Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hv_kvp.c
Go to the documentation of this file.
1 /*
2  * An implementation of key value pair (KVP) functionality for Linux.
3  *
4  *
5  * Copyright (C) 2010, Novell, Inc.
6  * Author : K. Y. Srinivasan <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT. See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/net.h>
26 #include <linux/nls.h>
27 #include <linux/connector.h>
28 #include <linux/workqueue.h>
29 #include <linux/hyperv.h>
30 
31 
32 
33 /*
34  * Global state maintained for transaction that is being processed.
35  * Note that only one transaction can be active at any point in time.
36  *
37  * This state is set when we receive a request from the host; we
38  * cleanup this state when the transaction is completed - when we respond
39  * to the host with the key value.
40  */
41 
42 static struct {
43  bool active; /* transaction status - active or not */
44  int recv_len; /* number of bytes received. */
45  struct hv_kvp_msg *kvp_msg; /* current message */
46  struct vmbus_channel *recv_channel; /* chn we got the request */
47  u64 recv_req_id; /* request ID. */
48  void *kvp_context; /* for the channel callback */
49 } kvp_transaction;
50 
51 /*
52  * Before we can accept KVP messages from the host, we need
53  * to handshake with the user level daemon. This state tracks
54  * if we are in the handshake phase.
55  */
56 static bool in_hand_shake = true;
57 
58 /*
59  * This state maintains the version number registered by the daemon.
60  */
61 static int dm_reg_value;
62 
63 static void kvp_send_key(struct work_struct *dummy);
64 
65 
66 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error);
67 static void kvp_work_func(struct work_struct *dummy);
68 static void kvp_register(int);
69 
70 static DECLARE_DELAYED_WORK(kvp_work, kvp_work_func);
71 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key);
72 
73 static struct cb_id kvp_id = { CN_KVP_IDX, CN_KVP_VAL };
74 static const char kvp_name[] = "kvp_kernel_module";
75 static u8 *recv_buffer;
76 /*
77  * Register the kernel component with the user-level daemon.
78  * As part of this registration, pass the LIC version number.
79  */
80 
81 static void
82 kvp_register(int reg_value)
83 {
84 
85  struct cn_msg *msg;
86  struct hv_kvp_msg *kvp_msg;
87  char *version;
88 
89  msg = kzalloc(sizeof(*msg) + sizeof(struct hv_kvp_msg), GFP_ATOMIC);
90 
91  if (msg) {
92  kvp_msg = (struct hv_kvp_msg *)msg->data;
93  version = kvp_msg->body.kvp_register.version;
94  msg->id.idx = CN_KVP_IDX;
95  msg->id.val = CN_KVP_VAL;
96 
97  kvp_msg->kvp_hdr.operation = reg_value;
98  strcpy(version, HV_DRV_VERSION);
99  msg->len = sizeof(struct hv_kvp_msg);
100  cn_netlink_send(msg, 0, GFP_ATOMIC);
101  kfree(msg);
102  }
103 }
104 static void
105 kvp_work_func(struct work_struct *dummy)
106 {
107  /*
108  * If the timer fires, the user-mode component has not responded;
109  * process the pending transaction.
110  */
111  kvp_respond_to_host(NULL, HV_E_FAIL);
112 }
113 
114 static int kvp_handle_handshake(struct hv_kvp_msg *msg)
115 {
116  int ret = 1;
117 
118  switch (msg->kvp_hdr.operation) {
119  case KVP_OP_REGISTER:
120  dm_reg_value = KVP_OP_REGISTER;
121  pr_info("KVP: IP injection functionality not available\n");
122  pr_info("KVP: Upgrade the KVP daemon\n");
123  break;
124  case KVP_OP_REGISTER1:
125  dm_reg_value = KVP_OP_REGISTER1;
126  break;
127  default:
128  pr_info("KVP: incompatible daemon\n");
129  pr_info("KVP: KVP version: %d, Daemon version: %d\n",
130  KVP_OP_REGISTER1, msg->kvp_hdr.operation);
131  ret = 0;
132  }
133 
134  if (ret) {
135  /*
136  * We have a compatible daemon; complete the handshake.
137  */
138  pr_info("KVP: user-mode registering done.\n");
139  kvp_register(dm_reg_value);
140  kvp_transaction.active = false;
141  if (kvp_transaction.kvp_context)
142  hv_kvp_onchannelcallback(kvp_transaction.kvp_context);
143  }
144  return ret;
145 }
146 
147 
148 /*
149  * Callback when data is received from user mode.
150  */
151 
152 static void
153 kvp_cn_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp)
154 {
155  struct hv_kvp_msg *message;
156  struct hv_kvp_msg_enumerate *data;
157  int error = 0;
158 
159  message = (struct hv_kvp_msg *)msg->data;
160 
161  /*
162  * If we are negotiating the version information
163  * with the daemon; handle that first.
164  */
165 
166  if (in_hand_shake) {
167  if (kvp_handle_handshake(message))
168  in_hand_shake = false;
169  return;
170  }
171 
172  /*
173  * Based on the version of the daemon, we propagate errors from the
174  * daemon differently.
175  */
176 
177  data = &message->body.kvp_enum_data;
178 
179  switch (dm_reg_value) {
180  case KVP_OP_REGISTER:
181  /*
182  * Null string is used to pass back error condition.
183  */
184  if (data->data.key[0] == 0)
185  error = HV_S_CONT;
186  break;
187 
188  case KVP_OP_REGISTER1:
189  /*
190  * We use the message header information from
191  * the user level daemon to transmit errors.
192  */
193  error = message->error;
194  break;
195  }
196 
197  /*
198  * Complete the transaction by forwarding the key value
199  * to the host. But first, cancel the timeout.
200  */
201  if (cancel_delayed_work_sync(&kvp_work))
202  kvp_respond_to_host(message, error);
203 }
204 
205 
206 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op)
207 {
208  struct hv_kvp_msg *in = in_msg;
209  struct hv_kvp_ip_msg *out = out_msg;
210  int len;
211 
212  switch (op) {
213  case KVP_OP_GET_IP_INFO:
214  /*
215  * Transform all parameters into utf16 encoding.
216  */
217  len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr,
218  strlen((char *)in->body.kvp_ip_val.ip_addr),
220  (wchar_t *)out->kvp_ip_val.ip_addr,
222  if (len < 0)
223  return len;
224 
225  len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net,
226  strlen((char *)in->body.kvp_ip_val.sub_net),
228  (wchar_t *)out->kvp_ip_val.sub_net,
230  if (len < 0)
231  return len;
232 
233  len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way,
234  strlen((char *)in->body.kvp_ip_val.gate_way),
236  (wchar_t *)out->kvp_ip_val.gate_way,
238  if (len < 0)
239  return len;
240 
241  len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr,
242  strlen((char *)in->body.kvp_ip_val.dns_addr),
244  (wchar_t *)out->kvp_ip_val.dns_addr,
246  if (len < 0)
247  return len;
248 
249  len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id,
250  strlen((char *)in->body.kvp_ip_val.adapter_id),
252  (wchar_t *)out->kvp_ip_val.adapter_id,
254  if (len < 0)
255  return len;
256 
257  out->kvp_ip_val.dhcp_enabled =
258  in->body.kvp_ip_val.dhcp_enabled;
259  out->kvp_ip_val.addr_family =
260  in->body.kvp_ip_val.addr_family;
261  }
262 
263  return 0;
264 }
265 
266 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op)
267 {
268  struct hv_kvp_ip_msg *in = in_msg;
269  struct hv_kvp_msg *out = out_msg;
270 
271  switch (op) {
272  case KVP_OP_SET_IP_INFO:
273  /*
274  * Transform all parameters into utf8 encoding.
275  */
276  utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr,
279  (__u8 *)out->body.kvp_ip_val.ip_addr,
281 
282  utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net,
285  (__u8 *)out->body.kvp_ip_val.sub_net,
287 
288  utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way,
291  (__u8 *)out->body.kvp_ip_val.gate_way,
293 
294  utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr,
297  (__u8 *)out->body.kvp_ip_val.dns_addr,
299 
300  out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled;
301 
302  default:
303  utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id,
306  (__u8 *)out->body.kvp_ip_val.adapter_id,
308 
309  out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family;
310  }
311 }
312 
313 
314 
315 
316 static void
317 kvp_send_key(struct work_struct *dummy)
318 {
319  struct cn_msg *msg;
320  struct hv_kvp_msg *message;
321  struct hv_kvp_msg *in_msg;
322  __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation;
323  __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool;
324  __u32 val32;
325  __u64 val64;
326 
327  msg = kzalloc(sizeof(*msg) + sizeof(struct hv_kvp_msg) , GFP_ATOMIC);
328  if (!msg)
329  return;
330 
331  msg->id.idx = CN_KVP_IDX;
332  msg->id.val = CN_KVP_VAL;
333 
334  message = (struct hv_kvp_msg *)msg->data;
335  message->kvp_hdr.operation = operation;
336  message->kvp_hdr.pool = pool;
337  in_msg = kvp_transaction.kvp_msg;
338 
339  /*
340  * The key/value strings sent from the host are encoded in
341  * in utf16; convert it to utf8 strings.
342  * The host assures us that the utf16 strings will not exceed
343  * the max lengths specified. We will however, reserve room
344  * for the string terminating character - in the utf16s_utf8s()
345  * function we limit the size of the buffer where the converted
346  * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to gaurantee
347  * that the strings can be properly terminated!
348  */
349 
350  switch (message->kvp_hdr.operation) {
351  case KVP_OP_SET_IP_INFO:
352  process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO);
353  break;
354  case KVP_OP_GET_IP_INFO:
355  process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO);
356  break;
357  case KVP_OP_SET:
358  switch (in_msg->body.kvp_set.data.value_type) {
359  case REG_SZ:
360  /*
361  * The value is a string - utf16 encoding.
362  */
363  message->body.kvp_set.data.value_size =
365  (wchar_t *)in_msg->body.kvp_set.data.value,
366  in_msg->body.kvp_set.data.value_size,
368  message->body.kvp_set.data.value,
370  break;
371 
372  case REG_U32:
373  /*
374  * The value is a 32 bit scalar.
375  * We save this as a utf8 string.
376  */
377  val32 = in_msg->body.kvp_set.data.value_u32;
378  message->body.kvp_set.data.value_size =
379  sprintf(message->body.kvp_set.data.value,
380  "%d", val32) + 1;
381  break;
382 
383  case REG_U64:
384  /*
385  * The value is a 64 bit scalar.
386  * We save this as a utf8 string.
387  */
388  val64 = in_msg->body.kvp_set.data.value_u64;
389  message->body.kvp_set.data.value_size =
390  sprintf(message->body.kvp_set.data.value,
391  "%llu", val64) + 1;
392  break;
393 
394  }
395  case KVP_OP_GET:
396  message->body.kvp_set.data.key_size =
398  (wchar_t *)in_msg->body.kvp_set.data.key,
399  in_msg->body.kvp_set.data.key_size,
401  message->body.kvp_set.data.key,
403  break;
404 
405  case KVP_OP_DELETE:
406  message->body.kvp_delete.key_size =
408  (wchar_t *)in_msg->body.kvp_delete.key,
409  in_msg->body.kvp_delete.key_size,
411  message->body.kvp_delete.key,
413  break;
414 
415  case KVP_OP_ENUMERATE:
416  message->body.kvp_enum_data.index =
417  in_msg->body.kvp_enum_data.index;
418  break;
419  }
420 
421  msg->len = sizeof(struct hv_kvp_msg);
422  cn_netlink_send(msg, 0, GFP_ATOMIC);
423  kfree(msg);
424 
425  return;
426 }
427 
428 /*
429  * Send a response back to the host.
430  */
431 
432 static void
433 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error)
434 {
435  struct hv_kvp_msg *kvp_msg;
436  struct hv_kvp_exchg_msg_value *kvp_data;
437  char *key_name;
438  char *value;
439  struct icmsg_hdr *icmsghdrp;
440  int keylen = 0;
441  int valuelen = 0;
442  u32 buf_len;
443  struct vmbus_channel *channel;
444  u64 req_id;
445  int ret;
446 
447  /*
448  * If a transaction is not active; log and return.
449  */
450 
451  if (!kvp_transaction.active) {
452  /*
453  * This is a spurious call!
454  */
455  pr_warn("KVP: Transaction not active\n");
456  return;
457  }
458  /*
459  * Copy the global state for completing the transaction. Note that
460  * only one transaction can be active at a time.
461  */
462 
463  buf_len = kvp_transaction.recv_len;
464  channel = kvp_transaction.recv_channel;
465  req_id = kvp_transaction.recv_req_id;
466 
467  kvp_transaction.active = false;
468 
469  icmsghdrp = (struct icmsg_hdr *)
470  &recv_buffer[sizeof(struct vmbuspipe_hdr)];
471 
472  if (channel->onchannel_callback == NULL)
473  /*
474  * We have raced with util driver being unloaded;
475  * silently return.
476  */
477  return;
478 
479  icmsghdrp->status = error;
480 
481  /*
482  * If the error parameter is set, terminate the host's enumeration
483  * on this pool.
484  */
485  if (error) {
486  /*
487  * Something failed or we have timedout;
488  * terminate the current host-side iteration.
489  */
490  goto response_done;
491  }
492 
493  kvp_msg = (struct hv_kvp_msg *)
494  &recv_buffer[sizeof(struct vmbuspipe_hdr) +
495  sizeof(struct icmsg_hdr)];
496 
497  switch (kvp_transaction.kvp_msg->kvp_hdr.operation) {
498  case KVP_OP_GET_IP_INFO:
499  ret = process_ob_ipinfo(msg_to_host,
500  (struct hv_kvp_ip_msg *)kvp_msg,
502  if (ret < 0)
503  icmsghdrp->status = HV_E_FAIL;
504 
505  goto response_done;
506  case KVP_OP_SET_IP_INFO:
507  goto response_done;
508  case KVP_OP_GET:
509  kvp_data = &kvp_msg->body.kvp_get.data;
510  goto copy_value;
511 
512  case KVP_OP_SET:
513  case KVP_OP_DELETE:
514  goto response_done;
515 
516  default:
517  break;
518  }
519 
520  kvp_data = &kvp_msg->body.kvp_enum_data.data;
521  key_name = msg_to_host->body.kvp_enum_data.data.key;
522 
523  /*
524  * The windows host expects the key/value pair to be encoded
525  * in utf16. Ensure that the key/value size reported to the host
526  * will be less than or equal to the MAX size (including the
527  * terminating character).
528  */
529  keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN,
530  (wchar_t *) kvp_data->key,
531  (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2);
532  kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */
533 
534 copy_value:
535  value = msg_to_host->body.kvp_enum_data.data.value;
536  valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN,
537  (wchar_t *) kvp_data->value,
539  kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */
540 
541  /*
542  * If the utf8s to utf16s conversion failed; notify host
543  * of the error.
544  */
545  if ((keylen < 0) || (valuelen < 0))
546  icmsghdrp->status = HV_E_FAIL;
547 
548  kvp_data->value_type = REG_SZ; /* all our values are strings */
549 
550 response_done:
551  icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE;
552 
553  vmbus_sendpacket(channel, recv_buffer, buf_len, req_id,
554  VM_PKT_DATA_INBAND, 0);
555 
556 }
557 
558 /*
559  * This callback is invoked when we get a KVP message from the host.
560  * The host ensures that only one KVP transaction can be active at a time.
561  * KVP implementation in Linux needs to forward the key to a user-mde
562  * component to retrive the corresponding value. Consequently, we cannot
563  * respond to the host in the conext of this callback. Since the host
564  * guarantees that at most only one transaction can be active at a time,
565  * we stash away the transaction state in a set of global variables.
566  */
567 
569 {
570  struct vmbus_channel *channel = context;
571  u32 recvlen;
572  u64 requestid;
573 
574  struct hv_kvp_msg *kvp_msg;
575 
576  struct icmsg_hdr *icmsghdrp;
577  struct icmsg_negotiate *negop = NULL;
578 
579  if (kvp_transaction.active) {
580  /*
581  * We will defer processing this callback once
582  * the current transaction is complete.
583  */
584  kvp_transaction.kvp_context = context;
585  return;
586  }
587 
588  vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 2, &recvlen,
589  &requestid);
590 
591  if (recvlen > 0) {
592  icmsghdrp = (struct icmsg_hdr *)&recv_buffer[
593  sizeof(struct vmbuspipe_hdr)];
594 
595  if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
596  vmbus_prep_negotiate_resp(icmsghdrp, negop,
597  recv_buffer, MAX_SRV_VER, MAX_SRV_VER);
598  } else {
599  kvp_msg = (struct hv_kvp_msg *)&recv_buffer[
600  sizeof(struct vmbuspipe_hdr) +
601  sizeof(struct icmsg_hdr)];
602 
603  /*
604  * Stash away this global state for completing the
605  * transaction; note transactions are serialized.
606  */
607 
608  kvp_transaction.recv_len = recvlen;
609  kvp_transaction.recv_channel = channel;
610  kvp_transaction.recv_req_id = requestid;
611  kvp_transaction.active = true;
612  kvp_transaction.kvp_msg = kvp_msg;
613 
614  /*
615  * Get the information from the
616  * user-mode component.
617  * component. This transaction will be
618  * completed when we get the value from
619  * the user-mode component.
620  * Set a timeout to deal with
621  * user-mode not responding.
622  */
623  schedule_work(&kvp_sendkey_work);
624  schedule_delayed_work(&kvp_work, 5*HZ);
625 
626  return;
627 
628  }
629 
630  icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
631  | ICMSGHDRFLAG_RESPONSE;
632 
633  vmbus_sendpacket(channel, recv_buffer,
634  recvlen, requestid,
635  VM_PKT_DATA_INBAND, 0);
636  }
637 
638 }
639 
640 int
641 hv_kvp_init(struct hv_util_service *srv)
642 {
643  int err;
644 
645  err = cn_add_callback(&kvp_id, kvp_name, kvp_cn_callback);
646  if (err)
647  return err;
648  recv_buffer = srv->recv_buffer;
649 
650  /*
651  * When this driver loads, the user level daemon that
652  * processes the host requests may not yet be running.
653  * Defer processing channel callbacks until the daemon
654  * has registered.
655  */
656  kvp_transaction.active = true;
657 
658  return 0;
659 }
660 
661 void hv_kvp_deinit(void)
662 {
663  cn_del_callback(&kvp_id);
664  cancel_delayed_work_sync(&kvp_work);
665  cancel_work_sync(&kvp_sendkey_work);
666 }