Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hash_utils_64.c
Go to the documentation of this file.
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  * {mikejc|engebret}@us.ibm.com
4  *
5  * Copyright (c) 2000 Mike Corrigan <[email protected]>
6  *
7  * SMP scalability work:
8  * Copyright (C) 2001 Anton Blanchard <[email protected]>, IBM
9  *
10  * Module name: htab.c
11  *
12  * Description:
13  * PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/io.h>
48 #include <asm/eeh.h>
49 #include <asm/tlb.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/spu.h>
54 #include <asm/udbg.h>
55 #include <asm/code-patching.h>
56 #include <asm/fadump.h>
57 #include <asm/firmware.h>
58 
59 #ifdef DEBUG
60 #define DBG(fmt...) udbg_printf(fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64 
65 #ifdef DEBUG_LOW
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG_LOW(fmt...)
69 #endif
70 
71 #define KB (1024)
72 #define MB (1024*KB)
73 #define GB (1024L*MB)
74 
75 /*
76  * Note: pte --> Linux PTE
77  * HPTE --> PowerPC Hashed Page Table Entry
78  *
79  * Execution context:
80  * htab_initialize is called with the MMU off (of course), but
81  * the kernel has been copied down to zero so it can directly
82  * reference global data. At this point it is very difficult
83  * to print debug info.
84  *
85  */
86 
87 #ifdef CONFIG_U3_DART
88 extern unsigned long dart_tablebase;
89 #endif /* CONFIG_U3_DART */
90 
91 static unsigned long _SDR1;
92 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
93 
95 unsigned long htab_size_bytes;
96 unsigned long htab_hash_mask;
98 int mmu_linear_psize = MMU_PAGE_4K;
99 int mmu_virtual_psize = MMU_PAGE_4K;
100 int mmu_vmalloc_psize = MMU_PAGE_4K;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize = MMU_PAGE_4K;
103 #endif
104 int mmu_io_psize = MMU_PAGE_4K;
109 #ifdef CONFIG_PPC_64K_PAGES
111 #endif
112 #ifdef CONFIG_DEBUG_PAGEALLOC
113 static u8 *linear_map_hash_slots;
114 static unsigned long linear_map_hash_count;
115 static DEFINE_SPINLOCK(linear_map_hash_lock);
116 #endif /* CONFIG_DEBUG_PAGEALLOC */
117 
118 /* There are definitions of page sizes arrays to be used when none
119  * is provided by the firmware.
120  */
121 
122 /* Pre-POWER4 CPUs (4k pages only)
123  */
124 static struct mmu_psize_def mmu_psize_defaults_old[] = {
125  [MMU_PAGE_4K] = {
126  .shift = 12,
127  .sllp = 0,
128  .penc = 0,
129  .avpnm = 0,
130  .tlbiel = 0,
131  },
132 };
133 
134 /* POWER4, GPUL, POWER5
135  *
136  * Support for 16Mb large pages
137  */
138 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
139  [MMU_PAGE_4K] = {
140  .shift = 12,
141  .sllp = 0,
142  .penc = 0,
143  .avpnm = 0,
144  .tlbiel = 1,
145  },
146  [MMU_PAGE_16M] = {
147  .shift = 24,
148  .sllp = SLB_VSID_L,
149  .penc = 0,
150  .avpnm = 0x1UL,
151  .tlbiel = 0,
152  },
153 };
154 
155 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 {
157  unsigned long rflags = pteflags & 0x1fa;
158 
159  /* _PAGE_EXEC -> NOEXEC */
160  if ((pteflags & _PAGE_EXEC) == 0)
161  rflags |= HPTE_R_N;
162 
163  /* PP bits. PAGE_USER is already PP bit 0x2, so we only
164  * need to add in 0x1 if it's a read-only user page
165  */
166  if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
167  (pteflags & _PAGE_DIRTY)))
168  rflags |= 1;
169 
170  /* Always add C */
171  return rflags | HPTE_R_C;
172 }
173 
174 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
175  unsigned long pstart, unsigned long prot,
176  int psize, int ssize)
177 {
178  unsigned long vaddr, paddr;
179  unsigned int step, shift;
180  int ret = 0;
181 
182  shift = mmu_psize_defs[psize].shift;
183  step = 1 << shift;
184 
185  prot = htab_convert_pte_flags(prot);
186 
187  DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
188  vstart, vend, pstart, prot, psize, ssize);
189 
190  for (vaddr = vstart, paddr = pstart; vaddr < vend;
191  vaddr += step, paddr += step) {
192  unsigned long hash, hpteg;
193  unsigned long vsid = get_kernel_vsid(vaddr, ssize);
194  unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
195  unsigned long tprot = prot;
196 
197  /* Make kernel text executable */
198  if (overlaps_kernel_text(vaddr, vaddr + step))
199  tprot &= ~HPTE_R_N;
200 
201  hash = hpt_hash(vpn, shift, ssize);
202  hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203 
204  BUG_ON(!ppc_md.hpte_insert);
205  ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
206  HPTE_V_BOLTED, psize, ssize);
207 
208  if (ret < 0)
209  break;
210 #ifdef CONFIG_DEBUG_PAGEALLOC
211  if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
212  linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
213 #endif /* CONFIG_DEBUG_PAGEALLOC */
214  }
215  return ret < 0 ? ret : 0;
216 }
217 
218 #ifdef CONFIG_MEMORY_HOTPLUG
219 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
220  int psize, int ssize)
221 {
222  unsigned long vaddr;
223  unsigned int step, shift;
224 
225  shift = mmu_psize_defs[psize].shift;
226  step = 1 << shift;
227 
228  if (!ppc_md.hpte_removebolted) {
229  printk(KERN_WARNING "Platform doesn't implement "
230  "hpte_removebolted\n");
231  return -EINVAL;
232  }
233 
234  for (vaddr = vstart; vaddr < vend; vaddr += step)
235  ppc_md.hpte_removebolted(vaddr, psize, ssize);
236 
237  return 0;
238 }
239 #endif /* CONFIG_MEMORY_HOTPLUG */
240 
241 static int __init htab_dt_scan_seg_sizes(unsigned long node,
242  const char *uname, int depth,
243  void *data)
244 {
245  char *type = of_get_flat_dt_prop(node, "device_type", NULL);
246  u32 *prop;
247  unsigned long size = 0;
248 
249  /* We are scanning "cpu" nodes only */
250  if (type == NULL || strcmp(type, "cpu") != 0)
251  return 0;
252 
253  prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
254  &size);
255  if (prop == NULL)
256  return 0;
257  for (; size >= 4; size -= 4, ++prop) {
258  if (prop[0] == 40) {
259  DBG("1T segment support detected\n");
260  cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
261  return 1;
262  }
263  }
264  cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
265  return 0;
266 }
267 
268 static void __init htab_init_seg_sizes(void)
269 {
270  of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
271 }
272 
273 static int __init htab_dt_scan_page_sizes(unsigned long node,
274  const char *uname, int depth,
275  void *data)
276 {
277  char *type = of_get_flat_dt_prop(node, "device_type", NULL);
278  u32 *prop;
279  unsigned long size = 0;
280 
281  /* We are scanning "cpu" nodes only */
282  if (type == NULL || strcmp(type, "cpu") != 0)
283  return 0;
284 
285  prop = (u32 *)of_get_flat_dt_prop(node,
286  "ibm,segment-page-sizes", &size);
287  if (prop != NULL) {
288  DBG("Page sizes from device-tree:\n");
289  size /= 4;
290  cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
291  while(size > 0) {
292  unsigned int shift = prop[0];
293  unsigned int slbenc = prop[1];
294  unsigned int lpnum = prop[2];
295  unsigned int lpenc = 0;
296  struct mmu_psize_def *def;
297  int idx = -1;
298 
299  size -= 3; prop += 3;
300  while(size > 0 && lpnum) {
301  if (prop[0] == shift)
302  lpenc = prop[1];
303  prop += 2; size -= 2;
304  lpnum--;
305  }
306  switch(shift) {
307  case 0xc:
308  idx = MMU_PAGE_4K;
309  break;
310  case 0x10:
311  idx = MMU_PAGE_64K;
312  break;
313  case 0x14:
314  idx = MMU_PAGE_1M;
315  break;
316  case 0x18:
317  idx = MMU_PAGE_16M;
318  cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
319  break;
320  case 0x22:
321  idx = MMU_PAGE_16G;
322  break;
323  }
324  if (idx < 0)
325  continue;
326  def = &mmu_psize_defs[idx];
327  def->shift = shift;
328  if (shift <= 23)
329  def->avpnm = 0;
330  else
331  def->avpnm = (1 << (shift - 23)) - 1;
332  def->sllp = slbenc;
333  def->penc = lpenc;
334  /* We don't know for sure what's up with tlbiel, so
335  * for now we only set it for 4K and 64K pages
336  */
337  if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
338  def->tlbiel = 1;
339  else
340  def->tlbiel = 0;
341 
342  DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
343  "tlbiel=%d, penc=%d\n",
344  idx, shift, def->sllp, def->avpnm, def->tlbiel,
345  def->penc);
346  }
347  return 1;
348  }
349  return 0;
350 }
351 
352 #ifdef CONFIG_HUGETLB_PAGE
353 /* Scan for 16G memory blocks that have been set aside for huge pages
354  * and reserve those blocks for 16G huge pages.
355  */
356 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
357  const char *uname, int depth,
358  void *data) {
359  char *type = of_get_flat_dt_prop(node, "device_type", NULL);
360  unsigned long *addr_prop;
361  u32 *page_count_prop;
362  unsigned int expected_pages;
363  long unsigned int phys_addr;
364  long unsigned int block_size;
365 
366  /* We are scanning "memory" nodes only */
367  if (type == NULL || strcmp(type, "memory") != 0)
368  return 0;
369 
370  /* This property is the log base 2 of the number of virtual pages that
371  * will represent this memory block. */
372  page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
373  if (page_count_prop == NULL)
374  return 0;
375  expected_pages = (1 << page_count_prop[0]);
376  addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
377  if (addr_prop == NULL)
378  return 0;
379  phys_addr = addr_prop[0];
380  block_size = addr_prop[1];
381  if (block_size != (16 * GB))
382  return 0;
383  printk(KERN_INFO "Huge page(16GB) memory: "
384  "addr = 0x%lX size = 0x%lX pages = %d\n",
385  phys_addr, block_size, expected_pages);
386  if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
387  memblock_reserve(phys_addr, block_size * expected_pages);
388  add_gpage(phys_addr, block_size, expected_pages);
389  }
390  return 0;
391 }
392 #endif /* CONFIG_HUGETLB_PAGE */
393 
394 static void __init htab_init_page_sizes(void)
395 {
396  int rc;
397 
398  /* Default to 4K pages only */
399  memcpy(mmu_psize_defs, mmu_psize_defaults_old,
400  sizeof(mmu_psize_defaults_old));
401 
402  /*
403  * Try to find the available page sizes in the device-tree
404  */
405  rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
406  if (rc != 0) /* Found */
407  goto found;
408 
409  /*
410  * Not in the device-tree, let's fallback on known size
411  * list for 16M capable GP & GR
412  */
413  if (mmu_has_feature(MMU_FTR_16M_PAGE))
414  memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
415  sizeof(mmu_psize_defaults_gp));
416  found:
417 #ifndef CONFIG_DEBUG_PAGEALLOC
418  /*
419  * Pick a size for the linear mapping. Currently, we only support
420  * 16M, 1M and 4K which is the default
421  */
422  if (mmu_psize_defs[MMU_PAGE_16M].shift)
423  mmu_linear_psize = MMU_PAGE_16M;
424  else if (mmu_psize_defs[MMU_PAGE_1M].shift)
425  mmu_linear_psize = MMU_PAGE_1M;
426 #endif /* CONFIG_DEBUG_PAGEALLOC */
427 
428 #ifdef CONFIG_PPC_64K_PAGES
429  /*
430  * Pick a size for the ordinary pages. Default is 4K, we support
431  * 64K for user mappings and vmalloc if supported by the processor.
432  * We only use 64k for ioremap if the processor
433  * (and firmware) support cache-inhibited large pages.
434  * If not, we use 4k and set mmu_ci_restrictions so that
435  * hash_page knows to switch processes that use cache-inhibited
436  * mappings to 4k pages.
437  */
438  if (mmu_psize_defs[MMU_PAGE_64K].shift) {
439  mmu_virtual_psize = MMU_PAGE_64K;
440  mmu_vmalloc_psize = MMU_PAGE_64K;
441  if (mmu_linear_psize == MMU_PAGE_4K)
442  mmu_linear_psize = MMU_PAGE_64K;
443  if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
444  /*
445  * Don't use 64k pages for ioremap on pSeries, since
446  * that would stop us accessing the HEA ethernet.
447  */
448  if (!machine_is(pseries))
449  mmu_io_psize = MMU_PAGE_64K;
450  } else
452  }
453 #endif /* CONFIG_PPC_64K_PAGES */
454 
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456  /* We try to use 16M pages for vmemmap if that is supported
457  * and we have at least 1G of RAM at boot
458  */
459  if (mmu_psize_defs[MMU_PAGE_16M].shift &&
460  memblock_phys_mem_size() >= 0x40000000)
461  mmu_vmemmap_psize = MMU_PAGE_16M;
462  else if (mmu_psize_defs[MMU_PAGE_64K].shift)
463  mmu_vmemmap_psize = MMU_PAGE_64K;
464  else
465  mmu_vmemmap_psize = MMU_PAGE_4K;
466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
467 
468  printk(KERN_DEBUG "Page orders: linear mapping = %d, "
469  "virtual = %d, io = %d"
470 #ifdef CONFIG_SPARSEMEM_VMEMMAP
471  ", vmemmap = %d"
472 #endif
473  "\n",
477 #ifdef CONFIG_SPARSEMEM_VMEMMAP
478  ,mmu_psize_defs[mmu_vmemmap_psize].shift
479 #endif
480  );
481 
482 #ifdef CONFIG_HUGETLB_PAGE
483  /* Reserve 16G huge page memory sections for huge pages */
484  of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
485 #endif /* CONFIG_HUGETLB_PAGE */
486 }
487 
488 static int __init htab_dt_scan_pftsize(unsigned long node,
489  const char *uname, int depth,
490  void *data)
491 {
492  char *type = of_get_flat_dt_prop(node, "device_type", NULL);
493  u32 *prop;
494 
495  /* We are scanning "cpu" nodes only */
496  if (type == NULL || strcmp(type, "cpu") != 0)
497  return 0;
498 
499  prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
500  if (prop != NULL) {
501  /* pft_size[0] is the NUMA CEC cookie */
502  ppc64_pft_size = prop[1];
503  return 1;
504  }
505  return 0;
506 }
507 
508 static unsigned long __init htab_get_table_size(void)
509 {
510  unsigned long mem_size, rnd_mem_size, pteg_count, psize;
511 
512  /* If hash size isn't already provided by the platform, we try to
513  * retrieve it from the device-tree. If it's not there neither, we
514  * calculate it now based on the total RAM size
515  */
516  if (ppc64_pft_size == 0)
517  of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
518  if (ppc64_pft_size)
519  return 1UL << ppc64_pft_size;
520 
521  /* round mem_size up to next power of 2 */
522  mem_size = memblock_phys_mem_size();
523  rnd_mem_size = 1UL << __ilog2(mem_size);
524  if (rnd_mem_size < mem_size)
525  rnd_mem_size <<= 1;
526 
527  /* # pages / 2 */
528  psize = mmu_psize_defs[mmu_virtual_psize].shift;
529  pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
530 
531  return pteg_count << 7;
532 }
533 
534 #ifdef CONFIG_MEMORY_HOTPLUG
535 int create_section_mapping(unsigned long start, unsigned long end)
536 {
537  return htab_bolt_mapping(start, end, __pa(start),
538  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
540 }
541 
542 int remove_section_mapping(unsigned long start, unsigned long end)
543 {
544  return htab_remove_mapping(start, end, mmu_linear_psize,
546 }
547 #endif /* CONFIG_MEMORY_HOTPLUG */
548 
549 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
550 
551 static void __init htab_finish_init(void)
552 {
553  extern unsigned int *htab_call_hpte_insert1;
554  extern unsigned int *htab_call_hpte_insert2;
555  extern unsigned int *htab_call_hpte_remove;
556  extern unsigned int *htab_call_hpte_updatepp;
557 
558 #ifdef CONFIG_PPC_HAS_HASH_64K
559  extern unsigned int *ht64_call_hpte_insert1;
560  extern unsigned int *ht64_call_hpte_insert2;
561  extern unsigned int *ht64_call_hpte_remove;
562  extern unsigned int *ht64_call_hpte_updatepp;
563 
564  patch_branch(ht64_call_hpte_insert1,
565  FUNCTION_TEXT(ppc_md.hpte_insert),
567  patch_branch(ht64_call_hpte_insert2,
568  FUNCTION_TEXT(ppc_md.hpte_insert),
570  patch_branch(ht64_call_hpte_remove,
571  FUNCTION_TEXT(ppc_md.hpte_remove),
573  patch_branch(ht64_call_hpte_updatepp,
574  FUNCTION_TEXT(ppc_md.hpte_updatepp),
576 
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
578 
579  patch_branch(htab_call_hpte_insert1,
580  FUNCTION_TEXT(ppc_md.hpte_insert),
582  patch_branch(htab_call_hpte_insert2,
583  FUNCTION_TEXT(ppc_md.hpte_insert),
585  patch_branch(htab_call_hpte_remove,
586  FUNCTION_TEXT(ppc_md.hpte_remove),
588  patch_branch(htab_call_hpte_updatepp,
589  FUNCTION_TEXT(ppc_md.hpte_updatepp),
591 }
592 
593 static void __init htab_initialize(void)
594 {
595  unsigned long table;
596  unsigned long pteg_count;
597  unsigned long prot;
598  unsigned long base = 0, size = 0, limit;
599  struct memblock_region *reg;
600 
601  DBG(" -> htab_initialize()\n");
602 
603  /* Initialize segment sizes */
604  htab_init_seg_sizes();
605 
606  /* Initialize page sizes */
607  htab_init_page_sizes();
608 
609  if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
612  printk(KERN_INFO "Using 1TB segments\n");
613  }
614 
615  /*
616  * Calculate the required size of the htab. We want the number of
617  * PTEGs to equal one half the number of real pages.
618  */
619  htab_size_bytes = htab_get_table_size();
620  pteg_count = htab_size_bytes >> 7;
621 
622  htab_hash_mask = pteg_count - 1;
623 
624  if (firmware_has_feature(FW_FEATURE_LPAR)) {
625  /* Using a hypervisor which owns the htab */
626  htab_address = NULL;
627  _SDR1 = 0;
628 #ifdef CONFIG_FA_DUMP
629  /*
630  * If firmware assisted dump is active firmware preserves
631  * the contents of htab along with entire partition memory.
632  * Clear the htab if firmware assisted dump is active so
633  * that we dont end up using old mappings.
634  */
635  if (is_fadump_active() && ppc_md.hpte_clear_all)
636  ppc_md.hpte_clear_all();
637 #endif
638  } else {
639  /* Find storage for the HPT. Must be contiguous in
640  * the absolute address space. On cell we want it to be
641  * in the first 2 Gig so we can use it for IOMMU hacks.
642  */
643  if (machine_is(cell))
644  limit = 0x80000000;
645  else
646  limit = MEMBLOCK_ALLOC_ANYWHERE;
647 
649 
650  DBG("Hash table allocated at %lx, size: %lx\n", table,
652 
653  htab_address = __va(table);
654 
655  /* htab absolute addr + encoded htabsize */
656  _SDR1 = table + __ilog2(pteg_count) - 11;
657 
658  /* Initialize the HPT with no entries */
659  memset((void *)table, 0, htab_size_bytes);
660 
661  /* Set SDR1 */
662  mtspr(SPRN_SDR1, _SDR1);
663  }
664 
665  prot = pgprot_val(PAGE_KERNEL);
666 
667 #ifdef CONFIG_DEBUG_PAGEALLOC
668  linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
669  linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
670  1, ppc64_rma_size));
671  memset(linear_map_hash_slots, 0, linear_map_hash_count);
672 #endif /* CONFIG_DEBUG_PAGEALLOC */
673 
674  /* On U3 based machines, we need to reserve the DART area and
675  * _NOT_ map it to avoid cache paradoxes as it's remapped non
676  * cacheable later on
677  */
678 
679  /* create bolted the linear mapping in the hash table */
680  for_each_memblock(memory, reg) {
681  base = (unsigned long)__va(reg->base);
682  size = reg->size;
683 
684  DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
685  base, size, prot);
686 
687 #ifdef CONFIG_U3_DART
688  /* Do not map the DART space. Fortunately, it will be aligned
689  * in such a way that it will not cross two memblock regions and
690  * will fit within a single 16Mb page.
691  * The DART space is assumed to be a full 16Mb region even if
692  * we only use 2Mb of that space. We will use more of it later
693  * for AGP GART. We have to use a full 16Mb large page.
694  */
695  DBG("DART base: %lx\n", dart_tablebase);
696 
697  if (dart_tablebase != 0 && dart_tablebase >= base
698  && dart_tablebase < (base + size)) {
699  unsigned long dart_table_end = dart_tablebase + 16 * MB;
700  if (base != dart_tablebase)
702  __pa(base), prot,
705  if ((base + size) > dart_table_end)
707  base + size,
708  __pa(dart_table_end),
709  prot,
712  continue;
713  }
714 #endif /* CONFIG_U3_DART */
715  BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
717  }
718  memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
719 
720  /*
721  * If we have a memory_limit and we've allocated TCEs then we need to
722  * explicitly map the TCE area at the top of RAM. We also cope with the
723  * case that the TCEs start below memory_limit.
724  * tce_alloc_start/end are 16MB aligned so the mapping should work
725  * for either 4K or 16MB pages.
726  */
727  if (tce_alloc_start) {
728  tce_alloc_start = (unsigned long)__va(tce_alloc_start);
729  tce_alloc_end = (unsigned long)__va(tce_alloc_end);
730 
731  if (base + size >= tce_alloc_start)
732  tce_alloc_start = base + size + 1;
733 
734  BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
735  __pa(tce_alloc_start), prot,
737  }
738 
739  htab_finish_init();
740 
741  DBG(" <- htab_initialize()\n");
742 }
743 #undef KB
744 #undef MB
745 
747 {
748  /* Setup initial STAB address in the PACA */
749  get_paca()->stab_real = __pa((u64)&initial_stab);
750  get_paca()->stab_addr = (u64)&initial_stab;
751 
752  /* Initialize the MMU Hash table and create the linear mapping
753  * of memory. Has to be done before stab/slb initialization as
754  * this is currently where the page size encoding is obtained
755  */
756  htab_initialize();
757 
758  /* Initialize stab / SLB management */
759  if (mmu_has_feature(MMU_FTR_SLB))
760  slb_initialize();
761 }
762 
763 #ifdef CONFIG_SMP
764 void __cpuinit early_init_mmu_secondary(void)
765 {
766  /* Initialize hash table for that CPU */
767  if (!firmware_has_feature(FW_FEATURE_LPAR))
768  mtspr(SPRN_SDR1, _SDR1);
769 
770  /* Initialize STAB/SLB. We use a virtual address as it works
771  * in real mode on pSeries.
772  */
773  if (mmu_has_feature(MMU_FTR_SLB))
774  slb_initialize();
775  else
776  stab_initialize(get_paca()->stab_addr);
777 }
778 #endif /* CONFIG_SMP */
779 
780 /*
781  * Called by asm hashtable.S for doing lazy icache flush
782  */
783 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
784 {
785  struct page *page;
786 
787  if (!pfn_valid(pte_pfn(pte)))
788  return pp;
789 
790  page = pte_page(pte);
791 
792  /* page is dirty */
793  if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
794  if (trap == 0x400) {
796  set_bit(PG_arch_1, &page->flags);
797  } else
798  pp |= HPTE_R_N;
799  }
800  return pp;
801 }
802 
803 #ifdef CONFIG_PPC_MM_SLICES
804 unsigned int get_paca_psize(unsigned long addr)
805 {
806  u64 lpsizes;
807  unsigned char *hpsizes;
808  unsigned long index, mask_index;
809 
810  if (addr < SLICE_LOW_TOP) {
811  lpsizes = get_paca()->context.low_slices_psize;
812  index = GET_LOW_SLICE_INDEX(addr);
813  return (lpsizes >> (index * 4)) & 0xF;
814  }
815  hpsizes = get_paca()->context.high_slices_psize;
816  index = GET_HIGH_SLICE_INDEX(addr);
817  mask_index = index & 0x1;
818  return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
819 }
820 
821 #else
822 unsigned int get_paca_psize(unsigned long addr)
823 {
824  return get_paca()->context.user_psize;
825 }
826 #endif
827 
828 /*
829  * Demote a segment to using 4k pages.
830  * For now this makes the whole process use 4k pages.
831  */
832 #ifdef CONFIG_PPC_64K_PAGES
833 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
834 {
835  if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
836  return;
837  slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
838 #ifdef CONFIG_SPU_BASE
839  spu_flush_all_slbs(mm);
840 #endif
841  if (get_paca_psize(addr) != MMU_PAGE_4K) {
842  get_paca()->context = mm->context;
844  }
845 }
846 #endif /* CONFIG_PPC_64K_PAGES */
847 
848 #ifdef CONFIG_PPC_SUBPAGE_PROT
849 /*
850  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
851  * Userspace sets the subpage permissions using the subpage_prot system call.
852  *
853  * Result is 0: full permissions, _PAGE_RW: read-only,
854  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
855  */
856 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
857 {
858  struct subpage_prot_table *spt = &mm->context.spt;
859  u32 spp = 0;
860  u32 **sbpm, *sbpp;
861 
862  if (ea >= spt->maxaddr)
863  return 0;
864  if (ea < 0x100000000) {
865  /* addresses below 4GB use spt->low_prot */
866  sbpm = spt->low_prot;
867  } else {
868  sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
869  if (!sbpm)
870  return 0;
871  }
872  sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
873  if (!sbpp)
874  return 0;
875  spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
876 
877  /* extract 2-bit bitfield for this 4k subpage */
878  spp >>= 30 - 2 * ((ea >> 12) & 0xf);
879 
880  /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
881  spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
882  return spp;
883 }
884 
885 #else /* CONFIG_PPC_SUBPAGE_PROT */
886 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
887 {
888  return 0;
889 }
890 #endif
891 
892 void hash_failure_debug(unsigned long ea, unsigned long access,
893  unsigned long vsid, unsigned long trap,
894  int ssize, int psize, unsigned long pte)
895 {
896  if (!printk_ratelimit())
897  return;
898  pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
899  ea, access, current->comm);
900  pr_info(" trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
901  trap, vsid, ssize, psize, pte);
902 }
903 
904 /* Result code is:
905  * 0 - handled
906  * 1 - normal page fault
907  * -1 - critical hash insertion error
908  * -2 - access not permitted by subpage protection mechanism
909  */
910 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
911 {
912  pgd_t *pgdir;
913  unsigned long vsid;
914  struct mm_struct *mm;
915  pte_t *ptep;
916  unsigned hugeshift;
917  const struct cpumask *tmp;
918  int rc, user_region = 0, local = 0;
919  int psize, ssize;
920 
921  DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
922  ea, access, trap);
923 
924  if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
925  DBG_LOW(" out of pgtable range !\n");
926  return 1;
927  }
928 
929  /* Get region & vsid */
930  switch (REGION_ID(ea)) {
931  case USER_REGION_ID:
932  user_region = 1;
933  mm = current->mm;
934  if (! mm) {
935  DBG_LOW(" user region with no mm !\n");
936  return 1;
937  }
938  psize = get_slice_psize(mm, ea);
939  ssize = user_segment_size(ea);
940  vsid = get_vsid(mm->context.id, ea, ssize);
941  break;
942  case VMALLOC_REGION_ID:
943  mm = &init_mm;
944  vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
945  if (ea < VMALLOC_END)
946  psize = mmu_vmalloc_psize;
947  else
948  psize = mmu_io_psize;
949  ssize = mmu_kernel_ssize;
950  break;
951  default:
952  /* Not a valid range
953  * Send the problem up to do_page_fault
954  */
955  return 1;
956  }
957  DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
958 
959  /* Get pgdir */
960  pgdir = mm->pgd;
961  if (pgdir == NULL)
962  return 1;
963 
964  /* Check CPU locality */
965  tmp = cpumask_of(smp_processor_id());
966  if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
967  local = 1;
968 
969 #ifndef CONFIG_PPC_64K_PAGES
970  /* If we use 4K pages and our psize is not 4K, then we might
971  * be hitting a special driver mapping, and need to align the
972  * address before we fetch the PTE.
973  *
974  * It could also be a hugepage mapping, in which case this is
975  * not necessary, but it's not harmful, either.
976  */
977  if (psize != MMU_PAGE_4K)
978  ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
979 #endif /* CONFIG_PPC_64K_PAGES */
980 
981  /* Get PTE and page size from page tables */
982  ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
983  if (ptep == NULL || !pte_present(*ptep)) {
984  DBG_LOW(" no PTE !\n");
985  return 1;
986  }
987 
988  /* Add _PAGE_PRESENT to the required access perm */
989  access |= _PAGE_PRESENT;
990 
991  /* Pre-check access permissions (will be re-checked atomically
992  * in __hash_page_XX but this pre-check is a fast path
993  */
994  if (access & ~pte_val(*ptep)) {
995  DBG_LOW(" no access !\n");
996  return 1;
997  }
998 
999 #ifdef CONFIG_HUGETLB_PAGE
1000  if (hugeshift)
1001  return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1002  ssize, hugeshift, psize);
1003 #endif /* CONFIG_HUGETLB_PAGE */
1004 
1005 #ifndef CONFIG_PPC_64K_PAGES
1006  DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1007 #else
1008  DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1009  pte_val(*(ptep + PTRS_PER_PTE)));
1010 #endif
1011  /* Do actual hashing */
1012 #ifdef CONFIG_PPC_64K_PAGES
1013  /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1014  if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1015  demote_segment_4k(mm, ea);
1016  psize = MMU_PAGE_4K;
1017  }
1018 
1019  /* If this PTE is non-cacheable and we have restrictions on
1020  * using non cacheable large pages, then we switch to 4k
1021  */
1022  if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1023  (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1024  if (user_region) {
1025  demote_segment_4k(mm, ea);
1026  psize = MMU_PAGE_4K;
1027  } else if (ea < VMALLOC_END) {
1028  /*
1029  * some driver did a non-cacheable mapping
1030  * in vmalloc space, so switch vmalloc
1031  * to 4k pages
1032  */
1033  printk(KERN_ALERT "Reducing vmalloc segment "
1034  "to 4kB pages because of "
1035  "non-cacheable mapping\n");
1036  psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1037 #ifdef CONFIG_SPU_BASE
1038  spu_flush_all_slbs(mm);
1039 #endif
1040  }
1041  }
1042  if (user_region) {
1043  if (psize != get_paca_psize(ea)) {
1044  get_paca()->context = mm->context;
1046  }
1047  } else if (get_paca()->vmalloc_sllp !=
1049  get_paca()->vmalloc_sllp =
1052  }
1053 #endif /* CONFIG_PPC_64K_PAGES */
1054 
1055 #ifdef CONFIG_PPC_HAS_HASH_64K
1056  if (psize == MMU_PAGE_64K)
1057  rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1058  else
1059 #endif /* CONFIG_PPC_HAS_HASH_64K */
1060  {
1061  int spp = subpage_protection(mm, ea);
1062  if (access & spp)
1063  rc = -2;
1064  else
1065  rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1066  local, ssize, spp);
1067  }
1068 
1069  /* Dump some info in case of hash insertion failure, they should
1070  * never happen so it is really useful to know if/when they do
1071  */
1072  if (rc == -1)
1073  hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1074  pte_val(*ptep));
1075 #ifndef CONFIG_PPC_64K_PAGES
1076  DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1077 #else
1078  DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1079  pte_val(*(ptep + PTRS_PER_PTE)));
1080 #endif
1081  DBG_LOW(" -> rc=%d\n", rc);
1082  return rc;
1083 }
1085 
1086 void hash_preload(struct mm_struct *mm, unsigned long ea,
1087  unsigned long access, unsigned long trap)
1088 {
1089  unsigned long vsid;
1090  pgd_t *pgdir;
1091  pte_t *ptep;
1092  unsigned long flags;
1093  int rc, ssize, local = 0;
1094 
1096 
1097 #ifdef CONFIG_PPC_MM_SLICES
1098  /* We only prefault standard pages for now */
1099  if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1100  return;
1101 #endif
1102 
1103  DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1104  " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1105 
1106  /* Get Linux PTE if available */
1107  pgdir = mm->pgd;
1108  if (pgdir == NULL)
1109  return;
1110  ptep = find_linux_pte(pgdir, ea);
1111  if (!ptep)
1112  return;
1113 
1114 #ifdef CONFIG_PPC_64K_PAGES
1115  /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1116  * a 64K kernel), then we don't preload, hash_page() will take
1117  * care of it once we actually try to access the page.
1118  * That way we don't have to duplicate all of the logic for segment
1119  * page size demotion here
1120  */
1121  if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1122  return;
1123 #endif /* CONFIG_PPC_64K_PAGES */
1124 
1125  /* Get VSID */
1126  ssize = user_segment_size(ea);
1127  vsid = get_vsid(mm->context.id, ea, ssize);
1128 
1129  /* Hash doesn't like irqs */
1130  local_irq_save(flags);
1131 
1132  /* Is that local to this CPU ? */
1133  if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1134  local = 1;
1135 
1136  /* Hash it in */
1137 #ifdef CONFIG_PPC_HAS_HASH_64K
1138  if (mm->context.user_psize == MMU_PAGE_64K)
1139  rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1140  else
1141 #endif /* CONFIG_PPC_HAS_HASH_64K */
1142  rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1143  subpage_protection(mm, ea));
1144 
1145  /* Dump some info in case of hash insertion failure, they should
1146  * never happen so it is really useful to know if/when they do
1147  */
1148  if (rc == -1)
1149  hash_failure_debug(ea, access, vsid, trap, ssize,
1150  mm->context.user_psize, pte_val(*ptep));
1151 
1152  local_irq_restore(flags);
1153 }
1154 
1155 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1156  * do not forget to update the assembly call site !
1157  */
1158 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1159  int local)
1160 {
1161  unsigned long hash, index, shift, hidx, slot;
1162 
1163  DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1164  pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1165  hash = hpt_hash(vpn, shift, ssize);
1166  hidx = __rpte_to_hidx(pte, index);
1167  if (hidx & _PTEIDX_SECONDARY)
1168  hash = ~hash;
1169  slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1170  slot += hidx & _PTEIDX_GROUP_IX;
1171  DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1172  ppc_md.hpte_invalidate(slot, vpn, psize, ssize, local);
1174 }
1175 
1176 void flush_hash_range(unsigned long number, int local)
1177 {
1178  if (ppc_md.flush_hash_range)
1179  ppc_md.flush_hash_range(number, local);
1180  else {
1181  int i;
1182  struct ppc64_tlb_batch *batch =
1183  &__get_cpu_var(ppc64_tlb_batch);
1184 
1185  for (i = 0; i < number; i++)
1186  flush_hash_page(batch->vpn[i], batch->pte[i],
1187  batch->psize, batch->ssize, local);
1188  }
1189 }
1190 
1191 /*
1192  * low_hash_fault is called when we the low level hash code failed
1193  * to instert a PTE due to an hypervisor error
1194  */
1195 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1196 {
1197  if (user_mode(regs)) {
1198 #ifdef CONFIG_PPC_SUBPAGE_PROT
1199  if (rc == -2)
1200  _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1201  else
1202 #endif
1203  _exception(SIGBUS, regs, BUS_ADRERR, address);
1204  } else
1205  bad_page_fault(regs, address, SIGBUS);
1206 }
1207 
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
1209 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1210 {
1211  unsigned long hash, hpteg;
1212  unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1213  unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1214  unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1215  int ret;
1216 
1217  hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1218  hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1219 
1220  ret = ppc_md.hpte_insert(hpteg, vpn, __pa(vaddr),
1221  mode, HPTE_V_BOLTED,
1223  BUG_ON (ret < 0);
1224  spin_lock(&linear_map_hash_lock);
1225  BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1226  linear_map_hash_slots[lmi] = ret | 0x80;
1227  spin_unlock(&linear_map_hash_lock);
1228 }
1229 
1230 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1231 {
1232  unsigned long hash, hidx, slot;
1233  unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1234  unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1235 
1236  hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1237  spin_lock(&linear_map_hash_lock);
1238  BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1239  hidx = linear_map_hash_slots[lmi] & 0x7f;
1240  linear_map_hash_slots[lmi] = 0;
1241  spin_unlock(&linear_map_hash_lock);
1242  if (hidx & _PTEIDX_SECONDARY)
1243  hash = ~hash;
1244  slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1245  slot += hidx & _PTEIDX_GROUP_IX;
1246  ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_kernel_ssize, 0);
1247 }
1248 
1249 void kernel_map_pages(struct page *page, int numpages, int enable)
1250 {
1251  unsigned long flags, vaddr, lmi;
1252  int i;
1253 
1254  local_irq_save(flags);
1255  for (i = 0; i < numpages; i++, page++) {
1256  vaddr = (unsigned long)page_address(page);
1257  lmi = __pa(vaddr) >> PAGE_SHIFT;
1258  if (lmi >= linear_map_hash_count)
1259  continue;
1260  if (enable)
1261  kernel_map_linear_page(vaddr, lmi);
1262  else
1263  kernel_unmap_linear_page(vaddr, lmi);
1264  }
1265  local_irq_restore(flags);
1266 }
1267 #endif /* CONFIG_DEBUG_PAGEALLOC */
1268 
1269 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1270  phys_addr_t first_memblock_size)
1271 {
1272  /* We don't currently support the first MEMBLOCK not mapping 0
1273  * physical on those processors
1274  */
1275  BUG_ON(first_memblock_base != 0);
1276 
1277  /* On LPAR systems, the first entry is our RMA region,
1278  * non-LPAR 64-bit hash MMU systems don't have a limitation
1279  * on real mode access, but using the first entry works well
1280  * enough. We also clamp it to 1G to avoid some funky things
1281  * such as RTAS bugs etc...
1282  */
1283  ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1284 
1285  /* Finally limit subsequent allocations */
1286  memblock_set_current_limit(ppc64_rma_size);
1287 }