  }
1264  mark_buffer_dirty(bh);
1265  } while ((bh = bh->b_this_page) != head);
1266  } while (++u <= nr_pages);
1267  ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1268  return err;
1269 }
1270 
1271 /*
1272  * Copy as much as we can into the pages and return the number of bytes which
1273  * were successfully copied. If a fault is encountered then clear the pages
1274  * out to (ofs + bytes) and return the number of bytes which were copied.
1275  */
1276 static inline size_t ntfs_copy_from_user(struct page **pages,
1277  unsigned nr_pages, unsigned ofs, const char __user *buf,
1278  size_t bytes)
1279 {
1280  struct page **last_page = pages + nr_pages;
1281  char *addr;
1282  size_t total = 0;
1283  unsigned len;
1284  int left;
1285 
1286  do {
1287  len = PAGE_CACHE_SIZE - ofs;
1288  if (len > bytes)
1289  len = bytes;
1290  addr = kmap_atomic(*pages);
1291  left = __copy_from_user_inatomic(addr + ofs, buf, len);
1292  kunmap_atomic(addr);
1293  if (unlikely(left)) {
1294  /* Do it the slow way. */
1295  addr = kmap(*pages);
1296  left = __copy_from_user(addr + ofs, buf, len);
1297  kunmap(*pages);
1298  if (unlikely(left))
1299  goto err_out;
1300  }
1301  total += len;
1302  bytes -= len;
1303  if (!bytes)
1304  break;
1305  buf += len;
1306  ofs = 0;
1307  } while (++pages < last_page);
1308 out:
1309  return total;
1310 err_out:
1311  total += len - left;
1312  /* Zero the rest of the target like __copy_from_user(). */
1313  while (++pages < last_page) {
1314  bytes -= len;
1315  if (!bytes)
1316  break;
1317  len = PAGE_CACHE_SIZE;
1318  if (len > bytes)
1319  len = bytes;
1320  zero_user(*pages, 0, len);
1321  }
1322  goto out;
1323 }
1324 
1325 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1326  const struct iovec *iov, size_t iov_ofs, size_t bytes)
1327 {
1328  size_t total = 0;
1329 
1330  while (1) {
1331  const char __user *buf = iov->iov_base + iov_ofs;
1332  unsigned len;
1333  size_t left;
1334 
1335  len = iov->iov_len - iov_ofs;
1336  if (len > bytes)
1337  len = bytes;
1338  left = __copy_from_user_inatomic(vaddr, buf, len);
1339  total += len;
1340  bytes -= len;
1341  vaddr += len;
1342  if (unlikely(left)) {
1343  total -= left;
1344  break;
1345  }
1346  if (!bytes)
1347  break;
1348  iov++;
1349  iov_ofs = 0;
1350  }
1351  return total;
1352 }
1353 
1354 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1355  size_t *iov_ofsp, size_t bytes)
1356 {
1357  const struct iovec *iov = *iovp;
1358  size_t iov_ofs = *iov_ofsp;
1359 
1360  while (bytes) {
1361  unsigned len;
1362 
1363  len = iov->iov_len - iov_ofs;
1364  if (len > bytes)
1365  len = bytes;
1366  bytes -= len;
1367  iov_ofs += len;
1368  if (iov->iov_len == iov_ofs) {
1369  iov++;
1370  iov_ofs = 0;
1371  }
1372  }
1373  *iovp = iov;
1374  *iov_ofsp = iov_ofs;
1375 }
1376 
1377 /*
1378  * This has the same side-effects and return value as ntfs_copy_from_user().
1379  * The difference is that on a fault we need to memset the remainder of the
1380  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1381  * single-segment behaviour.
1382  *
1383  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1384  * atomic and when not atomic. This is ok because it calls
1385  * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1386  * fact, the only difference between __copy_from_user_inatomic() and
1387  * __copy_from_user() is that the latter calls might_sleep() and the former
1388  * should not zero the tail of the buffer on error. And on many architectures
1389  * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1390  * makes no difference at all on those architectures.
1391  */
1392 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1393  unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1394  size_t *iov_ofs, size_t bytes)
1395 {
1396  struct page **last_page = pages + nr_pages;
1397  char *addr;
1398  size_t copied, len, total = 0;
1399 
1400  do {
1401  len = PAGE_CACHE_SIZE - ofs;
1402  if (len > bytes)
1403  len = bytes;
1404  addr = kmap_atomic(*pages);
1405  copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1406  *iov, *iov_ofs, len);
1407  kunmap_atomic(addr);
1408  if (unlikely(copied != len)) {
1409  /* Do it the slow way. */
1410  addr = kmap(*pages);
1411  copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1412  ofs, *iov, *iov_ofs, len);
1413  if (unlikely(copied != len))
1414  goto err_out;
1415  kunmap(*pages);
1416  }
1417  total += len;
1418  ntfs_set_next_iovec(iov, iov_ofs, len);
1419  bytes -= len;
1420  if (!bytes)
1421  break;
1422  ofs = 0;
1423  } while (++pages < last_page);
1424 out:
1425  return total;
1426 err_out:
1427  BUG_ON(copied > len);
1428  /* Zero the rest of the target like __copy_from_user(). */
1429  memset(addr + ofs + copied, 0, len - copied);
1430  kunmap(*pages);
1431  total += copied;
1432  ntfs_set_next_iovec(iov, iov_ofs, copied);
1433  while (++pages < last_page) {
1434  bytes -= len;
1435  if (!bytes)
1436  break;
1437  len = PAGE_CACHE_SIZE;
1438  if (len > bytes)
1439  len = bytes;
1440  zero_user(*pages, 0, len);
1441  }
1442  goto out;
1443 }
1444 
1445 static inline void ntfs_flush_dcache_pages(struct page **pages,
1446  unsigned nr_pages)
1447 {
1448  BUG_ON(!nr_pages);
1449  /*
1450  * Warning: Do not do the decrement at the same time as the call to
1451  * flush_dcache_page() because it is a NULL macro on i386 and hence the
1452  * decrement never happens so the loop never terminates.
1453  */
1454  do {
1455  --nr_pages;
1456  flush_dcache_page(pages[nr_pages]);
1457  } while (nr_pages > 0);
1458 }
1459 
1469 static inline int ntfs_commit_pages_after_non_resident_write(
1470  struct page **pages, const unsigned nr_pages,
1471  s64 pos, size_t bytes)
1472 {
1474  struct inode *vi;
1475  ntfs_inode *ni, *base_ni;
1476  struct buffer_head *bh, *head;
1478  MFT_RECORD *m;
1479  ATTR_RECORD *a;
1480  unsigned long flags;
1481  unsigned blocksize, u;
1482  int err;
1483 
1484  vi = pages[0]->mapping->host;
1485  ni = NTFS_I(vi);
1486  blocksize = vi->i_sb->s_blocksize;
1487  end = pos + bytes;
1488  u = 0;
1489  do {
1490  s64 bh_pos;
1491  struct page *page;
1492  bool partial;
1493 
1494  page = pages[u];
1495  bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1496  bh = head = page_buffers(page);
1497  partial = false;
1498  do {
1499  s64 bh_end;
1500 
1501  bh_end = bh_pos + blocksize;
1502  if (bh_end <= pos || bh_pos >= end) {
1503  if (!buffer_uptodate(bh))
1504  partial = true;
1505  } else {
1506  set_buffer_uptodate(bh);
1507  mark_buffer_dirty(bh);
1508  }
1509  } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1510  /*
1511  * If all buffers are now uptodate but the page is not, set the
1512  * page uptodate.
1513  */
1514  if (!partial && !PageUptodate(page))
1515  SetPageUptodate(page);
1516  } while (++u < nr_pages);
1517  /*
1518  * Finally, if we do not need to update initialized_size or i_size we
1519  * are finished.
1520  */
1521  read_lock_irqsave(&ni->size_lock, flags);
1522  initialized_size = ni->initialized_size;
1523  read_unlock_irqrestore(&ni->size_lock, flags);
1524  if (end <= initialized_size) {
1525  ntfs_debug("Done.");
1526  return 0;
1527  }
1528  /*
1529  * Update initialized_size/i_size as appropriate, both in the inode and
1530  * the mft record.
1531  */
1532  if (!NInoAttr(ni))
1533  base_ni = ni;
1534  else
1535  base_ni = ni->ext.base_ntfs_ino;
1536  /* Map, pin, and lock the mft record. */
1537  m = map_mft_record(base_ni);
1538  if (IS_ERR(m)) {
1539  err = PTR_ERR(m);
1540  m = NULL;
1541  ctx = NULL;
1542  goto err_out;
1543  }
1544  BUG_ON(!NInoNonResident(ni));
1545  ctx = ntfs_attr_get_search_ctx(base_ni, m);
1546  if (unlikely(!ctx)) {
1547  err = -ENOMEM;
1548  goto err_out;
1549  }
1550  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1551  CASE_SENSITIVE, 0, NULL, 0, ctx);
1552  if (unlikely(err)) {
1553  if (err == -ENOENT)
1554  err = -EIO;
1555  goto err_out;
1556  }
1557  a = ctx->attr;
1558  BUG_ON(!a->non_resident);
1559  write_lock_irqsave(&ni->size_lock, flags);
1560  BUG_ON(end > ni->allocated_size);
1561  ni->initialized_size = end;
1562  a->data.non_resident.initialized_size = cpu_to_sle64(end);
1563  if (end > i_size_read(vi)) {
1564  i_size_write(vi, end);
1565  a->data.non_resident.data_size =
1566  a->data.non_resident.initialized_size;
1567  }
1568  write_unlock_irqrestore(&ni->size_lock, flags);
1569  /* Mark the mft record dirty, so it gets written back. */
1570  flush_dcache_mft_record_page(ctx->ntfs_ino);
1571  mark_mft_record_dirty(ctx->ntfs_ino);
1573  unmap_mft_record(base_ni);
1574  ntfs_debug("Done.");
1575  return 0;
1576 err_out:
1577  if (ctx)
1579  if (m)
1580  unmap_mft_record(base_ni);
1581  ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1582  "code %i).", err);
1583  if (err != -ENOMEM)
1584  NVolSetErrors(ni->vol);
1585  return err;
1586 }
1587 
1624 static int ntfs_commit_pages_after_write(struct page **pages,
1625  const unsigned nr_pages, s64 pos, size_t bytes)
1626 {
1628  loff_t i_size;
1629  struct inode *vi;
1630  ntfs_inode *ni, *base_ni;
1631  struct page *page;
1633  MFT_RECORD *m;
1634  ATTR_RECORD *a;
1635  char *kattr, *kaddr;
1636  unsigned long flags;
1637  u32 attr_len;
1638  int err;
1639 
1640  BUG_ON(!nr_pages);
1641  BUG_ON(!pages);
1642  page = pages[0];
1643  BUG_ON(!page);
1644  vi = page->mapping->host;
1645  ni = NTFS_I(vi);
1646  ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1647  "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1648  vi->i_ino, ni->type, page->index, nr_pages,
1649  (long long)pos, bytes);
1650  if (NInoNonResident(ni))
1651  return ntfs_commit_pages_after_non_resident_write(pages,
1652  nr_pages, pos, bytes);
1653  BUG_ON(nr_pages > 1);
1654  /*
1655  * Attribute is resident, implying it is not compressed, encrypted, or
1656  * sparse.
1657  */
1658  if (!NInoAttr(ni))
1659  base_ni = ni;
1660  else
1661  base_ni = ni->ext.base_ntfs_ino;
1662  BUG_ON(NInoNonResident(ni));
1663  /* Map, pin, and lock the mft record. */
1664  m = map_mft_record(base_ni);
1665  if (IS_ERR(m)) {
1666  err = PTR_ERR(m);
1667  m = NULL;
1668  ctx = NULL;
1669  goto err_out;
1670  }
1671  ctx = ntfs_attr_get_search_ctx(base_ni, m);
1672  if (unlikely(!ctx)) {
1673  err = -ENOMEM;
1674  goto err_out;
1675  }
1676  err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1677  CASE_SENSITIVE, 0, NULL, 0, ctx);
1678  if (unlikely(err)) {
1679  if (err == -ENOENT)
1680  err = -EIO;
1681  goto err_out;
1682  }
1683  a = ctx->attr;
1684  BUG_ON(a->non_resident);
1685  /* The total length of the attribute value. */
1686  attr_len = le32_to_cpu(a->data.resident.value_length);
1687  i_size = i_size_read(vi);
1688  BUG_ON(attr_len != i_size);
1689  BUG_ON(pos > attr_len);
1690  end = pos + bytes;
1691  BUG_ON(end > le32_to_cpu(a->length) -
1692  le16_to_cpu(a->data.resident.value_offset));
1693  kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1694  kaddr = kmap_atomic(page);
1695  /* Copy the received data from the page to the mft record. */
1696  memcpy(kattr + pos, kaddr + pos, bytes);
1697  /* Update the attribute length if necessary. */
1698  if (end > attr_len) {
1699  attr_len = end;
1700  a->data.resident.value_length = cpu_to_le32(attr_len);
1701  }
1702  /*
1703  * If the page is not uptodate, bring the out of bounds area(s)
1704  * uptodate by copying data from the mft record to the page.
1705  */
1706  if (!PageUptodate(page)) {
1707  if (pos > 0)
1708  memcpy(kaddr, kattr, pos);
1709  if (end < attr_len)
1710  memcpy(kaddr + end, kattr + end, attr_len - end);
1711  /* Zero the region outside the end of the attribute value. */
1712  memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1713  flush_dcache_page(page);
1714  SetPageUptodate(page);
1715  }
1716  kunmap_atomic(kaddr);
1717  /* Update initialized_size/i_size if necessary. */
1718  read_lock_irqsave(&ni->size_lock, flags);
1719  initialized_size = ni->initialized_size;
1720  BUG_ON(end > ni->allocated_size);
1721  read_unlock_irqrestore(&ni->size_lock, flags);
1722  BUG_ON(initialized_size != i_size);
1723  if (end > initialized_size) {
1724  write_lock_irqsave(&ni->size_lock, flags);
1725  ni->initialized_size = end;
1726  i_size_write(vi, end);
1727  write_unlock_irqrestore(&ni->size_lock, flags);
1728  }
1729  /* Mark the mft record dirty, so it gets written back. */
1730  flush_dcache_mft_record_page(ctx->ntfs_ino);
1731  mark_mft_record_dirty(ctx->ntfs_ino);
1733  unmap_mft_record(base_ni);
1734  ntfs_debug("Done.");
1735  return 0;
1736 err_out:
1737  if (err == -ENOMEM) {
1738  ntfs_warning(vi->i_sb, "Error allocating memory required to "
1739  "commit the write.");
1740  if (PageUptodate(page)) {
1741  ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1742  "dirty so the write will be retried "
1743  "later on by the VM.");
1744  /*
1745  * Put the page on mapping->dirty_pages, but leave its
1746  * buffers' dirty state as-is.
1747  */
1749  err = 0;
1750  } else
1751  ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1752  "data has been lost.");
1753  } else {
1754  ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1755  "with error %i.", err);
1756  NVolSetErrors(ni->vol);
1757  }
1758  if (ctx)
1760  if (m)
1761  unmap_mft_record(base_ni);
1762  return err;
1763 }
1764 
1770 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1771  const struct iovec *iov, unsigned long nr_segs,
1772  loff_t pos, loff_t *ppos, size_t count)
1773 {
1774  struct file *file = iocb->ki_filp;
1775  struct address_space *mapping = file->f_mapping;
1776  struct inode *vi = mapping->host;
1777  ntfs_inode *ni = NTFS_I(vi);
1778  ntfs_volume *vol = ni->vol;
1779  struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1780  struct page *cached_page = NULL;
1781  char __user *buf = NULL;
1782  s64 end, ll;
1783  VCN last_vcn;
1784  LCN lcn;
1785  unsigned long flags;
1786  size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1787  ssize_t status, written;
1788  unsigned nr_pages;
1789  int err;
1790 
1791  ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1792  "pos 0x%llx, count 0x%lx.",
1793  vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1794  (unsigned long long)pos, (unsigned long)count);
1795  if (unlikely(!count))
1796  return 0;
1797  BUG_ON(NInoMstProtected(ni));
1798  /*
1799  * If the attribute is not an index root and it is encrypted or
1800  * compressed, we cannot write to it yet. Note we need to check for
1801  * AT_INDEX_ALLOCATION since this is the type of both directory and
1802  * index inodes.
1803  */
1804  if (ni->type != AT_INDEX_ALLOCATION) {
1805  /* If file is encrypted, deny access, just like NT4. */
1806  if (NInoEncrypted(ni)) {
1807  /*
1808  * Reminder for later: Encrypted files are _always_
1809  * non-resident so that the content can always be
1810  * encrypted.
1811  */
1812  ntfs_debug("Denying write access to encrypted file.");
1813  return -EACCES;
1814  }
1815  if (NInoCompressed(ni)) {
1816  /* Only unnamed $DATA attribute can be compressed. */
1817  BUG_ON(ni->type != AT_DATA);
1818  BUG_ON(ni->name_len);
1819  /*
1820  * Reminder for later: If resident, the data is not
1821  * actually compressed. Only on the switch to non-
1822  * resident does compression kick in. This is in
1823  * contrast to encrypted files (see above).
1824  */
1825  ntfs_error(vi->i_sb, "Writing to compressed files is "
1826  "not implemented yet. Sorry.");
1827  return -EOPNOTSUPP;
1828  }
1829  }
1830  /*
1831  * If a previous ntfs_truncate() failed, repeat it and abort if it
1832  * fails again.
1833  */
1834  if (unlikely(NInoTruncateFailed(ni))) {
1835  inode_dio_wait(vi);
1836  err = ntfs_truncate(vi);
1837  if (err || NInoTruncateFailed(ni)) {
1838  if (!err)
1839  err = -EIO;
1840  ntfs_error(vol->sb, "Cannot perform write to inode "
1841  "0x%lx, attribute type 0x%x, because "
1842  "ntfs_truncate() failed (error code "
1843  "%i).", vi->i_ino,
1844  (unsigned)le32_to_cpu(ni->type), err);
1845  return err;
1846  }
1847  }
1848  /* The first byte after the write. */
1849  end = pos + count;
1850  /*
1851  * If the write goes beyond the allocated size, extend the allocation
1852  * to cover the whole of the write, rounded up to the nearest cluster.
1853  */
1854  read_lock_irqsave(&ni->size_lock, flags);
1855  ll = ni->allocated_size;
1856  read_unlock_irqrestore(&ni->size_lock, flags);
1857  if (end > ll) {
1858  /* Extend the allocation without changing the data size. */
1859  ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1860  if (likely(ll >= 0)) {
1861  BUG_ON(pos >= ll);
1862  /* If the extension was partial truncate the write. */
1863  if (end > ll) {
1864  ntfs_debug("Truncating write to inode 0x%lx, "
1865  "attribute type 0x%x, because "
1866  "the allocation was only "
1867  "partially extended.",
1868  vi->i_ino, (unsigned)
1869  le32_to_cpu(ni->type));
1870  end = ll;
1871  count = ll - pos;
1872  }
1873  } else {
1874  err = ll;
1875  read_lock_irqsave(&ni->size_lock, flags);
1876  ll = ni->allocated_size;
1877  read_unlock_irqrestore(&ni->size_lock, flags);
1878  /* Perform a partial write if possible or fail. */
1879  if (pos < ll) {
1880  ntfs_debug("Truncating write to inode 0x%lx, "
1881  "attribute type 0x%x, because "
1882  "extending the allocation "
1883  "failed (error code %i).",
1884  vi->i_ino, (unsigned)
1885  le32_to_cpu(ni->type), err);
1886  end = ll;
1887  count = ll - pos;
1888  } else {
1889  ntfs_error(vol->sb, "Cannot perform write to "
1890  "inode 0x%lx, attribute type "
1891  "0x%x, because extending the "
1892  "allocation failed (error "
1893  "code %i).", vi->i_ino,
1894  (unsigned)
1895  le32_to_cpu(ni->type), err);
1896  return err;
1897  }
1898  }
1899  }
1900  written = 0;
1901  /*
1902  * If the write starts beyond the initialized size, extend it up to the
1903  * beginning of the write and initialize all non-sparse space between
1904  * the old initialized size and the new one. This automatically also
1905  * increments the vfs inode->i_size to keep it above or equal to the
1906  * initialized_size.
1907  */
1908  read_lock_irqsave(&ni->size_lock, flags);
1909  ll = ni->initialized_size;
1910  read_unlock_irqrestore(&ni->size_lock, flags);
1911  if (pos > ll) {
1912  err = ntfs_attr_extend_initialized(ni, pos);
1913  if (err < 0) {
1914  ntfs_error(vol->sb, "Cannot perform write to inode "
1915  "0x%lx, attribute type 0x%x, because "
1916  "extending the initialized size "
1917  "failed (error code %i).", vi->i_ino,
1918  (unsigned)le32_to_cpu(ni->type), err);
1919  status = err;
1920  goto err_out;
1921  }
1922  }
1923  /*
1924  * Determine the number of pages per cluster for non-resident
1925  * attributes.
1926  */
1927  nr_pages = 1;
1928  if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1929  nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1930  /* Finally, perform the actual write. */
1931  last_vcn = -1;
1932  if (likely(nr_segs == 1))
1933  buf = iov->iov_base;
1934  do {
1935  VCN vcn;
1936  pgoff_t idx, start_idx;
1937  unsigned ofs, do_pages, u;
1938  size_t copied;
1939 
1940  start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1941  ofs = pos & ~PAGE_CACHE_MASK;
1942  bytes = PAGE_CACHE_SIZE - ofs;
1943  do_pages = 1;
1944  if (nr_pages > 1) {
1945  vcn = pos >> vol->cluster_size_bits;
1946  if (vcn != last_vcn) {
1947  last_vcn = vcn;
1948  /*
1949  * Get the lcn of the vcn the write is in. If
1950  * it is a hole, need to lock down all pages in
1951  * the cluster.
1952  */
1953  down_read(&ni->runlist.lock);
1954  lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1955  vol->cluster_size_bits, false);
1956  up_read(&ni->runlist.lock);
1957  if (unlikely(lcn < LCN_HOLE)) {
1958  status = -EIO;
1959  if (lcn == LCN_ENOMEM)
1960  status = -ENOMEM;
1961  else
1962  ntfs_error(vol->sb, "Cannot "
1963  "perform write to "
1964  "inode 0x%lx, "
1965  "attribute type 0x%x, "
1966  "because the attribute "
1967  "is corrupt.",
1968  vi->i_ino, (unsigned)
1969  le32_to_cpu(ni->type));
1970  break;
1971  }
1972  if (lcn == LCN_HOLE) {
1973  start_idx = (pos & ~(s64)
1974  vol->cluster_size_mask)
1975  >> PAGE_CACHE_SHIFT;
1976  bytes = vol->cluster_size - (pos &
1977  vol->cluster_size_mask);
1978  do_pages = nr_pages;
1979  }
1980  }
1981  }
1982  if (bytes > count)
1983  bytes = count;
1984  /*
1985  * Bring in the user page(s) that we will copy from _first_.
1986  * Otherwise there is a nasty deadlock on copying from the same
1987  * page(s) as we are writing to, without it/them being marked
1988  * up-to-date. Note, at present there is nothing to stop the
1989  * pages being swapped out between us bringing them into memory
1990  * and doing the actual copying.
1991  */
1992  if (likely(nr_segs == 1))
1993  ntfs_fault_in_pages_readable(buf, bytes);
1994  else
1995  ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
1996  /* Get and lock @do_pages starting at index @start_idx. */
1997  status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1998  pages, &cached_page);
1999  if (unlikely(status))
2000  break;
2001  /*
2002  * For non-resident attributes, we need to fill any holes with
2003  * actual clusters and ensure all bufferes are mapped. We also
2004  * need to bring uptodate any buffers that are only partially
2005  * being written to.
2006  */
2007  if (NInoNonResident(ni)) {
2008  status = ntfs_prepare_pages_for_non_resident_write(
2009  pages, do_pages, pos, bytes);
2010  if (unlikely(status)) {
2011  loff_t i_size;
2012 
2013  do {
2014  unlock_page(pages[--do_pages]);
2015  page_cache_release(pages[do_pages]);
2016  } while (do_pages);
2017  /*
2018  * The write preparation may have instantiated
2019  * allocated space outside i_size. Trim this
2020  * off again. We can ignore any errors in this
2021  * case as we will just be waisting a bit of
2022  * allocated space, which is not a disaster.
2023  */
2024  i_size = i_size_read(vi);
2025  if (pos + bytes > i_size)
2026  vmtruncate(vi, i_size);
2027  break;
2028  }
2029  }
2030  u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2031  if (likely(nr_segs == 1)) {
2032  copied = ntfs_copy_from_user(pages + u, do_pages - u,
2033  ofs, buf, bytes);
2034  buf += copied;
2035  } else
2036  copied = ntfs_copy_from_user_iovec(pages + u,
2037  do_pages - u, ofs, &iov, &iov_ofs,
2038  bytes);
2039  ntfs_flush_dcache_pages(pages + u, do_pages - u);
2040  status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2041  bytes);
2042  if (likely(!status)) {
2043  written += copied;
2044  count -= copied;
2045  pos += copied;
2046  if (unlikely(copied != bytes))
2047  status = -EFAULT;
2048  }
2049  do {
2050  unlock_page(pages[--do_pages]);
2051  mark_page_accessed(pages[do_pages]);
2052  page_cache_release(pages[do_pages]);
2053  } while (do_pages);
2054  if (unlikely(status))
2055  break;
2056  balance_dirty_pages_ratelimited(mapping);
2057  cond_resched();
2058  } while (count);
2059 err_out:
2060  *ppos = pos;
2061  if (cached_page)
2062  page_cache_release(cached_page);
2063  ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2064  written ? "written" : "status", (unsigned long)written,
2065  (long)status);
2066  return written ? written : status;
2067 }
2068 
2072 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2073  const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2074 {
2075  struct file *file = iocb->ki_filp;
2076  struct address_space *mapping = file->f_mapping;
2077  struct inode *inode = mapping->host;
2078  loff_t pos;
2079  size_t count; /* after file limit checks */
2080  ssize_t written, err;
2081 
2082  count = 0;
2083  err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2084  if (err)
2085  return err;
2086  pos = *ppos;
2087  /* We can write back this queue in page reclaim. */
2088  current->backing_dev_info = mapping->backing_dev_info;
2089  written = 0;
2090  err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2091  if (err)
2092  goto out;
2093  if (!count)
2094  goto out;
2095  err = file_remove_suid(file);
2096  if (err)
2097  goto out;
2098  err = file_update_time(file);
2099  if (err)
2100  goto out;
2101  written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2102  count);
2103 out:
2104  current->backing_dev_info = NULL;
2105  return written ? written : err;
2106 }
2107 
2111 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2112  unsigned long nr_segs, loff_t pos)
2113 {
2114  struct file *file = iocb->ki_filp;
2115  struct address_space *mapping = file->f_mapping;
2116  struct inode *inode = mapping->host;
2117  ssize_t ret;
2118 
2119  BUG_ON(iocb->ki_pos != pos);
2120 
2121  sb_start_write(inode->i_sb);
2122  mutex_lock(&inode->i_mutex);
2123  ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2124  mutex_unlock(&inode->i_mutex);
2125  if (ret > 0) {
2126  int err = generic_write_sync(file, pos, ret);
2127  if (err < 0)
2128  ret = err;
2129  }
2130  sb_end_write(inode->i_sb);
2131  return ret;
2132 }
2133 
2158 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2159  int datasync)
2160 {
2161  struct inode *vi = filp->f_mapping->host;
2162  int err, ret = 0;
2163 
2164  ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2165 
2166  err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2167  if (err)
2168  return err;
2169  mutex_lock(&vi->i_mutex);
2170 
2171  BUG_ON(S_ISDIR(vi->i_mode));
2172  if (!datasync || !NInoNonResident(NTFS_I(vi)))
2173  ret = __ntfs_write_inode(vi, 1);
2174  write_inode_now(vi, !datasync);
2175  /*
2176  * NOTE: If we were to use mapping->private_list (see ext2 and
2177  * fs/buffer.c) for dirty blocks then we could optimize the below to be
2178  * sync_mapping_buffers(vi->i_mapping).
2179  */
2180  err = sync_blockdev(vi->i_sb->s_bdev);
2181  if (unlikely(err && !ret))
2182  ret = err;
2183  if (likely(!ret))
2184  ntfs_debug("Done.");
2185  else
2186  ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2187  "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2188  mutex_unlock(&vi->i_mutex);
2189  return ret;
2190 }
2191 
2192 #endif /* NTFS_RW */
2193 
2195  .llseek = generic_file_llseek, /* Seek inside file. */
2196  .read = do_sync_read, /* Read from file. */
2197  .aio_read = generic_file_aio_read, /* Async read from file. */
2198 #ifdef NTFS_RW
2199  .write = do_sync_write, /* Write to file. */
2200  .aio_write = ntfs_file_aio_write, /* Async write to file. */
2201  /*.release = ,*/ /* Last file is closed. See
2202  fs/ext2/file.c::
2203  ext2_release_file() for
2204  how to use this to discard
2205  preallocated space for
2206  write opened files. */
2207  .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2208  /*.aio_fsync = ,*/ /* Sync all outstanding async
2209  i/o operations on a
2210  kiocb. */
2211 #endif /* NTFS_RW */
2212  /*.ioctl = ,*/ /* Perform function on the
2213  mounted filesystem. */
2214  .mmap = generic_file_mmap, /* Mmap file. */
2215  .open = ntfs_file_open, /* Open file. */
2216  .splice_read = generic_file_splice_read /* Zero-copy data send with
2217  the data source being on
2218  the ntfs partition. We do
2219  not need to care about the
2220  data destination. */
2221  /*.sendpage = ,*/ /* Zero-copy data send with
2222  the data destination being
2223  on the ntfs partition. We
2224  do not need to care about
2225  the data source. */
2226 };
2227 
2229 #ifdef NTFS_RW
2230  .truncate = ntfs_truncate_vfs,
2231  .setattr = ntfs_setattr,
2232 #endif /* NTFS_RW */
2233 };
2234 
2236