Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode.c
Go to the documentation of this file.
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  * Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  * This file is distributed under the terms of the GNU General Public
9  * License (GPL). Copies of the GPL can be obtained from:
10  * ftp://prep.ai.mit.edu/pub/gnu/GPL
11  * Each contributing author retains all rights to their own work.
12  *
13  * (C) 1998 Dave Boynton
14  * (C) 1998-2004 Ben Fennema
15  * (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  * 10/04/98 dgb Added rudimentary directory functions
20  * 10/07/98 Fully working udf_block_map! It works!
21  * 11/25/98 bmap altered to better support extents
22  * 12/06/98 blf partition support in udf_iget, udf_block_map
23  * and udf_read_inode
24  * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25  * block boundaries (which is not actually allowed)
26  * 12/20/98 added support for strategy 4096
27  * 03/07/99 rewrote udf_block_map (again)
28  * New funcs, inode_bmap, udf_next_aext
29  * 04/19/99 Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58  struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66  struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67  struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
72 {
73  struct udf_inode_info *iinfo = UDF_I(inode);
74  int want_delete = 0;
75 
76  if (!inode->i_nlink && !is_bad_inode(inode)) {
77  want_delete = 1;
78  udf_setsize(inode, 0);
79  udf_update_inode(inode, IS_SYNC(inode));
80  } else
81  truncate_inode_pages(&inode->i_data, 0);
83  clear_inode(inode);
84  if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85  inode->i_size != iinfo->i_lenExtents) {
86  udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87  inode->i_ino, inode->i_mode,
88  (unsigned long long)inode->i_size,
89  (unsigned long long)iinfo->i_lenExtents);
90  }
91  kfree(iinfo->i_ext.i_data);
92  iinfo->i_ext.i_data = NULL;
93  if (want_delete) {
94  udf_free_inode(inode);
95  }
96 }
97 
98 static void udf_write_failed(struct address_space *mapping, loff_t to)
99 {
100  struct inode *inode = mapping->host;
101  struct udf_inode_info *iinfo = UDF_I(inode);
102  loff_t isize = inode->i_size;
103 
104  if (to > isize) {
105  truncate_pagecache(inode, to, isize);
106  if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
107  down_write(&iinfo->i_data_sem);
108  udf_truncate_extents(inode);
109  up_write(&iinfo->i_data_sem);
110  }
111  }
112 }
113 
114 static int udf_writepage(struct page *page, struct writeback_control *wbc)
115 {
116  return block_write_full_page(page, udf_get_block, wbc);
117 }
118 
119 static int udf_writepages(struct address_space *mapping,
120  struct writeback_control *wbc)
121 {
122  return mpage_writepages(mapping, wbc, udf_get_block);
123 }
124 
125 static int udf_readpage(struct file *file, struct page *page)
126 {
127  return mpage_readpage(page, udf_get_block);
128 }
129 
130 static int udf_readpages(struct file *file, struct address_space *mapping,
131  struct list_head *pages, unsigned nr_pages)
132 {
133  return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
134 }
135 
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137  loff_t pos, unsigned len, unsigned flags,
138  struct page **pagep, void **fsdata)
139 {
140  int ret;
141 
142  ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
143  if (unlikely(ret))
144  udf_write_failed(mapping, pos + len);
145  return ret;
146 }
147 
148 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
149  const struct iovec *iov,
150  loff_t offset, unsigned long nr_segs)
151 {
152  struct file *file = iocb->ki_filp;
153  struct address_space *mapping = file->f_mapping;
154  struct inode *inode = mapping->host;
155  ssize_t ret;
156 
157  ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
158  udf_get_block);
159  if (unlikely(ret < 0 && (rw & WRITE)))
160  udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
161  return ret;
162 }
163 
164 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
165 {
166  return generic_block_bmap(mapping, block, udf_get_block);
167 }
168 
170  .readpage = udf_readpage,
171  .readpages = udf_readpages,
172  .writepage = udf_writepage,
173  .writepages = udf_writepages,
174  .write_begin = udf_write_begin,
175  .write_end = generic_write_end,
176  .direct_IO = udf_direct_IO,
177  .bmap = udf_bmap,
178 };
179 
180 /*
181  * Expand file stored in ICB to a normal one-block-file
182  *
183  * This function requires i_data_sem for writing and releases it.
184  * This function requires i_mutex held
185  */
186 int udf_expand_file_adinicb(struct inode *inode)
187 {
188  struct page *page;
189  char *kaddr;
190  struct udf_inode_info *iinfo = UDF_I(inode);
191  int err;
192  struct writeback_control udf_wbc = {
194  .nr_to_write = 1,
195  };
196 
197  if (!iinfo->i_lenAlloc) {
198  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
200  else
202  /* from now on we have normal address_space methods */
203  inode->i_data.a_ops = &udf_aops;
204  up_write(&iinfo->i_data_sem);
205  mark_inode_dirty(inode);
206  return 0;
207  }
208  /*
209  * Release i_data_sem so that we can lock a page - page lock ranks
210  * above i_data_sem. i_mutex still protects us against file changes.
211  */
212  up_write(&iinfo->i_data_sem);
213 
214  page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
215  if (!page)
216  return -ENOMEM;
217 
218  if (!PageUptodate(page)) {
219  kaddr = kmap(page);
220  memset(kaddr + iinfo->i_lenAlloc, 0x00,
221  PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
222  memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
223  iinfo->i_lenAlloc);
224  flush_dcache_page(page);
225  SetPageUptodate(page);
226  kunmap(page);
227  }
228  down_write(&iinfo->i_data_sem);
229  memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
230  iinfo->i_lenAlloc);
231  iinfo->i_lenAlloc = 0;
232  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
234  else
236  /* from now on we have normal address_space methods */
237  inode->i_data.a_ops = &udf_aops;
238  up_write(&iinfo->i_data_sem);
239  err = inode->i_data.a_ops->writepage(page, &udf_wbc);
240  if (err) {
241  /* Restore everything back so that we don't lose data... */
242  lock_page(page);
243  kaddr = kmap(page);
244  down_write(&iinfo->i_data_sem);
245  memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
246  inode->i_size);
247  kunmap(page);
248  unlock_page(page);
250  inode->i_data.a_ops = &udf_adinicb_aops;
251  up_write(&iinfo->i_data_sem);
252  }
253  page_cache_release(page);
254  mark_inode_dirty(inode);
255 
256  return err;
257 }
258 
259 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
260  int *err)
261 {
262  int newblock;
263  struct buffer_head *dbh = NULL;
264  struct kernel_lb_addr eloc;
265  uint8_t alloctype;
266  struct extent_position epos;
267 
268  struct udf_fileident_bh sfibh, dfibh;
269  loff_t f_pos = udf_ext0_offset(inode);
270  int size = udf_ext0_offset(inode) + inode->i_size;
271  struct fileIdentDesc cfi, *sfi, *dfi;
272  struct udf_inode_info *iinfo = UDF_I(inode);
273 
274  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
275  alloctype = ICBTAG_FLAG_AD_SHORT;
276  else
277  alloctype = ICBTAG_FLAG_AD_LONG;
278 
279  if (!inode->i_size) {
280  iinfo->i_alloc_type = alloctype;
281  mark_inode_dirty(inode);
282  return NULL;
283  }
284 
285  /* alloc block, and copy data to it */
286  *block = udf_new_block(inode->i_sb, inode,
287  iinfo->i_location.partitionReferenceNum,
288  iinfo->i_location.logicalBlockNum, err);
289  if (!(*block))
290  return NULL;
291  newblock = udf_get_pblock(inode->i_sb, *block,
292  iinfo->i_location.partitionReferenceNum,
293  0);
294  if (!newblock)
295  return NULL;
296  dbh = udf_tgetblk(inode->i_sb, newblock);
297  if (!dbh)
298  return NULL;
299  lock_buffer(dbh);
300  memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
301  set_buffer_uptodate(dbh);
302  unlock_buffer(dbh);
303  mark_buffer_dirty_inode(dbh, inode);
304 
305  sfibh.soffset = sfibh.eoffset =
306  f_pos & (inode->i_sb->s_blocksize - 1);
307  sfibh.sbh = sfibh.ebh = NULL;
308  dfibh.soffset = dfibh.eoffset = 0;
309  dfibh.sbh = dfibh.ebh = dbh;
310  while (f_pos < size) {
312  sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
313  NULL, NULL, NULL);
314  if (!sfi) {
315  brelse(dbh);
316  return NULL;
317  }
318  iinfo->i_alloc_type = alloctype;
319  sfi->descTag.tagLocation = cpu_to_le32(*block);
320  dfibh.soffset = dfibh.eoffset;
321  dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
322  dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
323  if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
324  sfi->fileIdent +
325  le16_to_cpu(sfi->lengthOfImpUse))) {
327  brelse(dbh);
328  return NULL;
329  }
330  }
331  mark_buffer_dirty_inode(dbh, inode);
332 
333  memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
334  iinfo->i_lenAlloc);
335  iinfo->i_lenAlloc = 0;
336  eloc.logicalBlockNum = *block;
337  eloc.partitionReferenceNum =
338  iinfo->i_location.partitionReferenceNum;
339  iinfo->i_lenExtents = inode->i_size;
340  epos.bh = NULL;
341  epos.block = iinfo->i_location;
342  epos.offset = udf_file_entry_alloc_offset(inode);
343  udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
344  /* UniqueID stuff */
345 
346  brelse(epos.bh);
347  mark_inode_dirty(inode);
348  return dbh;
349 }
350 
351 static int udf_get_block(struct inode *inode, sector_t block,
352  struct buffer_head *bh_result, int create)
353 {
354  int err, new;
355  sector_t phys = 0;
356  struct udf_inode_info *iinfo;
357 
358  if (!create) {
359  phys = udf_block_map(inode, block);
360  if (phys)
361  map_bh(bh_result, inode->i_sb, phys);
362  return 0;
363  }
364 
365  err = -EIO;
366  new = 0;
367  iinfo = UDF_I(inode);
368 
369  down_write(&iinfo->i_data_sem);
370  if (block == iinfo->i_next_alloc_block + 1) {
371  iinfo->i_next_alloc_block++;
372  iinfo->i_next_alloc_goal++;
373  }
374 
375 
376  phys = inode_getblk(inode, block, &err, &new);
377  if (!phys)
378  goto abort;
379 
380  if (new)
381  set_buffer_new(bh_result);
382  map_bh(bh_result, inode->i_sb, phys);
383 
384 abort:
385  up_write(&iinfo->i_data_sem);
386  return err;
387 }
388 
389 static struct buffer_head *udf_getblk(struct inode *inode, long block,
390  int create, int *err)
391 {
392  struct buffer_head *bh;
393  struct buffer_head dummy;
394 
395  dummy.b_state = 0;
396  dummy.b_blocknr = -1000;
397  *err = udf_get_block(inode, block, &dummy, create);
398  if (!*err && buffer_mapped(&dummy)) {
399  bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
400  if (buffer_new(&dummy)) {
401  lock_buffer(bh);
402  memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
403  set_buffer_uptodate(bh);
404  unlock_buffer(bh);
405  mark_buffer_dirty_inode(bh, inode);
406  }
407  return bh;
408  }
409 
410  return NULL;
411 }
412 
413 /* Extend the file by 'blocks' blocks, return the number of extents added */
414 static int udf_do_extend_file(struct inode *inode,
415  struct extent_position *last_pos,
416  struct kernel_long_ad *last_ext,
417  sector_t blocks)
418 {
419  sector_t add;
420  int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
421  struct super_block *sb = inode->i_sb;
422  struct kernel_lb_addr prealloc_loc = {};
423  int prealloc_len = 0;
424  struct udf_inode_info *iinfo;
425  int err;
426 
427  /* The previous extent is fake and we should not extend by anything
428  * - there's nothing to do... */
429  if (!blocks && fake)
430  return 0;
431 
432  iinfo = UDF_I(inode);
433  /* Round the last extent up to a multiple of block size */
434  if (last_ext->extLength & (sb->s_blocksize - 1)) {
435  last_ext->extLength =
436  (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
437  (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
438  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
439  iinfo->i_lenExtents =
440  (iinfo->i_lenExtents + sb->s_blocksize - 1) &
441  ~(sb->s_blocksize - 1);
442  }
443 
444  /* Last extent are just preallocated blocks? */
445  if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
447  /* Save the extent so that we can reattach it to the end */
448  prealloc_loc = last_ext->extLocation;
449  prealloc_len = last_ext->extLength;
450  /* Mark the extent as a hole */
452  (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
453  last_ext->extLocation.logicalBlockNum = 0;
454  last_ext->extLocation.partitionReferenceNum = 0;
455  }
456 
457  /* Can we merge with the previous extent? */
458  if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
460  add = ((1 << 30) - sb->s_blocksize -
461  (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
462  sb->s_blocksize_bits;
463  if (add > blocks)
464  add = blocks;
465  blocks -= add;
466  last_ext->extLength += add << sb->s_blocksize_bits;
467  }
468 
469  if (fake) {
470  udf_add_aext(inode, last_pos, &last_ext->extLocation,
471  last_ext->extLength, 1);
472  count++;
473  } else
474  udf_write_aext(inode, last_pos, &last_ext->extLocation,
475  last_ext->extLength, 1);
476 
477  /* Managed to do everything necessary? */
478  if (!blocks)
479  goto out;
480 
481  /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
482  last_ext->extLocation.logicalBlockNum = 0;
483  last_ext->extLocation.partitionReferenceNum = 0;
484  add = (1 << (30-sb->s_blocksize_bits)) - 1;
486  (add << sb->s_blocksize_bits);
487 
488  /* Create enough extents to cover the whole hole */
489  while (blocks > add) {
490  blocks -= add;
491  err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
492  last_ext->extLength, 1);
493  if (err)
494  return err;
495  count++;
496  }
497  if (blocks) {
499  (blocks << sb->s_blocksize_bits);
500  err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
501  last_ext->extLength, 1);
502  if (err)
503  return err;
504  count++;
505  }
506 
507 out:
508  /* Do we have some preallocated blocks saved? */
509  if (prealloc_len) {
510  err = udf_add_aext(inode, last_pos, &prealloc_loc,
511  prealloc_len, 1);
512  if (err)
513  return err;
514  last_ext->extLocation = prealloc_loc;
515  last_ext->extLength = prealloc_len;
516  count++;
517  }
518 
519  /* last_pos should point to the last written extent... */
520  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
521  last_pos->offset -= sizeof(struct short_ad);
522  else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
523  last_pos->offset -= sizeof(struct long_ad);
524  else
525  return -EIO;
526 
527  return count;
528 }
529 
530 static int udf_extend_file(struct inode *inode, loff_t newsize)
531 {
532 
533  struct extent_position epos;
534  struct kernel_lb_addr eloc;
535  uint32_t elen;
536  int8_t etype;
537  struct super_block *sb = inode->i_sb;
538  sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
539  int adsize;
540  struct udf_inode_info *iinfo = UDF_I(inode);
541  struct kernel_long_ad extent;
542  int err;
543 
544  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
545  adsize = sizeof(struct short_ad);
546  else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
547  adsize = sizeof(struct long_ad);
548  else
549  BUG();
550 
551  etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
552 
553  /* File has extent covering the new size (could happen when extending
554  * inside a block)? */
555  if (etype != -1)
556  return 0;
557  if (newsize & (sb->s_blocksize - 1))
558  offset++;
559  /* Extended file just to the boundary of the last file block? */
560  if (offset == 0)
561  return 0;
562 
563  /* Truncate is extending the file by 'offset' blocks */
564  if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
565  (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
566  /* File has no extents at all or has empty last
567  * indirect extent! Create a fake extent... */
568  extent.extLocation.logicalBlockNum = 0;
569  extent.extLocation.partitionReferenceNum = 0;
571  } else {
572  epos.offset -= adsize;
573  etype = udf_next_aext(inode, &epos, &extent.extLocation,
574  &extent.extLength, 0);
575  extent.extLength |= etype << 30;
576  }
577  err = udf_do_extend_file(inode, &epos, &extent, offset);
578  if (err < 0)
579  goto out;
580  err = 0;
581  iinfo->i_lenExtents = newsize;
582 out:
583  brelse(epos.bh);
584  return err;
585 }
586 
587 static sector_t inode_getblk(struct inode *inode, sector_t block,
588  int *err, int *new)
589 {
590  static sector_t last_block;
591  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
592  struct extent_position prev_epos, cur_epos, next_epos;
593  int count = 0, startnum = 0, endnum = 0;
594  uint32_t elen = 0, tmpelen;
595  struct kernel_lb_addr eloc, tmpeloc;
596  int c = 1;
597  loff_t lbcount = 0, b_off = 0;
598  uint32_t newblocknum, newblock;
599  sector_t offset = 0;
600  int8_t etype;
601  struct udf_inode_info *iinfo = UDF_I(inode);
602  int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
603  int lastblock = 0;
604 
605  *err = 0;
606  *new = 0;
607  prev_epos.offset = udf_file_entry_alloc_offset(inode);
608  prev_epos.block = iinfo->i_location;
609  prev_epos.bh = NULL;
610  cur_epos = next_epos = prev_epos;
611  b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
612 
613  /* find the extent which contains the block we are looking for.
614  alternate between laarr[0] and laarr[1] for locations of the
615  current extent, and the previous extent */
616  do {
617  if (prev_epos.bh != cur_epos.bh) {
618  brelse(prev_epos.bh);
619  get_bh(cur_epos.bh);
620  prev_epos.bh = cur_epos.bh;
621  }
622  if (cur_epos.bh != next_epos.bh) {
623  brelse(cur_epos.bh);
624  get_bh(next_epos.bh);
625  cur_epos.bh = next_epos.bh;
626  }
627 
628  lbcount += elen;
629 
630  prev_epos.block = cur_epos.block;
631  cur_epos.block = next_epos.block;
632 
633  prev_epos.offset = cur_epos.offset;
634  cur_epos.offset = next_epos.offset;
635 
636  etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
637  if (etype == -1)
638  break;
639 
640  c = !c;
641 
642  laarr[c].extLength = (etype << 30) | elen;
643  laarr[c].extLocation = eloc;
644 
645  if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
646  pgoal = eloc.logicalBlockNum +
647  ((elen + inode->i_sb->s_blocksize - 1) >>
648  inode->i_sb->s_blocksize_bits);
649 
650  count++;
651  } while (lbcount + elen <= b_off);
652 
653  b_off -= lbcount;
654  offset = b_off >> inode->i_sb->s_blocksize_bits;
655  /*
656  * Move prev_epos and cur_epos into indirect extent if we are at
657  * the pointer to it
658  */
659  udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
660  udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
661 
662  /* if the extent is allocated and recorded, return the block
663  if the extent is not a multiple of the blocksize, round up */
664 
665  if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
666  if (elen & (inode->i_sb->s_blocksize - 1)) {
667  elen = EXT_RECORDED_ALLOCATED |
668  ((elen + inode->i_sb->s_blocksize - 1) &
669  ~(inode->i_sb->s_blocksize - 1));
670  udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
671  }
672  brelse(prev_epos.bh);
673  brelse(cur_epos.bh);
674  brelse(next_epos.bh);
675  newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
676  return newblock;
677  }
678 
679  last_block = block;
680  /* Are we beyond EOF? */
681  if (etype == -1) {
682  int ret;
683 
684  if (count) {
685  if (c)
686  laarr[0] = laarr[1];
687  startnum = 1;
688  } else {
689  /* Create a fake extent when there's not one */
690  memset(&laarr[0].extLocation, 0x00,
691  sizeof(struct kernel_lb_addr));
692  laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
693  /* Will udf_do_extend_file() create real extent from
694  a fake one? */
695  startnum = (offset > 0);
696  }
697  /* Create extents for the hole between EOF and offset */
698  ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
699  if (ret < 0) {
700  brelse(prev_epos.bh);
701  brelse(cur_epos.bh);
702  brelse(next_epos.bh);
703  *err = ret;
704  return 0;
705  }
706  c = 0;
707  offset = 0;
708  count += ret;
709  /* We are not covered by a preallocated extent? */
710  if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
712  /* Is there any real extent? - otherwise we overwrite
713  * the fake one... */
714  if (count)
715  c = !c;
716  laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
717  inode->i_sb->s_blocksize;
718  memset(&laarr[c].extLocation, 0x00,
719  sizeof(struct kernel_lb_addr));
720  count++;
721  endnum++;
722  }
723  endnum = c + 1;
724  lastblock = 1;
725  } else {
726  endnum = startnum = ((count > 2) ? 2 : count);
727 
728  /* if the current extent is in position 0,
729  swap it with the previous */
730  if (!c && count != 1) {
731  laarr[2] = laarr[0];
732  laarr[0] = laarr[1];
733  laarr[1] = laarr[2];
734  c = 1;
735  }
736 
737  /* if the current block is located in an extent,
738  read the next extent */
739  etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
740  if (etype != -1) {
741  laarr[c + 1].extLength = (etype << 30) | elen;
742  laarr[c + 1].extLocation = eloc;
743  count++;
744  startnum++;
745  endnum++;
746  } else
747  lastblock = 1;
748  }
749 
750  /* if the current extent is not recorded but allocated, get the
751  * block in the extent corresponding to the requested block */
752  if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
753  newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
754  else { /* otherwise, allocate a new block */
755  if (iinfo->i_next_alloc_block == block)
756  goal = iinfo->i_next_alloc_goal;
757 
758  if (!goal) {
759  if (!(goal = pgoal)) /* XXX: what was intended here? */
760  goal = iinfo->i_location.logicalBlockNum + 1;
761  }
762 
763  newblocknum = udf_new_block(inode->i_sb, inode,
764  iinfo->i_location.partitionReferenceNum,
765  goal, err);
766  if (!newblocknum) {
767  brelse(prev_epos.bh);
768  *err = -ENOSPC;
769  return 0;
770  }
771  iinfo->i_lenExtents += inode->i_sb->s_blocksize;
772  }
773 
774  /* if the extent the requsted block is located in contains multiple
775  * blocks, split the extent into at most three extents. blocks prior
776  * to requested block, requested block, and blocks after requested
777  * block */
778  udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
779 
780 #ifdef UDF_PREALLOCATE
781  /* We preallocate blocks only for regular files. It also makes sense
782  * for directories but there's a problem when to drop the
783  * preallocation. We might use some delayed work for that but I feel
784  * it's overengineering for a filesystem like UDF. */
785  if (S_ISREG(inode->i_mode))
786  udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
787 #endif
788 
789  /* merge any continuous blocks in laarr */
790  udf_merge_extents(inode, laarr, &endnum);
791 
792  /* write back the new extents, inserting new extents if the new number
793  * of extents is greater than the old number, and deleting extents if
794  * the new number of extents is less than the old number */
795  udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
796 
797  brelse(prev_epos.bh);
798 
799  newblock = udf_get_pblock(inode->i_sb, newblocknum,
800  iinfo->i_location.partitionReferenceNum, 0);
801  if (!newblock) {
802  *err = -EIO;
803  return 0;
804  }
805  *new = 1;
806  iinfo->i_next_alloc_block = block;
807  iinfo->i_next_alloc_goal = newblocknum;
808  inode->i_ctime = current_fs_time(inode->i_sb);
809 
810  if (IS_SYNC(inode))
811  udf_sync_inode(inode);
812  else
813  mark_inode_dirty(inode);
814 
815  return newblock;
816 }
817 
818 static void udf_split_extents(struct inode *inode, int *c, int offset,
819  int newblocknum,
820  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
821  int *endnum)
822 {
823  unsigned long blocksize = inode->i_sb->s_blocksize;
824  unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
825 
826  if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
827  (laarr[*c].extLength >> 30) ==
829  int curr = *c;
830  int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
831  blocksize - 1) >> blocksize_bits;
832  int8_t etype = (laarr[curr].extLength >> 30);
833 
834  if (blen == 1)
835  ;
836  else if (!offset || blen == offset + 1) {
837  laarr[curr + 2] = laarr[curr + 1];
838  laarr[curr + 1] = laarr[curr];
839  } else {
840  laarr[curr + 3] = laarr[curr + 1];
841  laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
842  }
843 
844  if (offset) {
845  if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
846  udf_free_blocks(inode->i_sb, inode,
847  &laarr[curr].extLocation,
848  0, offset);
849  laarr[curr].extLength =
851  (offset << blocksize_bits);
852  laarr[curr].extLocation.logicalBlockNum = 0;
853  laarr[curr].extLocation.
855  } else
856  laarr[curr].extLength = (etype << 30) |
857  (offset << blocksize_bits);
858  curr++;
859  (*c)++;
860  (*endnum)++;
861  }
862 
863  laarr[curr].extLocation.logicalBlockNum = newblocknum;
864  if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
865  laarr[curr].extLocation.partitionReferenceNum =
866  UDF_I(inode)->i_location.partitionReferenceNum;
867  laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
868  blocksize;
869  curr++;
870 
871  if (blen != offset + 1) {
872  if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
873  laarr[curr].extLocation.logicalBlockNum +=
874  offset + 1;
875  laarr[curr].extLength = (etype << 30) |
876  ((blen - (offset + 1)) << blocksize_bits);
877  curr++;
878  (*endnum)++;
879  }
880  }
881 }
882 
883 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
884  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
885  int *endnum)
886 {
887  int start, length = 0, currlength = 0, i;
888 
889  if (*endnum >= (c + 1)) {
890  if (!lastblock)
891  return;
892  else
893  start = c;
894  } else {
895  if ((laarr[c + 1].extLength >> 30) ==
896  (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
897  start = c + 1;
898  length = currlength =
899  (((laarr[c + 1].extLength &
901  inode->i_sb->s_blocksize - 1) >>
902  inode->i_sb->s_blocksize_bits);
903  } else
904  start = c;
905  }
906 
907  for (i = start + 1; i <= *endnum; i++) {
908  if (i == *endnum) {
909  if (lastblock)
910  length += UDF_DEFAULT_PREALLOC_BLOCKS;
911  } else if ((laarr[i].extLength >> 30) ==
913  length += (((laarr[i].extLength &
915  inode->i_sb->s_blocksize - 1) >>
916  inode->i_sb->s_blocksize_bits);
917  } else
918  break;
919  }
920 
921  if (length) {
922  int next = laarr[start].extLocation.logicalBlockNum +
923  (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
924  inode->i_sb->s_blocksize - 1) >>
925  inode->i_sb->s_blocksize_bits);
926  int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
927  laarr[start].extLocation.partitionReferenceNum,
928  next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
929  length : UDF_DEFAULT_PREALLOC_BLOCKS) -
930  currlength);
931  if (numalloc) {
932  if (start == (c + 1))
933  laarr[start].extLength +=
934  (numalloc <<
935  inode->i_sb->s_blocksize_bits);
936  else {
937  memmove(&laarr[c + 2], &laarr[c + 1],
938  sizeof(struct long_ad) * (*endnum - (c + 1)));
939  (*endnum)++;
940  laarr[c + 1].extLocation.logicalBlockNum = next;
941  laarr[c + 1].extLocation.partitionReferenceNum =
942  laarr[c].extLocation.
944  laarr[c + 1].extLength =
946  (numalloc <<
947  inode->i_sb->s_blocksize_bits);
948  start = c + 1;
949  }
950 
951  for (i = start + 1; numalloc && i < *endnum; i++) {
952  int elen = ((laarr[i].extLength &
954  inode->i_sb->s_blocksize - 1) >>
955  inode->i_sb->s_blocksize_bits;
956 
957  if (elen > numalloc) {
958  laarr[i].extLength -=
959  (numalloc <<
960  inode->i_sb->s_blocksize_bits);
961  numalloc = 0;
962  } else {
963  numalloc -= elen;
964  if (*endnum > (i + 1))
965  memmove(&laarr[i],
966  &laarr[i + 1],
967  sizeof(struct long_ad) *
968  (*endnum - (i + 1)));
969  i--;
970  (*endnum)--;
971  }
972  }
973  UDF_I(inode)->i_lenExtents +=
974  numalloc << inode->i_sb->s_blocksize_bits;
975  }
976  }
977 }
978 
979 static void udf_merge_extents(struct inode *inode,
980  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
981  int *endnum)
982 {
983  int i;
984  unsigned long blocksize = inode->i_sb->s_blocksize;
985  unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
986 
987  for (i = 0; i < (*endnum - 1); i++) {
988  struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
989  struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
990 
991  if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
992  (((li->extLength >> 30) ==
994  ((lip1->extLocation.logicalBlockNum -
995  li->extLocation.logicalBlockNum) ==
997  blocksize - 1) >> blocksize_bits)))) {
998 
999  if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1000  (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1001  blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1002  lip1->extLength = (lip1->extLength -
1003  (li->extLength &
1006  ~(blocksize - 1);
1007  li->extLength = (li->extLength &
1009  (UDF_EXTENT_LENGTH_MASK + 1) -
1010  blocksize;
1011  lip1->extLocation.logicalBlockNum =
1012  li->extLocation.logicalBlockNum +
1013  ((li->extLength &
1015  blocksize_bits);
1016  } else {
1017  li->extLength = lip1->extLength +
1018  (((li->extLength &
1020  blocksize - 1) & ~(blocksize - 1));
1021  if (*endnum > (i + 2))
1022  memmove(&laarr[i + 1], &laarr[i + 2],
1023  sizeof(struct long_ad) *
1024  (*endnum - (i + 2)));
1025  i--;
1026  (*endnum)--;
1027  }
1028  } else if (((li->extLength >> 30) ==
1029  (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1030  ((lip1->extLength >> 30) ==
1031  (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1032  udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1033  ((li->extLength &
1035  blocksize - 1) >> blocksize_bits);
1036  li->extLocation.logicalBlockNum = 0;
1037  li->extLocation.partitionReferenceNum = 0;
1038 
1039  if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1040  (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1041  blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1042  lip1->extLength = (lip1->extLength -
1043  (li->extLength &
1046  ~(blocksize - 1);
1047  li->extLength = (li->extLength &
1049  (UDF_EXTENT_LENGTH_MASK + 1) -
1050  blocksize;
1051  } else {
1052  li->extLength = lip1->extLength +
1053  (((li->extLength &
1055  blocksize - 1) & ~(blocksize - 1));
1056  if (*endnum > (i + 2))
1057  memmove(&laarr[i + 1], &laarr[i + 2],
1058  sizeof(struct long_ad) *
1059  (*endnum - (i + 2)));
1060  i--;
1061  (*endnum)--;
1062  }
1063  } else if ((li->extLength >> 30) ==
1064  (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1065  udf_free_blocks(inode->i_sb, inode,
1066  &li->extLocation, 0,
1067  ((li->extLength &
1069  blocksize - 1) >> blocksize_bits);
1070  li->extLocation.logicalBlockNum = 0;
1071  li->extLocation.partitionReferenceNum = 0;
1072  li->extLength = (li->extLength &
1075  }
1076  }
1077 }
1078 
1079 static void udf_update_extents(struct inode *inode,
1080  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1081  int startnum, int endnum,
1082  struct extent_position *epos)
1083 {
1084  int start = 0, i;
1085  struct kernel_lb_addr tmploc;
1086  uint32_t tmplen;
1087 
1088  if (startnum > endnum) {
1089  for (i = 0; i < (startnum - endnum); i++)
1090  udf_delete_aext(inode, *epos, laarr[i].extLocation,
1091  laarr[i].extLength);
1092  } else if (startnum < endnum) {
1093  for (i = 0; i < (endnum - startnum); i++) {
1094  udf_insert_aext(inode, *epos, laarr[i].extLocation,
1095  laarr[i].extLength);
1096  udf_next_aext(inode, epos, &laarr[i].extLocation,
1097  &laarr[i].extLength, 1);
1098  start++;
1099  }
1100  }
1101 
1102  for (i = start; i < endnum; i++) {
1103  udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1104  udf_write_aext(inode, epos, &laarr[i].extLocation,
1105  laarr[i].extLength, 1);
1106  }
1107 }
1108 
1109 struct buffer_head *udf_bread(struct inode *inode, int block,
1110  int create, int *err)
1111 {
1112  struct buffer_head *bh = NULL;
1113 
1114  bh = udf_getblk(inode, block, create, err);
1115  if (!bh)
1116  return NULL;
1117 
1118  if (buffer_uptodate(bh))
1119  return bh;
1120 
1121  ll_rw_block(READ, 1, &bh);
1122 
1123  wait_on_buffer(bh);
1124  if (buffer_uptodate(bh))
1125  return bh;
1126 
1127  brelse(bh);
1128  *err = -EIO;
1129  return NULL;
1130 }
1131 
1132 int udf_setsize(struct inode *inode, loff_t newsize)
1133 {
1134  int err;
1135  struct udf_inode_info *iinfo;
1136  int bsize = 1 << inode->i_blkbits;
1137 
1138  if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1139  S_ISLNK(inode->i_mode)))
1140  return -EINVAL;
1141  if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1142  return -EPERM;
1143 
1144  iinfo = UDF_I(inode);
1145  if (newsize > inode->i_size) {
1146  down_write(&iinfo->i_data_sem);
1147  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1148  if (bsize <
1149  (udf_file_entry_alloc_offset(inode) + newsize)) {
1150  err = udf_expand_file_adinicb(inode);
1151  if (err)
1152  return err;
1153  down_write(&iinfo->i_data_sem);
1154  } else {
1155  iinfo->i_lenAlloc = newsize;
1156  goto set_size;
1157  }
1158  }
1159  err = udf_extend_file(inode, newsize);
1160  if (err) {
1161  up_write(&iinfo->i_data_sem);
1162  return err;
1163  }
1164 set_size:
1165  truncate_setsize(inode, newsize);
1166  up_write(&iinfo->i_data_sem);
1167  } else {
1168  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1169  down_write(&iinfo->i_data_sem);
1170  memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1171  0x00, bsize - newsize -
1172  udf_file_entry_alloc_offset(inode));
1173  iinfo->i_lenAlloc = newsize;
1174  truncate_setsize(inode, newsize);
1175  up_write(&iinfo->i_data_sem);
1176  goto update_time;
1177  }
1178  err = block_truncate_page(inode->i_mapping, newsize,
1179  udf_get_block);
1180  if (err)
1181  return err;
1182  down_write(&iinfo->i_data_sem);
1183  truncate_setsize(inode, newsize);
1184  udf_truncate_extents(inode);
1185  up_write(&iinfo->i_data_sem);
1186  }
1187 update_time:
1188  inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1189  if (IS_SYNC(inode))
1190  udf_sync_inode(inode);
1191  else
1192  mark_inode_dirty(inode);
1193  return 0;
1194 }
1195 
1196 static void __udf_read_inode(struct inode *inode)
1197 {
1198  struct buffer_head *bh = NULL;
1199  struct fileEntry *fe;
1200  uint16_t ident;
1201  struct udf_inode_info *iinfo = UDF_I(inode);
1202 
1203  /*
1204  * Set defaults, but the inode is still incomplete!
1205  * Note: get_new_inode() sets the following on a new inode:
1206  * i_sb = sb
1207  * i_no = ino
1208  * i_flags = sb->s_flags
1209  * i_state = 0
1210  * clean_inode(): zero fills and sets
1211  * i_count = 1
1212  * i_nlink = 1
1213  * i_op = NULL;
1214  */
1215  bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1216  if (!bh) {
1217  udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1218  make_bad_inode(inode);
1219  return;
1220  }
1221 
1222  if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1223  ident != TAG_IDENT_USE) {
1224  udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1225  inode->i_ino, ident);
1226  brelse(bh);
1227  make_bad_inode(inode);
1228  return;
1229  }
1230 
1231  fe = (struct fileEntry *)bh->b_data;
1232 
1233  if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1234  struct buffer_head *ibh;
1235 
1236  ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1237  &ident);
1238  if (ident == TAG_IDENT_IE && ibh) {
1239  struct buffer_head *nbh = NULL;
1240  struct kernel_lb_addr loc;
1241  struct indirectEntry *ie;
1242 
1243  ie = (struct indirectEntry *)ibh->b_data;
1244  loc = lelb_to_cpu(ie->indirectICB.extLocation);
1245 
1246  if (ie->indirectICB.extLength &&
1247  (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1248  &ident))) {
1249  if (ident == TAG_IDENT_FE ||
1250  ident == TAG_IDENT_EFE) {
1251  memcpy(&iinfo->i_location,
1252  &loc,
1253  sizeof(struct kernel_lb_addr));
1254  brelse(bh);
1255  brelse(ibh);
1256  brelse(nbh);
1257  __udf_read_inode(inode);
1258  return;
1259  }
1260  brelse(nbh);
1261  }
1262  }
1263  brelse(ibh);
1264  } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1265  udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1266  le16_to_cpu(fe->icbTag.strategyType));
1267  brelse(bh);
1268  make_bad_inode(inode);
1269  return;
1270  }
1271  udf_fill_inode(inode, bh);
1272 
1273  brelse(bh);
1274 }
1275 
1276 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1277 {
1278  struct fileEntry *fe;
1279  struct extendedFileEntry *efe;
1280  struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1281  struct udf_inode_info *iinfo = UDF_I(inode);
1282  unsigned int link_count;
1283 
1284  fe = (struct fileEntry *)bh->b_data;
1285  efe = (struct extendedFileEntry *)bh->b_data;
1286 
1287  if (fe->icbTag.strategyType == cpu_to_le16(4))
1288  iinfo->i_strat4096 = 0;
1289  else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1290  iinfo->i_strat4096 = 1;
1291 
1292  iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1294  iinfo->i_unique = 0;
1295  iinfo->i_lenEAttr = 0;
1296  iinfo->i_lenExtents = 0;
1297  iinfo->i_lenAlloc = 0;
1298  iinfo->i_next_alloc_block = 0;
1299  iinfo->i_next_alloc_goal = 0;
1300  if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1301  iinfo->i_efe = 1;
1302  iinfo->i_use = 0;
1303  if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1304  sizeof(struct extendedFileEntry))) {
1305  make_bad_inode(inode);
1306  return;
1307  }
1308  memcpy(iinfo->i_ext.i_data,
1309  bh->b_data + sizeof(struct extendedFileEntry),
1310  inode->i_sb->s_blocksize -
1311  sizeof(struct extendedFileEntry));
1312  } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1313  iinfo->i_efe = 0;
1314  iinfo->i_use = 0;
1315  if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1316  sizeof(struct fileEntry))) {
1317  make_bad_inode(inode);
1318  return;
1319  }
1320  memcpy(iinfo->i_ext.i_data,
1321  bh->b_data + sizeof(struct fileEntry),
1322  inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1323  } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1324  iinfo->i_efe = 0;
1325  iinfo->i_use = 1;
1326  iinfo->i_lenAlloc = le32_to_cpu(
1327  ((struct unallocSpaceEntry *)bh->b_data)->
1329  if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1330  sizeof(struct unallocSpaceEntry))) {
1331  make_bad_inode(inode);
1332  return;
1333  }
1334  memcpy(iinfo->i_ext.i_data,
1335  bh->b_data + sizeof(struct unallocSpaceEntry),
1336  inode->i_sb->s_blocksize -
1337  sizeof(struct unallocSpaceEntry));
1338  return;
1339  }
1340 
1341  read_lock(&sbi->s_cred_lock);
1342  i_uid_write(inode, le32_to_cpu(fe->uid));
1343  if (!uid_valid(inode->i_uid) ||
1344  UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1345  UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1346  inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1347 
1348  i_gid_write(inode, le32_to_cpu(fe->gid));
1349  if (!gid_valid(inode->i_gid) ||
1350  UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1351  UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1352  inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1353 
1354  if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1355  sbi->s_fmode != UDF_INVALID_MODE)
1356  inode->i_mode = sbi->s_fmode;
1357  else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1358  sbi->s_dmode != UDF_INVALID_MODE)
1359  inode->i_mode = sbi->s_dmode;
1360  else
1361  inode->i_mode = udf_convert_permissions(fe);
1362  inode->i_mode &= ~sbi->s_umask;
1363  read_unlock(&sbi->s_cred_lock);
1364 
1365  link_count = le16_to_cpu(fe->fileLinkCount);
1366  if (!link_count)
1367  link_count = 1;
1368  set_nlink(inode, link_count);
1369 
1370  inode->i_size = le64_to_cpu(fe->informationLength);
1371  iinfo->i_lenExtents = inode->i_size;
1372 
1373  if (iinfo->i_efe == 0) {
1374  inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1375  (inode->i_sb->s_blocksize_bits - 9);
1376 
1377  if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1378  inode->i_atime = sbi->s_record_time;
1379 
1380  if (!udf_disk_stamp_to_time(&inode->i_mtime,
1381  fe->modificationTime))
1382  inode->i_mtime = sbi->s_record_time;
1383 
1384  if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1385  inode->i_ctime = sbi->s_record_time;
1386 
1387  iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1389  iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1390  iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1391  } else {
1392  inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1393  (inode->i_sb->s_blocksize_bits - 9);
1394 
1395  if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1396  inode->i_atime = sbi->s_record_time;
1397 
1398  if (!udf_disk_stamp_to_time(&inode->i_mtime,
1399  efe->modificationTime))
1400  inode->i_mtime = sbi->s_record_time;
1401 
1402  if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1403  iinfo->i_crtime = sbi->s_record_time;
1404 
1405  if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1406  inode->i_ctime = sbi->s_record_time;
1407 
1408  iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1409  iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1410  iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1411  iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1412  }
1413 
1414  switch (fe->icbTag.fileType) {
1416  inode->i_op = &udf_dir_inode_operations;
1417  inode->i_fop = &udf_dir_operations;
1418  inode->i_mode |= S_IFDIR;
1419  inc_nlink(inode);
1420  break;
1425  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1426  inode->i_data.a_ops = &udf_adinicb_aops;
1427  else
1428  inode->i_data.a_ops = &udf_aops;
1429  inode->i_op = &udf_file_inode_operations;
1430  inode->i_fop = &udf_file_operations;
1431  inode->i_mode |= S_IFREG;
1432  break;
1434  inode->i_mode |= S_IFBLK;
1435  break;
1436  case ICBTAG_FILE_TYPE_CHAR:
1437  inode->i_mode |= S_IFCHR;
1438  break;
1439  case ICBTAG_FILE_TYPE_FIFO:
1440  init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1441  break;
1443  init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1444  break;
1446  inode->i_data.a_ops = &udf_symlink_aops;
1448  inode->i_mode = S_IFLNK | S_IRWXUGO;
1449  break;
1450  case ICBTAG_FILE_TYPE_MAIN:
1451  udf_debug("METADATA FILE-----\n");
1452  break;
1454  udf_debug("METADATA MIRROR FILE-----\n");
1455  break;
1457  udf_debug("METADATA BITMAP FILE-----\n");
1458  break;
1459  default:
1460  udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1461  inode->i_ino, fe->icbTag.fileType);
1462  make_bad_inode(inode);
1463  return;
1464  }
1465  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1466  struct deviceSpec *dsea =
1467  (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1468  if (dsea) {
1469  init_special_inode(inode, inode->i_mode,
1471  le32_to_cpu(dsea->minorDeviceIdent)));
1472  /* Developer ID ??? */
1473  } else
1474  make_bad_inode(inode);
1475  }
1476 }
1477 
1478 static int udf_alloc_i_data(struct inode *inode, size_t size)
1479 {
1480  struct udf_inode_info *iinfo = UDF_I(inode);
1481  iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1482 
1483  if (!iinfo->i_ext.i_data) {
1484  udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1485  inode->i_ino);
1486  return -ENOMEM;
1487  }
1488 
1489  return 0;
1490 }
1491 
1492 static umode_t udf_convert_permissions(struct fileEntry *fe)
1493 {
1494  umode_t mode;
1496  uint32_t flags;
1497 
1498  permissions = le32_to_cpu(fe->permissions);
1499  flags = le16_to_cpu(fe->icbTag.flags);
1500 
1501  mode = ((permissions) & S_IRWXO) |
1502  ((permissions >> 2) & S_IRWXG) |
1503  ((permissions >> 4) & S_IRWXU) |
1504  ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1505  ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1506  ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1507 
1508  return mode;
1509 }
1510 
1511 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1512 {
1513  return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1514 }
1515 
1516 static int udf_sync_inode(struct inode *inode)
1517 {
1518  return udf_update_inode(inode, 1);
1519 }
1520 
1521 static int udf_update_inode(struct inode *inode, int do_sync)
1522 {
1523  struct buffer_head *bh = NULL;
1524  struct fileEntry *fe;
1525  struct extendedFileEntry *efe;
1526  uint64_t lb_recorded;
1527  uint32_t udfperms;
1528  uint16_t icbflags;
1529  uint16_t crclen;
1530  int err = 0;
1531  struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1532  unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1533  struct udf_inode_info *iinfo = UDF_I(inode);
1534 
1535  bh = udf_tgetblk(inode->i_sb,
1536  udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1537  if (!bh) {
1538  udf_debug("getblk failure\n");
1539  return -ENOMEM;
1540  }
1541 
1542  lock_buffer(bh);
1543  memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1544  fe = (struct fileEntry *)bh->b_data;
1545  efe = (struct extendedFileEntry *)bh->b_data;
1546 
1547  if (iinfo->i_use) {
1548  struct unallocSpaceEntry *use =
1549  (struct unallocSpaceEntry *)bh->b_data;
1550 
1551  use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1552  memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1553  iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1554  sizeof(struct unallocSpaceEntry));
1555  use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1556  use->descTag.tagLocation =
1557  cpu_to_le32(iinfo->i_location.logicalBlockNum);
1558  crclen = sizeof(struct unallocSpaceEntry) +
1559  iinfo->i_lenAlloc - sizeof(struct tag);
1560  use->descTag.descCRCLength = cpu_to_le16(crclen);
1561  use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1562  sizeof(struct tag),
1563  crclen));
1564  use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1565 
1566  goto out;
1567  }
1568 
1569  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1570  fe->uid = cpu_to_le32(-1);
1571  else
1572  fe->uid = cpu_to_le32(i_uid_read(inode));
1573 
1574  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1575  fe->gid = cpu_to_le32(-1);
1576  else
1577  fe->gid = cpu_to_le32(i_gid_read(inode));
1578 
1579  udfperms = ((inode->i_mode & S_IRWXO)) |
1580  ((inode->i_mode & S_IRWXG) << 2) |
1581  ((inode->i_mode & S_IRWXU) << 4);
1582 
1583  udfperms |= (le32_to_cpu(fe->permissions) &
1587  fe->permissions = cpu_to_le32(udfperms);
1588 
1589  if (S_ISDIR(inode->i_mode))
1590  fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1591  else
1592  fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1593 
1594  fe->informationLength = cpu_to_le64(inode->i_size);
1595 
1596  if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1597  struct regid *eid;
1598  struct deviceSpec *dsea =
1599  (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600  if (!dsea) {
1601  dsea = (struct deviceSpec *)
1602  udf_add_extendedattr(inode,
1603  sizeof(struct deviceSpec) +
1604  sizeof(struct regid), 12, 0x3);
1605  dsea->attrType = cpu_to_le32(12);
1606  dsea->attrSubtype = 1;
1607  dsea->attrLength = cpu_to_le32(
1608  sizeof(struct deviceSpec) +
1609  sizeof(struct regid));
1610  dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1611  }
1612  eid = (struct regid *)dsea->impUse;
1613  memset(eid, 0, sizeof(struct regid));
1614  strcpy(eid->ident, UDF_ID_DEVELOPER);
1615  eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1616  eid->identSuffix[1] = UDF_OS_ID_LINUX;
1617  dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1618  dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1619  }
1620 
1621  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1622  lb_recorded = 0; /* No extents => no blocks! */
1623  else
1624  lb_recorded =
1625  (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1626  (blocksize_bits - 9);
1627 
1628  if (iinfo->i_efe == 0) {
1629  memcpy(bh->b_data + sizeof(struct fileEntry),
1630  iinfo->i_ext.i_data,
1631  inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1632  fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1633 
1636  udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1637  memset(&(fe->impIdent), 0, sizeof(struct regid));
1638  strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1639  fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1640  fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1641  fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1643  fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1644  fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1645  fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1646  crclen = sizeof(struct fileEntry);
1647  } else {
1648  memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1649  iinfo->i_ext.i_data,
1650  inode->i_sb->s_blocksize -
1651  sizeof(struct extendedFileEntry));
1652  efe->objectSize = cpu_to_le64(inode->i_size);
1653  efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1654 
1655  if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1656  (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1657  iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1658  iinfo->i_crtime = inode->i_atime;
1659 
1660  if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1661  (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1662  iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1663  iinfo->i_crtime = inode->i_mtime;
1664 
1665  if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1666  (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1667  iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1668  iinfo->i_crtime = inode->i_ctime;
1669 
1670  udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1673  udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1674 
1675  memset(&(efe->impIdent), 0, sizeof(struct regid));
1676  strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1677  efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1678  efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1679  efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1680  efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1681  efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1682  efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1683  efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1684  crclen = sizeof(struct extendedFileEntry);
1685  }
1686  if (iinfo->i_strat4096) {
1687  fe->icbTag.strategyType = cpu_to_le16(4096);
1688  fe->icbTag.strategyParameter = cpu_to_le16(1);
1689  fe->icbTag.numEntries = cpu_to_le16(2);
1690  } else {
1691  fe->icbTag.strategyType = cpu_to_le16(4);
1692  fe->icbTag.numEntries = cpu_to_le16(1);
1693  }
1694 
1695  if (S_ISDIR(inode->i_mode))
1696  fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1697  else if (S_ISREG(inode->i_mode))
1698  fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1699  else if (S_ISLNK(inode->i_mode))
1700  fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1701  else if (S_ISBLK(inode->i_mode))
1702  fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1703  else if (S_ISCHR(inode->i_mode))
1704  fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1705  else if (S_ISFIFO(inode->i_mode))
1706  fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1707  else if (S_ISSOCK(inode->i_mode))
1708  fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1709 
1710  icbflags = iinfo->i_alloc_type |
1711  ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1712  ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1713  ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1714  (le16_to_cpu(fe->icbTag.flags) &
1716  ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1717 
1718  fe->icbTag.flags = cpu_to_le16(icbflags);
1719  if (sbi->s_udfrev >= 0x0200)
1720  fe->descTag.descVersion = cpu_to_le16(3);
1721  else
1722  fe->descTag.descVersion = cpu_to_le16(2);
1723  fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1724  fe->descTag.tagLocation = cpu_to_le32(
1725  iinfo->i_location.logicalBlockNum);
1726  crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1727  fe->descTag.descCRCLength = cpu_to_le16(crclen);
1728  fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1729  crclen));
1730  fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1731 
1732 out:
1733  set_buffer_uptodate(bh);
1734  unlock_buffer(bh);
1735 
1736  /* write the data blocks */
1737  mark_buffer_dirty(bh);
1738  if (do_sync) {
1739  sync_dirty_buffer(bh);
1740  if (buffer_write_io_error(bh)) {
1741  udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1742  inode->i_ino);
1743  err = -EIO;
1744  }
1745  }
1746  brelse(bh);
1747 
1748  return err;
1749 }
1750 
1751 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1752 {
1753  unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1754  struct inode *inode = iget_locked(sb, block);
1755 
1756  if (!inode)
1757  return NULL;
1758 
1759  if (inode->i_state & I_NEW) {
1760  memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1761  __udf_read_inode(inode);
1762  unlock_new_inode(inode);
1763  }
1764 
1765  if (is_bad_inode(inode))
1766  goto out_iput;
1767 
1768  if (ino->logicalBlockNum >= UDF_SB(sb)->
1769  s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1770  udf_debug("block=%d, partition=%d out of range\n",
1772  make_bad_inode(inode);
1773  goto out_iput;
1774  }
1775 
1776  return inode;
1777 
1778  out_iput:
1779  iput(inode);
1780  return NULL;
1781 }
1782 
1783 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1784  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1785 {
1786  int adsize;
1787  struct short_ad *sad = NULL;
1788  struct long_ad *lad = NULL;
1789  struct allocExtDesc *aed;
1790  uint8_t *ptr;
1791  struct udf_inode_info *iinfo = UDF_I(inode);
1792 
1793  if (!epos->bh)
1794  ptr = iinfo->i_ext.i_data + epos->offset -
1795  udf_file_entry_alloc_offset(inode) +
1796  iinfo->i_lenEAttr;
1797  else
1798  ptr = epos->bh->b_data + epos->offset;
1799 
1800  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1801  adsize = sizeof(struct short_ad);
1802  else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1803  adsize = sizeof(struct long_ad);
1804  else
1805  return -EIO;
1806 
1807  if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1808  unsigned char *sptr, *dptr;
1809  struct buffer_head *nbh;
1810  int err, loffset;
1811  struct kernel_lb_addr obloc = epos->block;
1812 
1813  epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1814  obloc.partitionReferenceNum,
1815  obloc.logicalBlockNum, &err);
1816  if (!epos->block.logicalBlockNum)
1817  return -ENOSPC;
1818  nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1819  &epos->block,
1820  0));
1821  if (!nbh)
1822  return -EIO;
1823  lock_buffer(nbh);
1824  memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1825  set_buffer_uptodate(nbh);
1826  unlock_buffer(nbh);
1827  mark_buffer_dirty_inode(nbh, inode);
1828 
1829  aed = (struct allocExtDesc *)(nbh->b_data);
1830  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1833  if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1834  loffset = epos->offset;
1835  aed->lengthAllocDescs = cpu_to_le32(adsize);
1836  sptr = ptr - adsize;
1837  dptr = nbh->b_data + sizeof(struct allocExtDesc);
1838  memcpy(dptr, sptr, adsize);
1839  epos->offset = sizeof(struct allocExtDesc) + adsize;
1840  } else {
1841  loffset = epos->offset + adsize;
1842  aed->lengthAllocDescs = cpu_to_le32(0);
1843  sptr = ptr;
1844  epos->offset = sizeof(struct allocExtDesc);
1845 
1846  if (epos->bh) {
1847  aed = (struct allocExtDesc *)epos->bh->b_data;
1848  le32_add_cpu(&aed->lengthAllocDescs, adsize);
1849  } else {
1850  iinfo->i_lenAlloc += adsize;
1851  mark_inode_dirty(inode);
1852  }
1853  }
1854  if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1855  udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1856  epos->block.logicalBlockNum, sizeof(struct tag));
1857  else
1858  udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1859  epos->block.logicalBlockNum, sizeof(struct tag));
1860  switch (iinfo->i_alloc_type) {
1861  case ICBTAG_FLAG_AD_SHORT:
1862  sad = (struct short_ad *)sptr;
1864  inode->i_sb->s_blocksize);
1865  sad->extPosition =
1866  cpu_to_le32(epos->block.logicalBlockNum);
1867  break;
1868  case ICBTAG_FLAG_AD_LONG:
1869  lad = (struct long_ad *)sptr;
1871  inode->i_sb->s_blocksize);
1872  lad->extLocation = cpu_to_lelb(epos->block);
1873  memset(lad->impUse, 0x00, sizeof(lad->impUse));
1874  break;
1875  }
1876  if (epos->bh) {
1877  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1878  UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1879  udf_update_tag(epos->bh->b_data, loffset);
1880  else
1881  udf_update_tag(epos->bh->b_data,
1882  sizeof(struct allocExtDesc));
1883  mark_buffer_dirty_inode(epos->bh, inode);
1884  brelse(epos->bh);
1885  } else {
1886  mark_inode_dirty(inode);
1887  }
1888  epos->bh = nbh;
1889  }
1890 
1891  udf_write_aext(inode, epos, eloc, elen, inc);
1892 
1893  if (!epos->bh) {
1894  iinfo->i_lenAlloc += adsize;
1895  mark_inode_dirty(inode);
1896  } else {
1897  aed = (struct allocExtDesc *)epos->bh->b_data;
1898  le32_add_cpu(&aed->lengthAllocDescs, adsize);
1899  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900  UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1901  udf_update_tag(epos->bh->b_data,
1902  epos->offset + (inc ? 0 : adsize));
1903  else
1904  udf_update_tag(epos->bh->b_data,
1905  sizeof(struct allocExtDesc));
1906  mark_buffer_dirty_inode(epos->bh, inode);
1907  }
1908 
1909  return 0;
1910 }
1911 
1912 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1913  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1914 {
1915  int adsize;
1916  uint8_t *ptr;
1917  struct short_ad *sad;
1918  struct long_ad *lad;
1919  struct udf_inode_info *iinfo = UDF_I(inode);
1920 
1921  if (!epos->bh)
1922  ptr = iinfo->i_ext.i_data + epos->offset -
1923  udf_file_entry_alloc_offset(inode) +
1924  iinfo->i_lenEAttr;
1925  else
1926  ptr = epos->bh->b_data + epos->offset;
1927 
1928  switch (iinfo->i_alloc_type) {
1929  case ICBTAG_FLAG_AD_SHORT:
1930  sad = (struct short_ad *)ptr;
1931  sad->extLength = cpu_to_le32(elen);
1932  sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1933  adsize = sizeof(struct short_ad);
1934  break;
1935  case ICBTAG_FLAG_AD_LONG:
1936  lad = (struct long_ad *)ptr;
1937  lad->extLength = cpu_to_le32(elen);
1938  lad->extLocation = cpu_to_lelb(*eloc);
1939  memset(lad->impUse, 0x00, sizeof(lad->impUse));
1940  adsize = sizeof(struct long_ad);
1941  break;
1942  default:
1943  return;
1944  }
1945 
1946  if (epos->bh) {
1947  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1948  UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1949  struct allocExtDesc *aed =
1950  (struct allocExtDesc *)epos->bh->b_data;
1951  udf_update_tag(epos->bh->b_data,
1953  sizeof(struct allocExtDesc));
1954  }
1955  mark_buffer_dirty_inode(epos->bh, inode);
1956  } else {
1957  mark_inode_dirty(inode);
1958  }
1959 
1960  if (inc)
1961  epos->offset += adsize;
1962 }
1963 
1964 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1965  struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1966 {
1967  int8_t etype;
1968 
1969  while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1970  (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1971  int block;
1972  epos->block = *eloc;
1973  epos->offset = sizeof(struct allocExtDesc);
1974  brelse(epos->bh);
1975  block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1976  epos->bh = udf_tread(inode->i_sb, block);
1977  if (!epos->bh) {
1978  udf_debug("reading block %d failed!\n", block);
1979  return -1;
1980  }
1981  }
1982 
1983  return etype;
1984 }
1985 
1986 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1987  struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1988 {
1989  int alen;
1990  int8_t etype;
1991  uint8_t *ptr;
1992  struct short_ad *sad;
1993  struct long_ad *lad;
1994  struct udf_inode_info *iinfo = UDF_I(inode);
1995 
1996  if (!epos->bh) {
1997  if (!epos->offset)
1998  epos->offset = udf_file_entry_alloc_offset(inode);
1999  ptr = iinfo->i_ext.i_data + epos->offset -
2000  udf_file_entry_alloc_offset(inode) +
2001  iinfo->i_lenEAttr;
2002  alen = udf_file_entry_alloc_offset(inode) +
2003  iinfo->i_lenAlloc;
2004  } else {
2005  if (!epos->offset)
2006  epos->offset = sizeof(struct allocExtDesc);
2007  ptr = epos->bh->b_data + epos->offset;
2008  alen = sizeof(struct allocExtDesc) +
2009  le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2011  }
2012 
2013  switch (iinfo->i_alloc_type) {
2014  case ICBTAG_FLAG_AD_SHORT:
2015  sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2016  if (!sad)
2017  return -1;
2018  etype = le32_to_cpu(sad->extLength) >> 30;
2019  eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2020  eloc->partitionReferenceNum =
2021  iinfo->i_location.partitionReferenceNum;
2023  break;
2024  case ICBTAG_FLAG_AD_LONG:
2025  lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2026  if (!lad)
2027  return -1;
2028  etype = le32_to_cpu(lad->extLength) >> 30;
2029  *eloc = lelb_to_cpu(lad->extLocation);
2031  break;
2032  default:
2033  udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2034  return -1;
2035  }
2036 
2037  return etype;
2038 }
2039 
2040 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2041  struct kernel_lb_addr neloc, uint32_t nelen)
2042 {
2043  struct kernel_lb_addr oeloc;
2044  uint32_t oelen;
2045  int8_t etype;
2046 
2047  if (epos.bh)
2048  get_bh(epos.bh);
2049 
2050  while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2051  udf_write_aext(inode, &epos, &neloc, nelen, 1);
2052  neloc = oeloc;
2053  nelen = (etype << 30) | oelen;
2054  }
2055  udf_add_aext(inode, &epos, &neloc, nelen, 1);
2056  brelse(epos.bh);
2057 
2058  return (nelen >> 30);
2059 }
2060 
2061 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2062  struct kernel_lb_addr eloc, uint32_t elen)
2063 {
2064  struct extent_position oepos;
2065  int adsize;
2066  int8_t etype;
2067  struct allocExtDesc *aed;
2068  struct udf_inode_info *iinfo;
2069 
2070  if (epos.bh) {
2071  get_bh(epos.bh);
2072  get_bh(epos.bh);
2073  }
2074 
2075  iinfo = UDF_I(inode);
2076  if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2077  adsize = sizeof(struct short_ad);
2078  else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2079  adsize = sizeof(struct long_ad);
2080  else
2081  adsize = 0;
2082 
2083  oepos = epos;
2084  if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2085  return -1;
2086 
2087  while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2088  udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2089  if (oepos.bh != epos.bh) {
2090  oepos.block = epos.block;
2091  brelse(oepos.bh);
2092  get_bh(epos.bh);
2093  oepos.bh = epos.bh;
2094  oepos.offset = epos.offset - adsize;
2095  }
2096  }
2097  memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2098  elen = 0;
2099 
2100  if (epos.bh != oepos.bh) {
2101  udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2102  udf_write_aext(inode, &oepos, &eloc, elen, 1);
2103  udf_write_aext(inode, &oepos, &eloc, elen, 1);
2104  if (!oepos.bh) {
2105  iinfo->i_lenAlloc -= (adsize * 2);
2106  mark_inode_dirty(inode);
2107  } else {
2108  aed = (struct allocExtDesc *)oepos.bh->b_data;
2109  le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2110  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2111  UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2112  udf_update_tag(oepos.bh->b_data,
2113  oepos.offset - (2 * adsize));
2114  else
2115  udf_update_tag(oepos.bh->b_data,
2116  sizeof(struct allocExtDesc));
2117  mark_buffer_dirty_inode(oepos.bh, inode);
2118  }
2119  } else {
2120  udf_write_aext(inode, &oepos, &eloc, elen, 1);
2121  if (!oepos.bh) {
2122  iinfo->i_lenAlloc -= adsize;
2123  mark_inode_dirty(inode);
2124  } else {
2125  aed = (struct allocExtDesc *)oepos.bh->b_data;
2126  le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2127  if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2128  UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2129  udf_update_tag(oepos.bh->b_data,
2130  epos.offset - adsize);
2131  else
2132  udf_update_tag(oepos.bh->b_data,
2133  sizeof(struct allocExtDesc));
2134  mark_buffer_dirty_inode(oepos.bh, inode);
2135  }
2136  }
2137 
2138  brelse(epos.bh);
2139  brelse(oepos.bh);
2140 
2141  return (elen >> 30);
2142 }
2143 
2144 int8_t inode_bmap(struct inode *inode, sector_t block,
2145  struct extent_position *pos, struct kernel_lb_addr *eloc,
2146  uint32_t *elen, sector_t *offset)
2147 {
2148  unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2149  loff_t lbcount = 0, bcount =
2150  (loff_t) block << blocksize_bits;
2151  int8_t etype;
2152  struct udf_inode_info *iinfo;
2153 
2154  iinfo = UDF_I(inode);
2155  pos->offset = 0;
2156  pos->block = iinfo->i_location;
2157  pos->bh = NULL;
2158  *elen = 0;
2159 
2160  do {
2161  etype = udf_next_aext(inode, pos, eloc, elen, 1);
2162  if (etype == -1) {
2163  *offset = (bcount - lbcount) >> blocksize_bits;
2164  iinfo->i_lenExtents = lbcount;
2165  return -1;
2166  }
2167  lbcount += *elen;
2168  } while (lbcount <= bcount);
2169 
2170  *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2171 
2172  return etype;
2173 }
2174 
2175 long udf_block_map(struct inode *inode, sector_t block)
2176 {
2177  struct kernel_lb_addr eloc;
2178  uint32_t elen;
2179  sector_t offset;
2180  struct extent_position epos = {};
2181  int ret;
2182 
2183  down_read(&UDF_I(inode)->i_data_sem);
2184 
2185  if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2186  (EXT_RECORDED_ALLOCATED >> 30))
2187  ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2188  else
2189  ret = 0;
2190 
2191  up_read(&UDF_I(inode)->i_data_sem);
2192  brelse(epos.bh);
2193 
2194  if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2195  return udf_fixed_to_variable(ret);
2196  else
2197  return ret;
2198 }