Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
super.c
Go to the documentation of this file.
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  * Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52  .shrink = ubifs_shrinker,
53  .seeks = DEFAULT_SEEKS,
54 };
55 
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68  int err;
69  const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71  if (inode->i_size > c->max_inode_sz) {
72  ubifs_err("inode is too large (%lld)",
73  (long long)inode->i_size);
74  return 1;
75  }
76 
77  if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78  ubifs_err("unknown compression type %d", ui->compr_type);
79  return 2;
80  }
81 
82  if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83  return 3;
84 
85  if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86  return 4;
87 
88  if (ui->xattr && !S_ISREG(inode->i_mode))
89  return 5;
90 
91  if (!ubifs_compr_present(ui->compr_type)) {
92  ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
93  inode->i_ino, ubifs_compr_name(ui->compr_type));
94  }
95 
96  err = dbg_check_dir(c, inode);
97  return err;
98 }
99 
100 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
101 {
102  int err;
103  union ubifs_key key;
104  struct ubifs_ino_node *ino;
105  struct ubifs_info *c = sb->s_fs_info;
106  struct inode *inode;
107  struct ubifs_inode *ui;
108 
109  dbg_gen("inode %lu", inum);
110 
111  inode = iget_locked(sb, inum);
112  if (!inode)
113  return ERR_PTR(-ENOMEM);
114  if (!(inode->i_state & I_NEW))
115  return inode;
116  ui = ubifs_inode(inode);
117 
119  if (!ino) {
120  err = -ENOMEM;
121  goto out;
122  }
123 
124  ino_key_init(c, &key, inode->i_ino);
125 
126  err = ubifs_tnc_lookup(c, &key, ino);
127  if (err)
128  goto out_ino;
129 
130  inode->i_flags |= (S_NOCMTIME | S_NOATIME);
131  set_nlink(inode, le32_to_cpu(ino->nlink));
132  i_uid_write(inode, le32_to_cpu(ino->uid));
133  i_gid_write(inode, le32_to_cpu(ino->gid));
134  inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
135  inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
136  inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
137  inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
138  inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
139  inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
140  inode->i_mode = le32_to_cpu(ino->mode);
141  inode->i_size = le64_to_cpu(ino->size);
142 
143  ui->data_len = le32_to_cpu(ino->data_len);
144  ui->flags = le32_to_cpu(ino->flags);
145  ui->compr_type = le16_to_cpu(ino->compr_type);
146  ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
147  ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
148  ui->xattr_size = le32_to_cpu(ino->xattr_size);
149  ui->xattr_names = le32_to_cpu(ino->xattr_names);
150  ui->synced_i_size = ui->ui_size = inode->i_size;
151 
152  ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
153 
154  err = validate_inode(c, inode);
155  if (err)
156  goto out_invalid;
157 
158  /* Disable read-ahead */
159  inode->i_mapping->backing_dev_info = &c->bdi;
160 
161  switch (inode->i_mode & S_IFMT) {
162  case S_IFREG:
163  inode->i_mapping->a_ops = &ubifs_file_address_operations;
165  inode->i_fop = &ubifs_file_operations;
166  if (ui->xattr) {
167  ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
168  if (!ui->data) {
169  err = -ENOMEM;
170  goto out_ino;
171  }
172  memcpy(ui->data, ino->data, ui->data_len);
173  ((char *)ui->data)[ui->data_len] = '\0';
174  } else if (ui->data_len != 0) {
175  err = 10;
176  goto out_invalid;
177  }
178  break;
179  case S_IFDIR:
181  inode->i_fop = &ubifs_dir_operations;
182  if (ui->data_len != 0) {
183  err = 11;
184  goto out_invalid;
185  }
186  break;
187  case S_IFLNK:
189  if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
190  err = 12;
191  goto out_invalid;
192  }
193  ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
194  if (!ui->data) {
195  err = -ENOMEM;
196  goto out_ino;
197  }
198  memcpy(ui->data, ino->data, ui->data_len);
199  ((char *)ui->data)[ui->data_len] = '\0';
200  break;
201  case S_IFBLK:
202  case S_IFCHR:
203  {
204  dev_t rdev;
205  union ubifs_dev_desc *dev;
206 
207  ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
208  if (!ui->data) {
209  err = -ENOMEM;
210  goto out_ino;
211  }
212 
213  dev = (union ubifs_dev_desc *)ino->data;
214  if (ui->data_len == sizeof(dev->new))
215  rdev = new_decode_dev(le32_to_cpu(dev->new));
216  else if (ui->data_len == sizeof(dev->huge))
217  rdev = huge_decode_dev(le64_to_cpu(dev->huge));
218  else {
219  err = 13;
220  goto out_invalid;
221  }
222  memcpy(ui->data, ino->data, ui->data_len);
224  init_special_inode(inode, inode->i_mode, rdev);
225  break;
226  }
227  case S_IFSOCK:
228  case S_IFIFO:
230  init_special_inode(inode, inode->i_mode, 0);
231  if (ui->data_len != 0) {
232  err = 14;
233  goto out_invalid;
234  }
235  break;
236  default:
237  err = 15;
238  goto out_invalid;
239  }
240 
241  kfree(ino);
242  ubifs_set_inode_flags(inode);
243  unlock_new_inode(inode);
244  return inode;
245 
246 out_invalid:
247  ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
248  ubifs_dump_node(c, ino);
249  ubifs_dump_inode(c, inode);
250  err = -EINVAL;
251 out_ino:
252  kfree(ino);
253 out:
254  ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
255  iget_failed(inode);
256  return ERR_PTR(err);
257 }
258 
259 static struct inode *ubifs_alloc_inode(struct super_block *sb)
260 {
261  struct ubifs_inode *ui;
262 
263  ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
264  if (!ui)
265  return NULL;
266 
267  memset((void *)ui + sizeof(struct inode), 0,
268  sizeof(struct ubifs_inode) - sizeof(struct inode));
269  mutex_init(&ui->ui_mutex);
270  spin_lock_init(&ui->ui_lock);
271  return &ui->vfs_inode;
272 };
273 
274 static void ubifs_i_callback(struct rcu_head *head)
275 {
276  struct inode *inode = container_of(head, struct inode, i_rcu);
277  struct ubifs_inode *ui = ubifs_inode(inode);
278  kmem_cache_free(ubifs_inode_slab, ui);
279 }
280 
281 static void ubifs_destroy_inode(struct inode *inode)
282 {
283  struct ubifs_inode *ui = ubifs_inode(inode);
284 
285  kfree(ui->data);
286  call_rcu(&inode->i_rcu, ubifs_i_callback);
287 }
288 
289 /*
290  * Note, Linux write-back code calls this without 'i_mutex'.
291  */
292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293 {
294  int err = 0;
295  struct ubifs_info *c = inode->i_sb->s_fs_info;
296  struct ubifs_inode *ui = ubifs_inode(inode);
297 
298  ubifs_assert(!ui->xattr);
299  if (is_bad_inode(inode))
300  return 0;
301 
302  mutex_lock(&ui->ui_mutex);
303  /*
304  * Due to races between write-back forced by budgeting
305  * (see 'sync_some_inodes()') and background write-back, the inode may
306  * have already been synchronized, do not do this again. This might
307  * also happen if it was synchronized in an VFS operation, e.g.
308  * 'ubifs_link()'.
309  */
310  if (!ui->dirty) {
311  mutex_unlock(&ui->ui_mutex);
312  return 0;
313  }
314 
315  /*
316  * As an optimization, do not write orphan inodes to the media just
317  * because this is not needed.
318  */
319  dbg_gen("inode %lu, mode %#x, nlink %u",
320  inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321  if (inode->i_nlink) {
322  err = ubifs_jnl_write_inode(c, inode);
323  if (err)
324  ubifs_err("can't write inode %lu, error %d",
325  inode->i_ino, err);
326  else
327  err = dbg_check_inode_size(c, inode, ui->ui_size);
328  }
329 
330  ui->dirty = 0;
331  mutex_unlock(&ui->ui_mutex);
333  return err;
334 }
335 
336 static void ubifs_evict_inode(struct inode *inode)
337 {
338  int err;
339  struct ubifs_info *c = inode->i_sb->s_fs_info;
340  struct ubifs_inode *ui = ubifs_inode(inode);
341 
342  if (ui->xattr)
343  /*
344  * Extended attribute inode deletions are fully handled in
345  * 'ubifs_removexattr()'. These inodes are special and have
346  * limited usage, so there is nothing to do here.
347  */
348  goto out;
349 
350  dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
351  ubifs_assert(!atomic_read(&inode->i_count));
352 
353  truncate_inode_pages(&inode->i_data, 0);
354 
355  if (inode->i_nlink)
356  goto done;
357 
358  if (is_bad_inode(inode))
359  goto out;
360 
361  ui->ui_size = inode->i_size = 0;
362  err = ubifs_jnl_delete_inode(c, inode);
363  if (err)
364  /*
365  * Worst case we have a lost orphan inode wasting space, so a
366  * simple error message is OK here.
367  */
368  ubifs_err("can't delete inode %lu, error %d",
369  inode->i_ino, err);
370 
371 out:
372  if (ui->dirty)
374  else {
375  /* We've deleted something - clean the "no space" flags */
376  c->bi.nospace = c->bi.nospace_rp = 0;
377  smp_wmb();
378  }
379 done:
380  clear_inode(inode);
381 }
382 
383 static void ubifs_dirty_inode(struct inode *inode, int flags)
384 {
385  struct ubifs_inode *ui = ubifs_inode(inode);
386 
387  ubifs_assert(mutex_is_locked(&ui->ui_mutex));
388  if (!ui->dirty) {
389  ui->dirty = 1;
390  dbg_gen("inode %lu", inode->i_ino);
391  }
392 }
393 
394 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
395 {
396  struct ubifs_info *c = dentry->d_sb->s_fs_info;
397  unsigned long long free;
398  __le32 *uuid = (__le32 *)c->uuid;
399 
400  free = ubifs_get_free_space(c);
401  dbg_gen("free space %lld bytes (%lld blocks)",
402  free, free >> UBIFS_BLOCK_SHIFT);
403 
404  buf->f_type = UBIFS_SUPER_MAGIC;
405  buf->f_bsize = UBIFS_BLOCK_SIZE;
406  buf->f_blocks = c->block_cnt;
407  buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
408  if (free > c->report_rp_size)
409  buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
410  else
411  buf->f_bavail = 0;
412  buf->f_files = 0;
413  buf->f_ffree = 0;
414  buf->f_namelen = UBIFS_MAX_NLEN;
415  buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
416  buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
417  ubifs_assert(buf->f_bfree <= c->block_cnt);
418  return 0;
419 }
420 
421 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
422 {
423  struct ubifs_info *c = root->d_sb->s_fs_info;
424 
425  if (c->mount_opts.unmount_mode == 2)
426  seq_printf(s, ",fast_unmount");
427  else if (c->mount_opts.unmount_mode == 1)
428  seq_printf(s, ",norm_unmount");
429 
430  if (c->mount_opts.bulk_read == 2)
431  seq_printf(s, ",bulk_read");
432  else if (c->mount_opts.bulk_read == 1)
433  seq_printf(s, ",no_bulk_read");
434 
435  if (c->mount_opts.chk_data_crc == 2)
436  seq_printf(s, ",chk_data_crc");
437  else if (c->mount_opts.chk_data_crc == 1)
438  seq_printf(s, ",no_chk_data_crc");
439 
440  if (c->mount_opts.override_compr) {
441  seq_printf(s, ",compr=%s",
442  ubifs_compr_name(c->mount_opts.compr_type));
443  }
444 
445  return 0;
446 }
447 
448 static int ubifs_sync_fs(struct super_block *sb, int wait)
449 {
450  int i, err;
451  struct ubifs_info *c = sb->s_fs_info;
452 
453  /*
454  * Zero @wait is just an advisory thing to help the file system shove
455  * lots of data into the queues, and there will be the second
456  * '->sync_fs()' call, with non-zero @wait.
457  */
458  if (!wait)
459  return 0;
460 
461  /*
462  * Synchronize write buffers, because 'ubifs_run_commit()' does not
463  * do this if it waits for an already running commit.
464  */
465  for (i = 0; i < c->jhead_cnt; i++) {
466  err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467  if (err)
468  return err;
469  }
470 
471  /*
472  * Strictly speaking, it is not necessary to commit the journal here,
473  * synchronizing write-buffers would be enough. But committing makes
474  * UBIFS free space predictions much more accurate, so we want to let
475  * the user be able to get more accurate results of 'statfs()' after
476  * they synchronize the file system.
477  */
478  err = ubifs_run_commit(c);
479  if (err)
480  return err;
481 
482  return ubi_sync(c->vi.ubi_num);
483 }
484 
494 static int init_constants_early(struct ubifs_info *c)
495 {
496  if (c->vi.corrupted) {
497  ubifs_warn("UBI volume is corrupted - read-only mode");
498  c->ro_media = 1;
499  }
500 
501  if (c->di.ro_mode) {
502  ubifs_msg("read-only UBI device");
503  c->ro_media = 1;
504  }
505 
506  if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507  ubifs_msg("static UBI volume - read-only mode");
508  c->ro_media = 1;
509  }
510 
511  c->leb_cnt = c->vi.size;
512  c->leb_size = c->vi.usable_leb_size;
513  c->leb_start = c->di.leb_start;
514  c->half_leb_size = c->leb_size / 2;
515  c->min_io_size = c->di.min_io_size;
516  c->min_io_shift = fls(c->min_io_size) - 1;
517  c->max_write_size = c->di.max_write_size;
518  c->max_write_shift = fls(c->max_write_size) - 1;
519 
520  if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521  ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
523  return -EINVAL;
524  }
525 
526  if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527  ubifs_err("too few LEBs (%d), min. is %d",
529  return -EINVAL;
530  }
531 
532  if (!is_power_of_2(c->min_io_size)) {
533  ubifs_err("bad min. I/O size %d", c->min_io_size);
534  return -EINVAL;
535  }
536 
537  /*
538  * Maximum write size has to be greater or equivalent to min. I/O
539  * size, and be multiple of min. I/O size.
540  */
541  if (c->max_write_size < c->min_io_size ||
542  c->max_write_size % c->min_io_size ||
544  ubifs_err("bad write buffer size %d for %d min. I/O unit",
545  c->max_write_size, c->min_io_size);
546  return -EINVAL;
547  }
548 
549  /*
550  * UBIFS aligns all node to 8-byte boundary, so to make function in
551  * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552  * less than 8.
553  */
554  if (c->min_io_size < 8) {
555  c->min_io_size = 8;
556  c->min_io_shift = 3;
557  if (c->max_write_size < c->min_io_size) {
558  c->max_write_size = c->min_io_size;
560  }
561  }
562 
565 
566  /*
567  * Initialize node length ranges which are mostly needed for node
568  * length validation.
569  */
576 
579  c->ranges[UBIFS_ORPH_NODE].min_len =
580  UBIFS_ORPH_NODE_SZ + sizeof(__le64);
581  c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
588  /*
589  * Minimum indexing node size is amended later when superblock is
590  * read and the key length is known.
591  */
593  /*
594  * Maximum indexing node size is amended later when superblock is
595  * read and the fanout is known.
596  */
597  c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
598 
599  /*
600  * Initialize dead and dark LEB space watermarks. See gc.c for comments
601  * about these values.
602  */
605 
606  /*
607  * Calculate how many bytes would be wasted at the end of LEB if it was
608  * fully filled with data nodes of maximum size. This is used in
609  * calculations when reporting free space.
610  */
612 
613  /* Buffer size for bulk-reads */
615  if (c->max_bu_buf_len > c->leb_size)
616  c->max_bu_buf_len = c->leb_size;
617  return 0;
618 }
619 
635 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
636 {
637  return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
638 }
639 
640 /*
641  * init_constants_sb - initialize UBIFS constants.
642  * @c: UBIFS file-system description object
643  *
644  * This is a helper function which initializes various UBIFS constants after
645  * the superblock has been read. It also checks various UBIFS parameters and
646  * makes sure they are all right. Returns zero in case of success and a
647  * negative error code in case of failure.
648  */
649 static int init_constants_sb(struct ubifs_info *c)
650 {
651  int tmp, err;
652  long long tmp64;
653 
654  c->main_bytes = (long long)c->main_lebs * c->leb_size;
655  c->max_znode_sz = sizeof(struct ubifs_znode) +
656  c->fanout * sizeof(struct ubifs_zbranch);
657 
658  tmp = ubifs_idx_node_sz(c, 1);
659  c->ranges[UBIFS_IDX_NODE].min_len = tmp;
660  c->min_idx_node_sz = ALIGN(tmp, 8);
661 
662  tmp = ubifs_idx_node_sz(c, c->fanout);
663  c->ranges[UBIFS_IDX_NODE].max_len = tmp;
664  c->max_idx_node_sz = ALIGN(tmp, 8);
665 
666  /* Make sure LEB size is large enough to fit full commit */
668  tmp = ALIGN(tmp, c->min_io_size);
669  if (tmp > c->leb_size) {
670  ubifs_err("too small LEB size %d, at least %d needed",
671  c->leb_size, tmp);
672  return -EINVAL;
673  }
674 
675  /*
676  * Make sure that the log is large enough to fit reference nodes for
677  * all buds plus one reserved LEB.
678  */
679  tmp64 = c->max_bud_bytes + c->leb_size - 1;
680  c->max_bud_cnt = div_u64(tmp64, c->leb_size);
681  tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
682  tmp /= c->leb_size;
683  tmp += 1;
684  if (c->log_lebs < tmp) {
685  ubifs_err("too small log %d LEBs, required min. %d LEBs",
686  c->log_lebs, tmp);
687  return -EINVAL;
688  }
689 
690  /*
691  * When budgeting we assume worst-case scenarios when the pages are not
692  * be compressed and direntries are of the maximum size.
693  *
694  * Note, data, which may be stored in inodes is budgeted separately, so
695  * it is not included into 'c->bi.inode_budget'.
696  */
697  c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
698  c->bi.inode_budget = UBIFS_INO_NODE_SZ;
699  c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
700 
701  /*
702  * When the amount of flash space used by buds becomes
703  * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
704  * The writers are unblocked when the commit is finished. To avoid
705  * writers to be blocked UBIFS initiates background commit in advance,
706  * when number of bud bytes becomes above the limit defined below.
707  */
708  c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
709 
710  /*
711  * Ensure minimum journal size. All the bytes in the journal heads are
712  * considered to be used, when calculating the current journal usage.
713  * Consequently, if the journal is too small, UBIFS will treat it as
714  * always full.
715  */
716  tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
717  if (c->bg_bud_bytes < tmp64)
718  c->bg_bud_bytes = tmp64;
719  if (c->max_bud_bytes < tmp64 + c->leb_size)
720  c->max_bud_bytes = tmp64 + c->leb_size;
721 
722  err = ubifs_calc_lpt_geom(c);
723  if (err)
724  return err;
725 
726  /* Initialize effective LEB size used in budgeting calculations */
728  return 0;
729 }
730 
731 /*
732  * init_constants_master - initialize UBIFS constants.
733  * @c: UBIFS file-system description object
734  *
735  * This is a helper function which initializes various UBIFS constants after
736  * the master node has been read. It also checks various UBIFS parameters and
737  * makes sure they are all right.
738  */
739 static void init_constants_master(struct ubifs_info *c)
740 {
741  long long tmp64;
742 
743  c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
745 
746  /*
747  * Calculate total amount of FS blocks. This number is not used
748  * internally because it does not make much sense for UBIFS, but it is
749  * necessary to report something for the 'statfs()' call.
750  *
751  * Subtract the LEB reserved for GC, the LEB which is reserved for
752  * deletions, minimum LEBs for the index, and assume only one journal
753  * head is available.
754  */
755  tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
756  tmp64 *= (long long)c->leb_size - c->leb_overhead;
757  tmp64 = ubifs_reported_space(c, tmp64);
758  c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
759 }
760 
772 static int take_gc_lnum(struct ubifs_info *c)
773 {
774  int err;
775 
776  if (c->gc_lnum == -1) {
777  ubifs_err("no LEB for GC");
778  return -EINVAL;
779  }
780 
781  /* And we have to tell lprops that this LEB is taken */
782  err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
783  LPROPS_TAKEN, 0, 0);
784  return err;
785 }
786 
794 static int alloc_wbufs(struct ubifs_info *c)
795 {
796  int i, err;
797 
798  c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
799  GFP_KERNEL);
800  if (!c->jheads)
801  return -ENOMEM;
802 
803  /* Initialize journal heads */
804  for (i = 0; i < c->jhead_cnt; i++) {
805  INIT_LIST_HEAD(&c->jheads[i].buds_list);
806  err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
807  if (err)
808  return err;
809 
810  c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
811  c->jheads[i].wbuf.jhead = i;
812  c->jheads[i].grouped = 1;
813  }
814 
815  /*
816  * Garbage Collector head does not need to be synchronized by timer.
817  * Also GC head nodes are not grouped.
818  */
819  c->jheads[GCHD].wbuf.no_timer = 1;
820  c->jheads[GCHD].grouped = 0;
821 
822  return 0;
823 }
824 
829 static void free_wbufs(struct ubifs_info *c)
830 {
831  int i;
832 
833  if (c->jheads) {
834  for (i = 0; i < c->jhead_cnt; i++) {
835  kfree(c->jheads[i].wbuf.buf);
836  kfree(c->jheads[i].wbuf.inodes);
837  }
838  kfree(c->jheads);
839  c->jheads = NULL;
840  }
841 }
842 
847 static void free_orphans(struct ubifs_info *c)
848 {
849  struct ubifs_orphan *orph;
850 
851  while (c->orph_dnext) {
852  orph = c->orph_dnext;
853  c->orph_dnext = orph->dnext;
854  list_del(&orph->list);
855  kfree(orph);
856  }
857 
858  while (!list_empty(&c->orph_list)) {
859  orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
860  list_del(&orph->list);
861  kfree(orph);
862  ubifs_err("orphan list not empty at unmount");
863  }
864 
865  vfree(c->orph_buf);
866  c->orph_buf = NULL;
867 }
868 
873 static void free_buds(struct ubifs_info *c)
874 {
875  struct rb_node *this = c->buds.rb_node;
876  struct ubifs_bud *bud;
877 
878  while (this) {
879  if (this->rb_left)
880  this = this->rb_left;
881  else if (this->rb_right)
882  this = this->rb_right;
883  else {
884  bud = rb_entry(this, struct ubifs_bud, rb);
885  this = rb_parent(this);
886  if (this) {
887  if (this->rb_left == &bud->rb)
888  this->rb_left = NULL;
889  else
890  this->rb_right = NULL;
891  }
892  kfree(bud);
893  }
894  }
895 }
896 
906 static int check_volume_empty(struct ubifs_info *c)
907 {
908  int lnum, err;
909 
910  c->empty = 1;
911  for (lnum = 0; lnum < c->leb_cnt; lnum++) {
912  err = ubifs_is_mapped(c, lnum);
913  if (unlikely(err < 0))
914  return err;
915  if (err == 1) {
916  c->empty = 0;
917  break;
918  }
919 
920  cond_resched();
921  }
922 
923  return 0;
924 }
925 
926 /*
927  * UBIFS mount options.
928  *
929  * Opt_fast_unmount: do not run a journal commit before un-mounting
930  * Opt_norm_unmount: run a journal commit before un-mounting
931  * Opt_bulk_read: enable bulk-reads
932  * Opt_no_bulk_read: disable bulk-reads
933  * Opt_chk_data_crc: check CRCs when reading data nodes
934  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
935  * Opt_override_compr: override default compressor
936  * Opt_err: just end of array marker
937  */
938 enum {
947 };
948 
949 static const match_table_t tokens = {
950  {Opt_fast_unmount, "fast_unmount"},
951  {Opt_norm_unmount, "norm_unmount"},
952  {Opt_bulk_read, "bulk_read"},
953  {Opt_no_bulk_read, "no_bulk_read"},
954  {Opt_chk_data_crc, "chk_data_crc"},
955  {Opt_no_chk_data_crc, "no_chk_data_crc"},
956  {Opt_override_compr, "compr=%s"},
957  {Opt_err, NULL},
958 };
959 
973 static int parse_standard_option(const char *option)
974 {
975  ubifs_msg("parse %s", option);
976  if (!strcmp(option, "sync"))
977  return MS_SYNCHRONOUS;
978  return 0;
979 }
980 
990 static int ubifs_parse_options(struct ubifs_info *c, char *options,
991  int is_remount)
992 {
993  char *p;
995 
996  if (!options)
997  return 0;
998 
999  while ((p = strsep(&options, ","))) {
1000  int token;
1001 
1002  if (!*p)
1003  continue;
1004 
1005  token = match_token(p, tokens, args);
1006  switch (token) {
1007  /*
1008  * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009  * We accept them in order to be backward-compatible. But this
1010  * should be removed at some point.
1011  */
1012  case Opt_fast_unmount:
1013  c->mount_opts.unmount_mode = 2;
1014  break;
1015  case Opt_norm_unmount:
1016  c->mount_opts.unmount_mode = 1;
1017  break;
1018  case Opt_bulk_read:
1019  c->mount_opts.bulk_read = 2;
1020  c->bulk_read = 1;
1021  break;
1022  case Opt_no_bulk_read:
1023  c->mount_opts.bulk_read = 1;
1024  c->bulk_read = 0;
1025  break;
1026  case Opt_chk_data_crc:
1027  c->mount_opts.chk_data_crc = 2;
1028  c->no_chk_data_crc = 0;
1029  break;
1030  case Opt_no_chk_data_crc:
1031  c->mount_opts.chk_data_crc = 1;
1032  c->no_chk_data_crc = 1;
1033  break;
1034  case Opt_override_compr:
1035  {
1036  char *name = match_strdup(&args[0]);
1037 
1038  if (!name)
1039  return -ENOMEM;
1040  if (!strcmp(name, "none"))
1041  c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1042  else if (!strcmp(name, "lzo"))
1043  c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1044  else if (!strcmp(name, "zlib"))
1045  c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1046  else {
1047  ubifs_err("unknown compressor \"%s\"", name);
1048  kfree(name);
1049  return -EINVAL;
1050  }
1051  kfree(name);
1052  c->mount_opts.override_compr = 1;
1053  c->default_compr = c->mount_opts.compr_type;
1054  break;
1055  }
1056  default:
1057  {
1058  unsigned long flag;
1059  struct super_block *sb = c->vfs_sb;
1060 
1061  flag = parse_standard_option(p);
1062  if (!flag) {
1063  ubifs_err("unrecognized mount option \"%s\" or missing value",
1064  p);
1065  return -EINVAL;
1066  }
1067  sb->s_flags |= flag;
1068  break;
1069  }
1070  }
1071  }
1072 
1073  return 0;
1074 }
1075 
1083 static void destroy_journal(struct ubifs_info *c)
1084 {
1085  while (!list_empty(&c->unclean_leb_list)) {
1086  struct ubifs_unclean_leb *ucleb;
1087 
1088  ucleb = list_entry(c->unclean_leb_list.next,
1089  struct ubifs_unclean_leb, list);
1090  list_del(&ucleb->list);
1091  kfree(ucleb);
1092  }
1093  while (!list_empty(&c->old_buds)) {
1094  struct ubifs_bud *bud;
1095 
1096  bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1097  list_del(&bud->list);
1098  kfree(bud);
1099  }
1102  ubifs_tnc_close(c);
1103  free_buds(c);
1104 }
1105 
1110 static void bu_init(struct ubifs_info *c)
1111 {
1112  ubifs_assert(c->bulk_read == 1);
1113 
1114  if (c->bu.buf)
1115  return; /* Already initialized */
1116 
1117 again:
1119  if (!c->bu.buf) {
1120  if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1122  goto again;
1123  }
1124 
1125  /* Just disable bulk-read */
1126  ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1127  c->max_bu_buf_len);
1128  c->mount_opts.bulk_read = 1;
1129  c->bulk_read = 0;
1130  return;
1131  }
1132 }
1133 
1141 static int check_free_space(struct ubifs_info *c)
1142 {
1143  ubifs_assert(c->dark_wm > 0);
1144  if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1145  ubifs_err("insufficient free space to mount in R/W mode");
1146  ubifs_dump_budg(c, &c->bi);
1147  ubifs_dump_lprops(c);
1148  return -ENOSPC;
1149  }
1150  return 0;
1151 }
1152 
1160 static int mount_ubifs(struct ubifs_info *c)
1161 {
1162  int err;
1163  long long x, y;
1164  size_t sz;
1165 
1166  c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1167  err = init_constants_early(c);
1168  if (err)
1169  return err;
1170 
1171  err = ubifs_debugging_init(c);
1172  if (err)
1173  return err;
1174 
1175  err = check_volume_empty(c);
1176  if (err)
1177  goto out_free;
1178 
1179  if (c->empty && (c->ro_mount || c->ro_media)) {
1180  /*
1181  * This UBI volume is empty, and read-only, or the file system
1182  * is mounted read-only - we cannot format it.
1183  */
1184  ubifs_err("can't format empty UBI volume: read-only %s",
1185  c->ro_media ? "UBI volume" : "mount");
1186  err = -EROFS;
1187  goto out_free;
1188  }
1189 
1190  if (c->ro_media && !c->ro_mount) {
1191  ubifs_err("cannot mount read-write - read-only media");
1192  err = -EROFS;
1193  goto out_free;
1194  }
1195 
1196  /*
1197  * The requirement for the buffer is that it should fit indexing B-tree
1198  * height amount of integers. We assume the height if the TNC tree will
1199  * never exceed 64.
1200  */
1201  err = -ENOMEM;
1202  c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1203  if (!c->bottom_up_buf)
1204  goto out_free;
1205 
1206  c->sbuf = vmalloc(c->leb_size);
1207  if (!c->sbuf)
1208  goto out_free;
1209 
1210  if (!c->ro_mount) {
1211  c->ileb_buf = vmalloc(c->leb_size);
1212  if (!c->ileb_buf)
1213  goto out_free;
1214  }
1215 
1216  if (c->bulk_read == 1)
1217  bu_init(c);
1218 
1219  if (!c->ro_mount) {
1221  GFP_KERNEL);
1222  if (!c->write_reserve_buf)
1223  goto out_free;
1224  }
1225 
1226  c->mounting = 1;
1227 
1228  err = ubifs_read_superblock(c);
1229  if (err)
1230  goto out_free;
1231 
1232  /*
1233  * Make sure the compressor which is set as default in the superblock
1234  * or overridden by mount options is actually compiled in.
1235  */
1236  if (!ubifs_compr_present(c->default_compr)) {
1237  ubifs_err("'compressor \"%s\" is not compiled in",
1238  ubifs_compr_name(c->default_compr));
1239  err = -ENOTSUPP;
1240  goto out_free;
1241  }
1242 
1243  err = init_constants_sb(c);
1244  if (err)
1245  goto out_free;
1246 
1247  sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1248  sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1249  c->cbuf = kmalloc(sz, GFP_NOFS);
1250  if (!c->cbuf) {
1251  err = -ENOMEM;
1252  goto out_free;
1253  }
1254 
1255  err = alloc_wbufs(c);
1256  if (err)
1257  goto out_cbuf;
1258 
1259  sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1260  if (!c->ro_mount) {
1261  /* Create background thread */
1262  c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1263  if (IS_ERR(c->bgt)) {
1264  err = PTR_ERR(c->bgt);
1265  c->bgt = NULL;
1266  ubifs_err("cannot spawn \"%s\", error %d",
1267  c->bgt_name, err);
1268  goto out_wbufs;
1269  }
1270  wake_up_process(c->bgt);
1271  }
1272 
1273  err = ubifs_read_master(c);
1274  if (err)
1275  goto out_master;
1276 
1277  init_constants_master(c);
1278 
1279  if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1280  ubifs_msg("recovery needed");
1281  c->need_recovery = 1;
1282  }
1283 
1284  if (c->need_recovery && !c->ro_mount) {
1285  err = ubifs_recover_inl_heads(c, c->sbuf);
1286  if (err)
1287  goto out_master;
1288  }
1289 
1290  err = ubifs_lpt_init(c, 1, !c->ro_mount);
1291  if (err)
1292  goto out_master;
1293 
1294  if (!c->ro_mount && c->space_fixup) {
1295  err = ubifs_fixup_free_space(c);
1296  if (err)
1297  goto out_lpt;
1298  }
1299 
1300  if (!c->ro_mount) {
1301  /*
1302  * Set the "dirty" flag so that if we reboot uncleanly we
1303  * will notice this immediately on the next mount.
1304  */
1305  c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1306  err = ubifs_write_master(c);
1307  if (err)
1308  goto out_lpt;
1309  }
1310 
1311  err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1312  if (err)
1313  goto out_lpt;
1314 
1315  err = ubifs_replay_journal(c);
1316  if (err)
1317  goto out_journal;
1318 
1319  /* Calculate 'min_idx_lebs' after journal replay */
1320  c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1321 
1322  err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1323  if (err)
1324  goto out_orphans;
1325 
1326  if (!c->ro_mount) {
1327  int lnum;
1328 
1329  err = check_free_space(c);
1330  if (err)
1331  goto out_orphans;
1332 
1333  /* Check for enough log space */
1334  lnum = c->lhead_lnum + 1;
1335  if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1336  lnum = UBIFS_LOG_LNUM;
1337  if (lnum == c->ltail_lnum) {
1338  err = ubifs_consolidate_log(c);
1339  if (err)
1340  goto out_orphans;
1341  }
1342 
1343  if (c->need_recovery) {
1344  err = ubifs_recover_size(c);
1345  if (err)
1346  goto out_orphans;
1347  err = ubifs_rcvry_gc_commit(c);
1348  if (err)
1349  goto out_orphans;
1350  } else {
1351  err = take_gc_lnum(c);
1352  if (err)
1353  goto out_orphans;
1354 
1355  /*
1356  * GC LEB may contain garbage if there was an unclean
1357  * reboot, and it should be un-mapped.
1358  */
1359  err = ubifs_leb_unmap(c, c->gc_lnum);
1360  if (err)
1361  goto out_orphans;
1362  }
1363 
1364  err = dbg_check_lprops(c);
1365  if (err)
1366  goto out_orphans;
1367  } else if (c->need_recovery) {
1368  err = ubifs_recover_size(c);
1369  if (err)
1370  goto out_orphans;
1371  } else {
1372  /*
1373  * Even if we mount read-only, we have to set space in GC LEB
1374  * to proper value because this affects UBIFS free space
1375  * reporting. We do not want to have a situation when
1376  * re-mounting from R/O to R/W changes amount of free space.
1377  */
1378  err = take_gc_lnum(c);
1379  if (err)
1380  goto out_orphans;
1381  }
1382 
1383  spin_lock(&ubifs_infos_lock);
1384  list_add_tail(&c->infos_list, &ubifs_infos);
1385  spin_unlock(&ubifs_infos_lock);
1386 
1387  if (c->need_recovery) {
1388  if (c->ro_mount)
1389  ubifs_msg("recovery deferred");
1390  else {
1391  c->need_recovery = 0;
1392  ubifs_msg("recovery completed");
1393  /*
1394  * GC LEB has to be empty and taken at this point. But
1395  * the journal head LEBs may also be accounted as
1396  * "empty taken" if they are empty.
1397  */
1398  ubifs_assert(c->lst.taken_empty_lebs > 0);
1399  }
1400  } else
1401  ubifs_assert(c->lst.taken_empty_lebs > 0);
1402 
1403  err = dbg_check_filesystem(c);
1404  if (err)
1405  goto out_infos;
1406 
1407  err = dbg_debugfs_init_fs(c);
1408  if (err)
1409  goto out_infos;
1410 
1411  c->mounting = 0;
1412 
1413  ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1414  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1415  c->ro_mount ? ", R/O mode" : NULL);
1416  x = (long long)c->main_lebs * c->leb_size;
1417  y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1418  ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419  c->leb_size, c->leb_size >> 10, c->min_io_size,
1420  c->max_write_size);
1421  ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422  x, x >> 20, c->main_lebs,
1423  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1424  ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1425  c->report_rp_size, c->report_rp_size >> 10);
1426  ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1429  c->big_lpt ? ", big LPT model" : ", small LPT model");
1430 
1431  dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1432  dbg_gen("data journal heads: %d",
1434  dbg_gen("log LEBs: %d (%d - %d)",
1435  c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1436  dbg_gen("LPT area LEBs: %d (%d - %d)",
1437  c->lpt_lebs, c->lpt_first, c->lpt_last);
1438  dbg_gen("orphan area LEBs: %d (%d - %d)",
1439  c->orph_lebs, c->orph_first, c->orph_last);
1440  dbg_gen("main area LEBs: %d (%d - %d)",
1441  c->main_lebs, c->main_first, c->leb_cnt - 1);
1442  dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1443  dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1444  c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1445  c->bi.old_idx_sz >> 20);
1446  dbg_gen("key hash type: %d", c->key_hash_type);
1447  dbg_gen("tree fanout: %d", c->fanout);
1448  dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1449  dbg_gen("max. znode size %d", c->max_znode_sz);
1450  dbg_gen("max. index node size %d", c->max_idx_node_sz);
1451  dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1453  dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1455  dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1457  dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1458  UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1459  UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1460  dbg_gen("dead watermark: %d", c->dead_wm);
1461  dbg_gen("dark watermark: %d", c->dark_wm);
1462  dbg_gen("LEB overhead: %d", c->leb_overhead);
1463  x = (long long)c->main_lebs * c->dark_wm;
1464  dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1465  x, x >> 10, x >> 20);
1466  dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1467  c->max_bud_bytes, c->max_bud_bytes >> 10,
1468  c->max_bud_bytes >> 20);
1469  dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470  c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1471  c->bg_bud_bytes >> 20);
1472  dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1473  c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1474  dbg_gen("max. seq. number: %llu", c->max_sqnum);
1475  dbg_gen("commit number: %llu", c->cmt_no);
1476 
1477  return 0;
1478 
1479 out_infos:
1480  spin_lock(&ubifs_infos_lock);
1481  list_del(&c->infos_list);
1482  spin_unlock(&ubifs_infos_lock);
1483 out_orphans:
1484  free_orphans(c);
1485 out_journal:
1486  destroy_journal(c);
1487 out_lpt:
1488  ubifs_lpt_free(c, 0);
1489 out_master:
1490  kfree(c->mst_node);
1491  kfree(c->rcvrd_mst_node);
1492  if (c->bgt)
1493  kthread_stop(c->bgt);
1494 out_wbufs:
1495  free_wbufs(c);
1496 out_cbuf:
1497  kfree(c->cbuf);
1498 out_free:
1500  kfree(c->bu.buf);
1501  vfree(c->ileb_buf);
1502  vfree(c->sbuf);
1503  kfree(c->bottom_up_buf);
1505  return err;
1506 }
1507 
1517 static void ubifs_umount(struct ubifs_info *c)
1518 {
1519  dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1520  c->vi.vol_id);
1521 
1523  spin_lock(&ubifs_infos_lock);
1524  list_del(&c->infos_list);
1525  spin_unlock(&ubifs_infos_lock);
1526 
1527  if (c->bgt)
1528  kthread_stop(c->bgt);
1529 
1530  destroy_journal(c);
1531  free_wbufs(c);
1532  free_orphans(c);
1533  ubifs_lpt_free(c, 0);
1534 
1535  kfree(c->cbuf);
1536  kfree(c->rcvrd_mst_node);
1537  kfree(c->mst_node);
1539  kfree(c->bu.buf);
1540  vfree(c->ileb_buf);
1541  vfree(c->sbuf);
1542  kfree(c->bottom_up_buf);
1544 }
1545 
1554 static int ubifs_remount_rw(struct ubifs_info *c)
1555 {
1556  int err, lnum;
1557 
1558  if (c->rw_incompat) {
1559  ubifs_err("the file-system is not R/W-compatible");
1560  ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1563  return -EROFS;
1564  }
1565 
1566  mutex_lock(&c->umount_mutex);
1568  c->remounting_rw = 1;
1569  c->ro_mount = 0;
1570 
1571  err = check_free_space(c);
1572  if (err)
1573  goto out;
1574 
1575  if (c->old_leb_cnt != c->leb_cnt) {
1576  struct ubifs_sb_node *sup;
1577 
1578  sup = ubifs_read_sb_node(c);
1579  if (IS_ERR(sup)) {
1580  err = PTR_ERR(sup);
1581  goto out;
1582  }
1583  sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1584  err = ubifs_write_sb_node(c, sup);
1585  kfree(sup);
1586  if (err)
1587  goto out;
1588  }
1589 
1590  if (c->need_recovery) {
1591  ubifs_msg("completing deferred recovery");
1592  err = ubifs_write_rcvrd_mst_node(c);
1593  if (err)
1594  goto out;
1595  err = ubifs_recover_size(c);
1596  if (err)
1597  goto out;
1598  err = ubifs_clean_lebs(c, c->sbuf);
1599  if (err)
1600  goto out;
1601  err = ubifs_recover_inl_heads(c, c->sbuf);
1602  if (err)
1603  goto out;
1604  } else {
1605  /* A readonly mount is not allowed to have orphans */
1606  ubifs_assert(c->tot_orphans == 0);
1607  err = ubifs_clear_orphans(c);
1608  if (err)
1609  goto out;
1610  }
1611 
1612  if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1613  c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1614  err = ubifs_write_master(c);
1615  if (err)
1616  goto out;
1617  }
1618 
1619  c->ileb_buf = vmalloc(c->leb_size);
1620  if (!c->ileb_buf) {
1621  err = -ENOMEM;
1622  goto out;
1623  }
1624 
1626  if (!c->write_reserve_buf)
1627  goto out;
1628 
1629  err = ubifs_lpt_init(c, 0, 1);
1630  if (err)
1631  goto out;
1632 
1633  /* Create background thread */
1634  c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1635  if (IS_ERR(c->bgt)) {
1636  err = PTR_ERR(c->bgt);
1637  c->bgt = NULL;
1638  ubifs_err("cannot spawn \"%s\", error %d",
1639  c->bgt_name, err);
1640  goto out;
1641  }
1642  wake_up_process(c->bgt);
1643 
1644  c->orph_buf = vmalloc(c->leb_size);
1645  if (!c->orph_buf) {
1646  err = -ENOMEM;
1647  goto out;
1648  }
1649 
1650  /* Check for enough log space */
1651  lnum = c->lhead_lnum + 1;
1652  if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1653  lnum = UBIFS_LOG_LNUM;
1654  if (lnum == c->ltail_lnum) {
1655  err = ubifs_consolidate_log(c);
1656  if (err)
1657  goto out;
1658  }
1659 
1660  if (c->need_recovery)
1661  err = ubifs_rcvry_gc_commit(c);
1662  else
1663  err = ubifs_leb_unmap(c, c->gc_lnum);
1664  if (err)
1665  goto out;
1666 
1667  dbg_gen("re-mounted read-write");
1668  c->remounting_rw = 0;
1669 
1670  if (c->need_recovery) {
1671  c->need_recovery = 0;
1672  ubifs_msg("deferred recovery completed");
1673  } else {
1674  /*
1675  * Do not run the debugging space check if the were doing
1676  * recovery, because when we saved the information we had the
1677  * file-system in a state where the TNC and lprops has been
1678  * modified in memory, but all the I/O operations (including a
1679  * commit) were deferred. So the file-system was in
1680  * "non-committed" state. Now the file-system is in committed
1681  * state, and of course the amount of free space will change
1682  * because, for example, the old index size was imprecise.
1683  */
1684  err = dbg_check_space_info(c);
1685  }
1686 
1687  if (c->space_fixup) {
1688  err = ubifs_fixup_free_space(c);
1689  if (err)
1690  goto out;
1691  }
1692 
1694  return err;
1695 
1696 out:
1697  c->ro_mount = 1;
1698  vfree(c->orph_buf);
1699  c->orph_buf = NULL;
1700  if (c->bgt) {
1701  kthread_stop(c->bgt);
1702  c->bgt = NULL;
1703  }
1704  free_wbufs(c);
1706  c->write_reserve_buf = NULL;
1707  vfree(c->ileb_buf);
1708  c->ileb_buf = NULL;
1709  ubifs_lpt_free(c, 1);
1710  c->remounting_rw = 0;
1712  return err;
1713 }
1714 
1722 static void ubifs_remount_ro(struct ubifs_info *c)
1723 {
1724  int i, err;
1725 
1727  ubifs_assert(!c->ro_mount);
1728 
1729  mutex_lock(&c->umount_mutex);
1730  if (c->bgt) {
1731  kthread_stop(c->bgt);
1732  c->bgt = NULL;
1733  }
1734 
1736 
1737  for (i = 0; i < c->jhead_cnt; i++)
1738  ubifs_wbuf_sync(&c->jheads[i].wbuf);
1739 
1740  c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1741  c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1742  c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1743  err = ubifs_write_master(c);
1744  if (err)
1745  ubifs_ro_mode(c, err);
1746 
1747  vfree(c->orph_buf);
1748  c->orph_buf = NULL;
1750  c->write_reserve_buf = NULL;
1751  vfree(c->ileb_buf);
1752  c->ileb_buf = NULL;
1753  ubifs_lpt_free(c, 1);
1754  c->ro_mount = 1;
1755  err = dbg_check_space_info(c);
1756  if (err)
1757  ubifs_ro_mode(c, err);
1759 }
1760 
1761 static void ubifs_put_super(struct super_block *sb)
1762 {
1763  int i;
1764  struct ubifs_info *c = sb->s_fs_info;
1765 
1766  ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1767  c->vi.vol_id);
1768 
1769  /*
1770  * The following asserts are only valid if there has not been a failure
1771  * of the media. For example, there will be dirty inodes if we failed
1772  * to write them back because of I/O errors.
1773  */
1774  if (!c->ro_error) {
1775  ubifs_assert(c->bi.idx_growth == 0);
1776  ubifs_assert(c->bi.dd_growth == 0);
1777  ubifs_assert(c->bi.data_growth == 0);
1778  }
1779 
1780  /*
1781  * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1782  * and file system un-mount. Namely, it prevents the shrinker from
1783  * picking this superblock for shrinking - it will be just skipped if
1784  * the mutex is locked.
1785  */
1786  mutex_lock(&c->umount_mutex);
1787  if (!c->ro_mount) {
1788  /*
1789  * First of all kill the background thread to make sure it does
1790  * not interfere with un-mounting and freeing resources.
1791  */
1792  if (c->bgt) {
1793  kthread_stop(c->bgt);
1794  c->bgt = NULL;
1795  }
1796 
1797  /*
1798  * On fatal errors c->ro_error is set to 1, in which case we do
1799  * not write the master node.
1800  */
1801  if (!c->ro_error) {
1802  int err;
1803 
1804  /* Synchronize write-buffers */
1805  for (i = 0; i < c->jhead_cnt; i++)
1806  ubifs_wbuf_sync(&c->jheads[i].wbuf);
1807 
1808  /*
1809  * We are being cleanly unmounted which means the
1810  * orphans were killed - indicate this in the master
1811  * node. Also save the reserved GC LEB number.
1812  */
1813  c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1814  c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1815  c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1816  err = ubifs_write_master(c);
1817  if (err)
1818  /*
1819  * Recovery will attempt to fix the master area
1820  * next mount, so we just print a message and
1821  * continue to unmount normally.
1822  */
1823  ubifs_err("failed to write master node, error %d",
1824  err);
1825  } else {
1826  for (i = 0; i < c->jhead_cnt; i++)
1827  /* Make sure write-buffer timers are canceled */
1828  hrtimer_cancel(&c->jheads[i].wbuf.timer);
1829  }
1830  }
1831 
1832  ubifs_umount(c);
1833  bdi_destroy(&c->bdi);
1834  ubi_close_volume(c->ubi);
1836 }
1837 
1838 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1839 {
1840  int err;
1841  struct ubifs_info *c = sb->s_fs_info;
1842 
1843  dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1844 
1845  err = ubifs_parse_options(c, data, 1);
1846  if (err) {
1847  ubifs_err("invalid or unknown remount parameter");
1848  return err;
1849  }
1850 
1851  if (c->ro_mount && !(*flags & MS_RDONLY)) {
1852  if (c->ro_error) {
1853  ubifs_msg("cannot re-mount R/W due to prior errors");
1854  return -EROFS;
1855  }
1856  if (c->ro_media) {
1857  ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1858  return -EROFS;
1859  }
1860  err = ubifs_remount_rw(c);
1861  if (err)
1862  return err;
1863  } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1864  if (c->ro_error) {
1865  ubifs_msg("cannot re-mount R/O due to prior errors");
1866  return -EROFS;
1867  }
1868  ubifs_remount_ro(c);
1869  }
1870 
1871  if (c->bulk_read == 1)
1872  bu_init(c);
1873  else {
1874  dbg_gen("disable bulk-read");
1875  kfree(c->bu.buf);
1876  c->bu.buf = NULL;
1877  }
1878 
1879  ubifs_assert(c->lst.taken_empty_lebs > 0);
1880  return 0;
1881 }
1882 
1884  .alloc_inode = ubifs_alloc_inode,
1885  .destroy_inode = ubifs_destroy_inode,
1886  .put_super = ubifs_put_super,
1887  .write_inode = ubifs_write_inode,
1888  .evict_inode = ubifs_evict_inode,
1889  .statfs = ubifs_statfs,
1890  .dirty_inode = ubifs_dirty_inode,
1891  .remount_fs = ubifs_remount_fs,
1892  .show_options = ubifs_show_options,
1893  .sync_fs = ubifs_sync_fs,
1894 };
1895 
1915 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1916 {
1917  struct ubi_volume_desc *ubi;
1918  int dev, vol;
1919  char *endptr;
1920 
1921  /* First, try to open using the device node path method */
1922  ubi = ubi_open_volume_path(name, mode);
1923  if (!IS_ERR(ubi))
1924  return ubi;
1925 
1926  /* Try the "nodev" method */
1927  if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1928  return ERR_PTR(-EINVAL);
1929 
1930  /* ubi:NAME method */
1931  if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1932  return ubi_open_volume_nm(0, name + 4, mode);
1933 
1934  if (!isdigit(name[3]))
1935  return ERR_PTR(-EINVAL);
1936 
1937  dev = simple_strtoul(name + 3, &endptr, 0);
1938 
1939  /* ubiY method */
1940  if (*endptr == '\0')
1941  return ubi_open_volume(0, dev, mode);
1942 
1943  /* ubiX_Y method */
1944  if (*endptr == '_' && isdigit(endptr[1])) {
1945  vol = simple_strtoul(endptr + 1, &endptr, 0);
1946  if (*endptr != '\0')
1947  return ERR_PTR(-EINVAL);
1948  return ubi_open_volume(dev, vol, mode);
1949  }
1950 
1951  /* ubiX:NAME method */
1952  if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1953  return ubi_open_volume_nm(dev, ++endptr, mode);
1954 
1955  return ERR_PTR(-EINVAL);
1956 }
1957 
1958 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1959 {
1960  struct ubifs_info *c;
1961 
1962  c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1963  if (c) {
1964  spin_lock_init(&c->cnt_lock);
1965  spin_lock_init(&c->cs_lock);
1969  init_rwsem(&c->commit_sem);
1970  mutex_init(&c->lp_mutex);
1971  mutex_init(&c->tnc_mutex);
1972  mutex_init(&c->log_mutex);
1973  mutex_init(&c->mst_mutex);
1974  mutex_init(&c->umount_mutex);
1975  mutex_init(&c->bu_mutex);
1978  c->buds = RB_ROOT;
1979  c->old_idx = RB_ROOT;
1980  c->size_tree = RB_ROOT;
1981  c->orph_tree = RB_ROOT;
1982  INIT_LIST_HEAD(&c->infos_list);
1983  INIT_LIST_HEAD(&c->idx_gc);
1984  INIT_LIST_HEAD(&c->replay_list);
1985  INIT_LIST_HEAD(&c->replay_buds);
1986  INIT_LIST_HEAD(&c->uncat_list);
1987  INIT_LIST_HEAD(&c->empty_list);
1988  INIT_LIST_HEAD(&c->freeable_list);
1989  INIT_LIST_HEAD(&c->frdi_idx_list);
1990  INIT_LIST_HEAD(&c->unclean_leb_list);
1991  INIT_LIST_HEAD(&c->old_buds);
1992  INIT_LIST_HEAD(&c->orph_list);
1993  INIT_LIST_HEAD(&c->orph_new);
1994  c->no_chk_data_crc = 1;
1995 
1998 
1999  ubi_get_volume_info(ubi, &c->vi);
2000  ubi_get_device_info(c->vi.ubi_num, &c->di);
2001  }
2002  return c;
2003 }
2004 
2005 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2006 {
2007  struct ubifs_info *c = sb->s_fs_info;
2008  struct inode *root;
2009  int err;
2010 
2011  c->vfs_sb = sb;
2012  /* Re-open the UBI device in read-write mode */
2013  c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2014  if (IS_ERR(c->ubi)) {
2015  err = PTR_ERR(c->ubi);
2016  goto out;
2017  }
2018 
2019  /*
2020  * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2021  * UBIFS, I/O is not deferred, it is done immediately in readpage,
2022  * which means the user would have to wait not just for their own I/O
2023  * but the read-ahead I/O as well i.e. completely pointless.
2024  *
2025  * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2026  */
2027  c->bdi.name = "ubifs",
2028  c->bdi.capabilities = BDI_CAP_MAP_COPY;
2029  err = bdi_init(&c->bdi);
2030  if (err)
2031  goto out_close;
2032  err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2033  c->vi.ubi_num, c->vi.vol_id);
2034  if (err)
2035  goto out_bdi;
2036 
2037  err = ubifs_parse_options(c, data, 0);
2038  if (err)
2039  goto out_bdi;
2040 
2041  sb->s_bdi = &c->bdi;
2042  sb->s_fs_info = c;
2043  sb->s_magic = UBIFS_SUPER_MAGIC;
2046  sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2047  if (c->max_inode_sz > MAX_LFS_FILESIZE)
2048  sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2050 
2051  mutex_lock(&c->umount_mutex);
2052  err = mount_ubifs(c);
2053  if (err) {
2054  ubifs_assert(err < 0);
2055  goto out_unlock;
2056  }
2057 
2058  /* Read the root inode */
2059  root = ubifs_iget(sb, UBIFS_ROOT_INO);
2060  if (IS_ERR(root)) {
2061  err = PTR_ERR(root);
2062  goto out_umount;
2063  }
2064 
2065  sb->s_root = d_make_root(root);
2066  if (!sb->s_root)
2067  goto out_umount;
2068 
2070  return 0;
2071 
2072 out_umount:
2073  ubifs_umount(c);
2074 out_unlock:
2076 out_bdi:
2077  bdi_destroy(&c->bdi);
2078 out_close:
2079  ubi_close_volume(c->ubi);
2080 out:
2081  return err;
2082 }
2083 
2084 static int sb_test(struct super_block *sb, void *data)
2085 {
2086  struct ubifs_info *c1 = data;
2087  struct ubifs_info *c = sb->s_fs_info;
2088 
2089  return c->vi.cdev == c1->vi.cdev;
2090 }
2091 
2092 static int sb_set(struct super_block *sb, void *data)
2093 {
2094  sb->s_fs_info = data;
2095  return set_anon_super(sb, NULL);
2096 }
2097 
2098 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2099  const char *name, void *data)
2100 {
2101  struct ubi_volume_desc *ubi;
2102  struct ubifs_info *c;
2103  struct super_block *sb;
2104  int err;
2105 
2106  dbg_gen("name %s, flags %#x", name, flags);
2107 
2108  /*
2109  * Get UBI device number and volume ID. Mount it read-only so far
2110  * because this might be a new mount point, and UBI allows only one
2111  * read-write user at a time.
2112  */
2113  ubi = open_ubi(name, UBI_READONLY);
2114  if (IS_ERR(ubi)) {
2115  ubifs_err("cannot open \"%s\", error %d",
2116  name, (int)PTR_ERR(ubi));
2117  return ERR_CAST(ubi);
2118  }
2119 
2120  c = alloc_ubifs_info(ubi);
2121  if (!c) {
2122  err = -ENOMEM;
2123  goto out_close;
2124  }
2125 
2126  dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2127 
2128  sb = sget(fs_type, sb_test, sb_set, flags, c);
2129  if (IS_ERR(sb)) {
2130  err = PTR_ERR(sb);
2131  kfree(c);
2132  goto out_close;
2133  }
2134 
2135  if (sb->s_root) {
2136  struct ubifs_info *c1 = sb->s_fs_info;
2137  kfree(c);
2138  /* A new mount point for already mounted UBIFS */
2139  dbg_gen("this ubi volume is already mounted");
2140  if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2141  err = -EBUSY;
2142  goto out_deact;
2143  }
2144  } else {
2145  err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2146  if (err)
2147  goto out_deact;
2148  /* We do not support atime */
2149  sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2150  }
2151 
2152  /* 'fill_super()' opens ubi again so we must close it here */
2153  ubi_close_volume(ubi);
2154 
2155  return dget(sb->s_root);
2156 
2157 out_deact:
2159 out_close:
2160  ubi_close_volume(ubi);
2161  return ERR_PTR(err);
2162 }
2163 
2164 static void kill_ubifs_super(struct super_block *s)
2165 {
2166  struct ubifs_info *c = s->s_fs_info;
2167  kill_anon_super(s);
2168  kfree(c);
2169 }
2170 
2171 static struct file_system_type ubifs_fs_type = {
2172  .name = "ubifs",
2173  .owner = THIS_MODULE,
2174  .mount = ubifs_mount,
2175  .kill_sb = kill_ubifs_super,
2176 };
2177 
2178 /*
2179  * Inode slab cache constructor.
2180  */
2181 static void inode_slab_ctor(void *obj)
2182 {
2183  struct ubifs_inode *ui = obj;
2184  inode_init_once(&ui->vfs_inode);
2185 }
2186 
2187 static int __init ubifs_init(void)
2188 {
2189  int err;
2190 
2191  BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2192 
2193  /* Make sure node sizes are 8-byte aligned */
2205 
2208  BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2212 
2213  /* Check min. node size */
2218 
2221  BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2223 
2224  /* Defined node sizes */
2225  BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2229 
2230  /*
2231  * We use 2 bit wide bit-fields to store compression type, which should
2232  * be amended if more compressors are added. The bit-fields are:
2233  * @compr_type in 'struct ubifs_inode', @default_compr in
2234  * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2235  */
2237 
2238  /*
2239  * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2240  * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2241  */
2243  ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2244  (unsigned int)PAGE_CACHE_SIZE);
2245  return -EINVAL;
2246  }
2247 
2248  ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2249  sizeof(struct ubifs_inode), 0,
2251  &inode_slab_ctor);
2252  if (!ubifs_inode_slab)
2253  return -ENOMEM;
2254 
2255  register_shrinker(&ubifs_shrinker_info);
2256 
2257  err = ubifs_compressors_init();
2258  if (err)
2259  goto out_shrinker;
2260 
2261  err = dbg_debugfs_init();
2262  if (err)
2263  goto out_compr;
2264 
2265  err = register_filesystem(&ubifs_fs_type);
2266  if (err) {
2267  ubifs_err("cannot register file system, error %d", err);
2268  goto out_dbg;
2269  }
2270  return 0;
2271 
2272 out_dbg:
2273  dbg_debugfs_exit();
2274 out_compr:
2276 out_shrinker:
2277  unregister_shrinker(&ubifs_shrinker_info);
2278  kmem_cache_destroy(ubifs_inode_slab);
2279  return err;
2280 }
2281 /* late_initcall to let compressors initialize first */
2282 late_initcall(ubifs_init);
2283 
2284 static void __exit ubifs_exit(void)
2285 {
2286  ubifs_assert(list_empty(&ubifs_infos));
2287  ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2288 
2289  dbg_debugfs_exit();
2291  unregister_shrinker(&ubifs_shrinker_info);
2292 
2293  /*
2294  * Make sure all delayed rcu free inodes are flushed before we
2295  * destroy cache.
2296  */
2297  rcu_barrier();
2298  kmem_cache_destroy(ubifs_inode_slab);
2299  unregister_filesystem(&ubifs_fs_type);
2300 }
2301 module_exit(ubifs_exit);
2302 
2303 MODULE_LICENSE("GPL");
2305 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2306 MODULE_DESCRIPTION("UBIFS - UBI File System");