Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hif.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2007-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 #include "hif.h"
18 
19 #include <linux/export.h>
20 
21 #include "core.h"
22 #include "target.h"
23 #include "hif-ops.h"
24 #include "debug.h"
25 
26 #define MAILBOX_FOR_BLOCK_SIZE 1
27 
28 #define ATH6KL_TIME_QUANTUM 10 /* in ms */
29 
30 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req,
31  bool from_dma)
32 {
33  u8 *buf;
34  int i;
35 
36  buf = req->virt_dma_buf;
37 
38  for (i = 0; i < req->scat_entries; i++) {
39 
40  if (from_dma)
41  memcpy(req->scat_list[i].buf, buf,
42  req->scat_list[i].len);
43  else
44  memcpy(buf, req->scat_list[i].buf,
45  req->scat_list[i].len);
46 
47  buf += req->scat_list[i].len;
48  }
49 
50  return 0;
51 }
52 
54 {
55  struct htc_packet *packet = context;
56 
57  ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n",
58  packet, status);
59 
60  packet->status = status;
61  packet->completion(packet->context, packet);
62 
63  return 0;
64 }
66 
67 #define REG_DUMP_COUNT_AR6003 60
68 #define REGISTER_DUMP_LEN_MAX 60
69 
70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar)
71 {
72  __le32 regdump_val[REGISTER_DUMP_LEN_MAX];
73  u32 i, address, regdump_addr = 0;
74  int ret;
75 
77  return;
78 
79  /* the reg dump pointer is copied to the host interest area */
80  address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
81  address = TARG_VTOP(ar->target_type, address);
82 
83  /* read RAM location through diagnostic window */
84  ret = ath6kl_diag_read32(ar, address, &regdump_addr);
85 
86  if (ret || !regdump_addr) {
87  ath6kl_warn("failed to get ptr to register dump area: %d\n",
88  ret);
89  return;
90  }
91 
92  ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n",
93  regdump_addr);
94  regdump_addr = TARG_VTOP(ar->target_type, regdump_addr);
95 
96  /* fetch register dump data */
97  ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)&regdump_val[0],
98  REG_DUMP_COUNT_AR6003 * (sizeof(u32)));
99  if (ret) {
100  ath6kl_warn("failed to get register dump: %d\n", ret);
101  return;
102  }
103 
104  ath6kl_info("crash dump:\n");
105  ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version,
106  ar->wiphy->fw_version);
107 
109 
110  for (i = 0; i < REG_DUMP_COUNT_AR6003; i += 4) {
111  ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
112  i,
113  le32_to_cpu(regdump_val[i]),
114  le32_to_cpu(regdump_val[i + 1]),
115  le32_to_cpu(regdump_val[i + 2]),
116  le32_to_cpu(regdump_val[i + 3]));
117  }
118 
119 }
120 
121 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
122 {
123  u32 dummy;
124  int ret;
125 
126  ath6kl_warn("firmware crashed\n");
127 
128  /*
129  * read counter to clear the interrupt, the debug error interrupt is
130  * counter 0.
131  */
132  ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
133  (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
134  if (ret)
135  ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);
136 
137  ath6kl_hif_dump_fw_crash(dev->ar);
138  ath6kl_read_fwlogs(dev->ar);
139 
140  return ret;
141 }
142 
143 /* mailbox recv message polling */
145  int timeout)
146 {
147  struct ath6kl_irq_proc_registers *rg;
148  int status = 0, i;
149  u8 htc_mbox = 1 << HTC_MAILBOX;
150 
151  for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
152  /* this is the standard HIF way, load the reg table */
153  status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
154  (u8 *) &dev->irq_proc_reg,
155  sizeof(dev->irq_proc_reg),
157 
158  if (status) {
159  ath6kl_err("failed to read reg table\n");
160  return status;
161  }
162 
163  /* check for MBOX data and valid lookahead */
164  if (dev->irq_proc_reg.host_int_status & htc_mbox) {
165  if (dev->irq_proc_reg.rx_lkahd_valid &
166  htc_mbox) {
167  /*
168  * Mailbox has a message and the look ahead
169  * is valid.
170  */
171  rg = &dev->irq_proc_reg;
172  *lk_ahd =
174  break;
175  }
176  }
177 
178  /* delay a little */
180  ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i);
181  }
182 
183  if (i == 0) {
184  ath6kl_err("timeout waiting for recv message\n");
185  status = -ETIME;
186  /* check if the target asserted */
187  if (dev->irq_proc_reg.counter_int_status &
189  /*
190  * Target failure handler will be called in case of
191  * an assert.
192  */
193  ath6kl_hif_proc_dbg_intr(dev);
194  }
195 
196  return status;
197 }
198 
199 /*
200  * Disable packet reception (used in case the host runs out of buffers)
201  * using the interrupt enable registers through the host I/F
202  */
203 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx)
204 {
205  struct ath6kl_irq_enable_reg regs;
206  int status = 0;
207 
208  ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n",
209  enable_rx ? "enable" : "disable");
210 
211  /* take the lock to protect interrupt enable shadows */
212  spin_lock_bh(&dev->lock);
213 
214  if (enable_rx)
215  dev->irq_en_reg.int_status_en |=
217  else
218  dev->irq_en_reg.int_status_en &=
220 
221  memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
222 
223  spin_unlock_bh(&dev->lock);
224 
225  status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
226  &regs.int_status_en,
227  sizeof(struct ath6kl_irq_enable_reg),
229 
230  return status;
231 }
232 
234  struct hif_scatter_req *scat_req, bool read)
235 {
236  int status = 0;
237 
238  if (read) {
239  scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
240  scat_req->addr = dev->ar->mbox_info.htc_addr;
241  } else {
242  scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
243 
244  scat_req->addr =
245  (scat_req->len > HIF_MBOX_WIDTH) ?
246  dev->ar->mbox_info.htc_ext_addr :
247  dev->ar->mbox_info.htc_addr;
248  }
249 
250  ath6kl_dbg(ATH6KL_DBG_HIF,
251  "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n",
252  scat_req->scat_entries, scat_req->len,
253  scat_req->addr, !read ? "async" : "sync",
254  (read) ? "rd" : "wr");
255 
256  if (!read && scat_req->virt_scat) {
257  status = ath6kl_hif_cp_scat_dma_buf(scat_req, false);
258  if (status) {
259  scat_req->status = status;
260  scat_req->complete(dev->ar->htc_target, scat_req);
261  return 0;
262  }
263  }
264 
265  status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
266 
267  if (read) {
268  /* in sync mode, we can touch the scatter request */
269  scat_req->status = status;
270  if (!status && scat_req->virt_scat)
271  scat_req->status =
272  ath6kl_hif_cp_scat_dma_buf(scat_req, true);
273  }
274 
275  return status;
276 }
277 
278 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev)
279 {
280  u8 counter_int_status;
281 
282  ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
283 
284  counter_int_status = dev->irq_proc_reg.counter_int_status &
285  dev->irq_en_reg.cntr_int_status_en;
286 
287  ath6kl_dbg(ATH6KL_DBG_IRQ,
288  "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
289  counter_int_status);
290 
291  /*
292  * NOTE: other modules like GMBOX may use the counter interrupt for
293  * credit flow control on other counters, we only need to check for
294  * the debug assertion counter interrupt.
295  */
296  if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
297  return ath6kl_hif_proc_dbg_intr(dev);
298 
299  return 0;
300 }
301 
302 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
303 {
304  int status;
305  u8 error_int_status;
306  u8 reg_buf[4];
307 
308  ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
309 
310  error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
311  if (!error_int_status) {
312  WARN_ON(1);
313  return -EIO;
314  }
315 
316  ath6kl_dbg(ATH6KL_DBG_IRQ,
317  "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
318  error_int_status);
319 
320  if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
321  ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
322 
323  if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
324  ath6kl_err("rx underflow\n");
325 
326  if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
327  ath6kl_err("tx overflow\n");
328 
329  /* Clear the interrupt */
330  dev->irq_proc_reg.error_int_status &= ~error_int_status;
331 
332  /* set W1C value to clear the interrupt, this hits the register first */
333  reg_buf[0] = error_int_status;
334  reg_buf[1] = 0;
335  reg_buf[2] = 0;
336  reg_buf[3] = 0;
337 
338  status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
339  reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
340 
341  if (status)
342  WARN_ON(1);
343 
344  return status;
345 }
346 
347 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
348 {
349  int status;
350  u8 cpu_int_status;
351  u8 reg_buf[4];
352 
353  ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
354 
355  cpu_int_status = dev->irq_proc_reg.cpu_int_status &
356  dev->irq_en_reg.cpu_int_status_en;
357  if (!cpu_int_status) {
358  WARN_ON(1);
359  return -EIO;
360  }
361 
362  ath6kl_dbg(ATH6KL_DBG_IRQ,
363  "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
364  cpu_int_status);
365 
366  /* Clear the interrupt */
367  dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
368 
369  /*
370  * Set up the register transfer buffer to hit the register 4 times ,
371  * this is done to make the access 4-byte aligned to mitigate issues
372  * with host bus interconnects that restrict bus transfer lengths to
373  * be a multiple of 4-bytes.
374  */
375 
376  /* set W1C value to clear the interrupt, this hits the register first */
377  reg_buf[0] = cpu_int_status;
378  /* the remaining are set to zero which have no-effect */
379  reg_buf[1] = 0;
380  reg_buf[2] = 0;
381  reg_buf[3] = 0;
382 
383  status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
384  reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
385 
386  if (status)
387  WARN_ON(1);
388 
389  return status;
390 }
391 
392 /* process pending interrupts synchronously */
393 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
394 {
395  struct ath6kl_irq_proc_registers *rg;
396  int status = 0;
397  u8 host_int_status = 0;
398  u32 lk_ahd = 0;
399  u8 htc_mbox = 1 << HTC_MAILBOX;
400 
401  ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
402 
403  /*
404  * NOTE: HIF implementation guarantees that the context of this
405  * call allows us to perform SYNCHRONOUS I/O, that is we can block,
406  * sleep or call any API that can block or switch thread/task
407  * contexts. This is a fully schedulable context.
408  */
409 
410  /*
411  * Process pending intr only when int_status_en is clear, it may
412  * result in unnecessary bus transaction otherwise. Target may be
413  * unresponsive at the time.
414  */
415  if (dev->irq_en_reg.int_status_en) {
416  /*
417  * Read the first 28 bytes of the HTC register table. This
418  * will yield us the value of different int status
419  * registers and the lookahead registers.
420  *
421  * length = sizeof(int_status) + sizeof(cpu_int_status)
422  * + sizeof(error_int_status) +
423  * sizeof(counter_int_status) +
424  * sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
425  * + sizeof(hole) + sizeof(rx_lkahd) +
426  * sizeof(int_status_en) +
427  * sizeof(cpu_int_status_en) +
428  * sizeof(err_int_status_en) +
429  * sizeof(cntr_int_status_en);
430  */
431  status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
432  (u8 *) &dev->irq_proc_reg,
433  sizeof(dev->irq_proc_reg),
435  if (status)
436  goto out;
437 
438  ath6kl_dump_registers(dev, &dev->irq_proc_reg,
439  &dev->irq_en_reg);
440 
441  /* Update only those registers that are enabled */
442  host_int_status = dev->irq_proc_reg.host_int_status &
443  dev->irq_en_reg.int_status_en;
444 
445  /* Look at mbox status */
446  if (host_int_status & htc_mbox) {
447  /*
448  * Mask out pending mbox value, we use "lookAhead as
449  * the real flag for mbox processing.
450  */
451  host_int_status &= ~htc_mbox;
452  if (dev->irq_proc_reg.rx_lkahd_valid &
453  htc_mbox) {
454  rg = &dev->irq_proc_reg;
455  lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
456  if (!lk_ahd)
457  ath6kl_err("lookAhead is zero!\n");
458  }
459  }
460  }
461 
462  if (!host_int_status && !lk_ahd) {
463  *done = true;
464  goto out;
465  }
466 
467  if (lk_ahd) {
468  int fetched = 0;
469 
470  ath6kl_dbg(ATH6KL_DBG_IRQ,
471  "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
472  /*
473  * Mailbox Interrupt, the HTC layer may issue async
474  * requests to empty the mailbox. When emptying the recv
475  * mailbox we use the async handler above called from the
476  * completion routine of the callers read request. This can
477  * improve performance by reducing context switching when
478  * we rapidly pull packets.
479  */
481  lk_ahd, &fetched);
482  if (status)
483  goto out;
484 
485  if (!fetched)
486  /*
487  * HTC could not pull any messages out due to lack
488  * of resources.
489  */
490  dev->htc_cnxt->chk_irq_status_cnt = 0;
491  }
492 
493  /* now handle the rest of them */
494  ath6kl_dbg(ATH6KL_DBG_IRQ,
495  "valid interrupt source(s) for other interrupts: 0x%x\n",
496  host_int_status);
497 
498  if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
499  /* CPU Interrupt */
500  status = ath6kl_hif_proc_cpu_intr(dev);
501  if (status)
502  goto out;
503  }
504 
505  if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
506  /* Error Interrupt */
507  status = ath6kl_hif_proc_err_intr(dev);
508  if (status)
509  goto out;
510  }
511 
512  if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
513  /* Counter Interrupt */
514  status = ath6kl_hif_proc_counter_intr(dev);
515 
516 out:
517  /*
518  * An optimization to bypass reading the IRQ status registers
519  * unecessarily which can re-wake the target, if upper layers
520  * determine that we are in a low-throughput mode, we can rely on
521  * taking another interrupt rather than re-checking the status
522  * registers which can re-wake the target.
523  *
524  * NOTE : for host interfaces that makes use of detecting pending
525  * mbox messages at hif can not use this optimization due to
526  * possible side effects, SPI requires the host to drain all
527  * messages from the mailbox before exiting the ISR routine.
528  */
529 
530  ath6kl_dbg(ATH6KL_DBG_IRQ,
531  "bypassing irq status re-check, forcing done\n");
532 
533  if (!dev->htc_cnxt->chk_irq_status_cnt)
534  *done = true;
535 
536  ath6kl_dbg(ATH6KL_DBG_IRQ,
537  "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
538 
539  return status;
540 }
541 
542 /* interrupt handler, kicks off all interrupt processing */
544 {
545  struct ath6kl_device *dev = ar->htc_target->dev;
546  unsigned long timeout;
547  int status = 0;
548  bool done = false;
549 
550  /*
551  * Reset counter used to flag a re-scan of IRQ status registers on
552  * the target.
553  */
554  dev->htc_cnxt->chk_irq_status_cnt = 0;
555 
556  /*
557  * IRQ processing is synchronous, interrupt status registers can be
558  * re-read.
559  */
561  while (time_before(jiffies, timeout) && !done) {
562  status = proc_pending_irqs(dev, &done);
563  if (status)
564  break;
565  }
566 
567  return status;
568 }
570 
571 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
572 {
574  int status;
575 
576  spin_lock_bh(&dev->lock);
577 
578  /* Enable all but ATH6KL CPU interrupts */
579  dev->irq_en_reg.int_status_en =
580  SM(INT_STATUS_ENABLE_ERROR, 0x01) |
581  SM(INT_STATUS_ENABLE_CPU, 0x01) |
583 
584  /*
585  * NOTE: There are some cases where HIF can do detection of
586  * pending mbox messages which is disabled now.
587  */
588  dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
589 
590  /* Set up the CPU Interrupt status Register */
591  dev->irq_en_reg.cpu_int_status_en = 0;
592 
593  /* Set up the Error Interrupt status Register */
594  dev->irq_en_reg.err_int_status_en =
597 
598  /*
599  * Enable Counter interrupt status register to get fatal errors for
600  * debugging.
601  */
602  dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
604  memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
605 
606  spin_unlock_bh(&dev->lock);
607 
608  status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
609  &regs.int_status_en, sizeof(regs),
611 
612  if (status)
613  ath6kl_err("failed to update interrupt ctl reg err: %d\n",
614  status);
615 
616  return status;
617 }
618 
620 {
621  struct ath6kl_irq_enable_reg regs;
622 
623  spin_lock_bh(&dev->lock);
624  /* Disable all interrupts */
625  dev->irq_en_reg.int_status_en = 0;
626  dev->irq_en_reg.cpu_int_status_en = 0;
627  dev->irq_en_reg.err_int_status_en = 0;
628  dev->irq_en_reg.cntr_int_status_en = 0;
629  memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
630  spin_unlock_bh(&dev->lock);
631 
632  return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
633  &regs.int_status_en, sizeof(regs),
635 }
636 
637 /* enable device interrupts */
639 {
640  int status = 0;
641 
642  /*
643  * Make sure interrupt are disabled before unmasking at the HIF
644  * layer. The rationale here is that between device insertion
645  * (where we clear the interrupts the first time) and when HTC
646  * is finally ready to handle interrupts, other software can perform
647  * target "soft" resets. The ATH6KL interrupt enables reset back to an
648  * "enabled" state when this happens.
649  */
651 
652  /* unmask the host controller interrupts */
653  ath6kl_hif_irq_enable(dev->ar);
654  status = ath6kl_hif_enable_intrs(dev);
655 
656  return status;
657 }
658 
659 /* disable all device interrupts */
661 {
662  /*
663  * Mask the interrupt at the HIF layer to avoid any stray interrupt
664  * taken while we zero out our shadow registers in
665  * ath6kl_hif_disable_intrs().
666  */
667  ath6kl_hif_irq_disable(dev->ar);
668 
669  return ath6kl_hif_disable_intrs(dev);
670 }
671 
673 {
674  int status = 0;
675 
676  spin_lock_init(&dev->lock);
677 
678  /*
679  * NOTE: we actually get the block size of a mailbox other than 0,
680  * for SDIO the block size on mailbox 0 is artificially set to 1.
681  * So we use the block size that is set for the other 3 mailboxes.
682  */
683  dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
684 
685  /* must be a power of 2 */
686  if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
687  WARN_ON(1);
688  status = -EINVAL;
689  goto fail_setup;
690  }
691 
692  /* assemble mask, used for padding to a block */
693  dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
694 
695  ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n",
696  dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
697 
698  /* usb doesn't support enabling interrupts */
699  /* FIXME: remove check once USB support is implemented */
700  if (dev->ar->hif_type == ATH6KL_HIF_TYPE_USB)
701  return 0;
702 
703  status = ath6kl_hif_disable_intrs(dev);
704 
705 fail_setup:
706  return status;
707 
708 }