Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i387.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  * Gareth Hughes <[email protected]>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21 
22 /*
23  * Were we in an interrupt that interrupted kernel mode?
24  *
25  * For now, with eagerfpu we will return interrupted kernel FPU
26  * state as not-idle. TBD: Ideally we can change the return value
27  * to something like __thread_has_fpu(current). But we need to
28  * be careful of doing __thread_clear_has_fpu() before saving
29  * the FPU etc for supporting nested uses etc. For now, take
30  * the simple route!
31  *
32  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
33  * pair does nothing at all: the thread must not have fpu (so
34  * that we don't try to save the FPU state), and TS must
35  * be set (so that the clts/stts pair does nothing that is
36  * visible in the interrupted kernel thread).
37  */
38 static inline bool interrupted_kernel_fpu_idle(void)
39 {
40  if (use_eager_fpu())
41  return 0;
42 
43  return !__thread_has_fpu(current) &&
44  (read_cr0() & X86_CR0_TS);
45 }
46 
47 /*
48  * Were we in user mode (or vm86 mode) when we were
49  * interrupted?
50  *
51  * Doing kernel_fpu_begin/end() is ok if we are running
52  * in an interrupt context from user mode - we'll just
53  * save the FPU state as required.
54  */
55 static inline bool interrupted_user_mode(void)
56 {
57  struct pt_regs *regs = get_irq_regs();
58  return regs && user_mode_vm(regs);
59 }
60 
61 /*
62  * Can we use the FPU in kernel mode with the
63  * whole "kernel_fpu_begin/end()" sequence?
64  *
65  * It's always ok in process context (ie "not interrupt")
66  * but it is sometimes ok even from an irq.
67  */
68 bool irq_fpu_usable(void)
69 {
70  return !in_interrupt() ||
71  interrupted_user_mode() ||
72  interrupted_kernel_fpu_idle();
73 }
75 
77 {
78  struct task_struct *me = current;
79 
80  if (__thread_has_fpu(me)) {
81  __save_init_fpu(me);
82  __thread_clear_has_fpu(me);
83  /* We do 'stts()' in __kernel_fpu_end() */
84  } else if (!use_eager_fpu()) {
85  this_cpu_write(fpu_owner_task, NULL);
86  clts();
87  }
88 }
90 
91 void __kernel_fpu_end(void)
92 {
93  if (use_eager_fpu())
95  else
96  stts();
97 }
99 
100 void unlazy_fpu(struct task_struct *tsk)
101 {
102  preempt_disable();
103  if (__thread_has_fpu(tsk)) {
104  __save_init_fpu(tsk);
105  __thread_fpu_end(tsk);
106  } else
107  tsk->fpu_counter = 0;
108  preempt_enable();
109 }
110 EXPORT_SYMBOL(unlazy_fpu);
111 
112 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
113 unsigned int xstate_size;
114 EXPORT_SYMBOL_GPL(xstate_size);
115 static struct i387_fxsave_struct fx_scratch __cpuinitdata;
116 
117 static void __cpuinit mxcsr_feature_mask_init(void)
118 {
119  unsigned long mask = 0;
120 
121  if (cpu_has_fxsr) {
122  memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
123  asm volatile("fxsave %0" : : "m" (fx_scratch));
124  mask = fx_scratch.mxcsr_mask;
125  if (mask == 0)
126  mask = 0x0000ffbf;
127  }
129 }
130 
131 static void __cpuinit init_thread_xstate(void)
132 {
133  /*
134  * Note that xstate_size might be overwriten later during
135  * xsave_init().
136  */
137 
138  if (!HAVE_HWFP) {
139  /*
140  * Disable xsave as we do not support it if i387
141  * emulation is enabled.
142  */
143  setup_clear_cpu_cap(X86_FEATURE_XSAVE);
144  setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
145  xstate_size = sizeof(struct i387_soft_struct);
146  return;
147  }
148 
149  if (cpu_has_fxsr)
150  xstate_size = sizeof(struct i387_fxsave_struct);
151  else
152  xstate_size = sizeof(struct i387_fsave_struct);
153 }
154 
155 /*
156  * Called at bootup to set up the initial FPU state that is later cloned
157  * into all processes.
158  */
159 
160 void __cpuinit fpu_init(void)
161 {
162  unsigned long cr0;
163  unsigned long cr4_mask = 0;
164 
165  if (cpu_has_fxsr)
166  cr4_mask |= X86_CR4_OSFXSR;
167  if (cpu_has_xmm)
168  cr4_mask |= X86_CR4_OSXMMEXCPT;
169  if (cr4_mask)
170  set_in_cr4(cr4_mask);
171 
172  cr0 = read_cr0();
173  cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
174  if (!HAVE_HWFP)
175  cr0 |= X86_CR0_EM;
176  write_cr0(cr0);
177 
178  if (!smp_processor_id())
180 
181  mxcsr_feature_mask_init();
182  xsave_init();
183  eager_fpu_init();
184 }
185 
186 void fpu_finit(struct fpu *fpu)
187 {
188  if (!HAVE_HWFP) {
189  finit_soft_fpu(&fpu->state->soft);
190  return;
191  }
192 
193  if (cpu_has_fxsr) {
194  fx_finit(&fpu->state->fxsave);
195  } else {
196  struct i387_fsave_struct *fp = &fpu->state->fsave;
197  memset(fp, 0, xstate_size);
198  fp->cwd = 0xffff037fu;
199  fp->swd = 0xffff0000u;
200  fp->twd = 0xffffffffu;
201  fp->fos = 0xffff0000u;
202  }
203 }
205 
206 /*
207  * The _current_ task is using the FPU for the first time
208  * so initialize it and set the mxcsr to its default
209  * value at reset if we support XMM instructions and then
210  * remember the current task has used the FPU.
211  */
212 int init_fpu(struct task_struct *tsk)
213 {
214  int ret;
215 
216  if (tsk_used_math(tsk)) {
217  if (HAVE_HWFP && tsk == current)
218  unlazy_fpu(tsk);
219  tsk->thread.fpu.last_cpu = ~0;
220  return 0;
221  }
222 
223  /*
224  * Memory allocation at the first usage of the FPU and other state.
225  */
226  ret = fpu_alloc(&tsk->thread.fpu);
227  if (ret)
228  return ret;
229 
230  fpu_finit(&tsk->thread.fpu);
231 
233  return 0;
234 }
235 EXPORT_SYMBOL_GPL(init_fpu);
236 
237 /*
238  * The xstateregs_active() routine is the same as the fpregs_active() routine,
239  * as the "regset->n" for the xstate regset will be updated based on the feature
240  * capabilites supported by the xsave.
241  */
242 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
243 {
244  return tsk_used_math(target) ? regset->n : 0;
245 }
246 
247 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
248 {
249  return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
250 }
251 
252 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
253  unsigned int pos, unsigned int count,
254  void *kbuf, void __user *ubuf)
255 {
256  int ret;
257 
258  if (!cpu_has_fxsr)
259  return -ENODEV;
260 
261  ret = init_fpu(target);
262  if (ret)
263  return ret;
264 
265  sanitize_i387_state(target);
266 
267  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
268  &target->thread.fpu.state->fxsave, 0, -1);
269 }
270 
271 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
272  unsigned int pos, unsigned int count,
273  const void *kbuf, const void __user *ubuf)
274 {
275  int ret;
276 
277  if (!cpu_has_fxsr)
278  return -ENODEV;
279 
280  ret = init_fpu(target);
281  if (ret)
282  return ret;
283 
284  sanitize_i387_state(target);
285 
286  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
287  &target->thread.fpu.state->fxsave, 0, -1);
288 
289  /*
290  * mxcsr reserved bits must be masked to zero for security reasons.
291  */
292  target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
293 
294  /*
295  * update the header bits in the xsave header, indicating the
296  * presence of FP and SSE state.
297  */
298  if (cpu_has_xsave)
299  target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
300 
301  return ret;
302 }
303 
304 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
305  unsigned int pos, unsigned int count,
306  void *kbuf, void __user *ubuf)
307 {
308  int ret;
309 
310  if (!cpu_has_xsave)
311  return -ENODEV;
312 
313  ret = init_fpu(target);
314  if (ret)
315  return ret;
316 
317  /*
318  * Copy the 48bytes defined by the software first into the xstate
319  * memory layout in the thread struct, so that we can copy the entire
320  * xstateregs to the user using one user_regset_copyout().
321  */
322  memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
324 
325  /*
326  * Copy the xstate memory layout.
327  */
328  ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
329  &target->thread.fpu.state->xsave, 0, -1);
330  return ret;
331 }
332 
333 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
334  unsigned int pos, unsigned int count,
335  const void *kbuf, const void __user *ubuf)
336 {
337  int ret;
338  struct xsave_hdr_struct *xsave_hdr;
339 
340  if (!cpu_has_xsave)
341  return -ENODEV;
342 
343  ret = init_fpu(target);
344  if (ret)
345  return ret;
346 
347  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
348  &target->thread.fpu.state->xsave, 0, -1);
349 
350  /*
351  * mxcsr reserved bits must be masked to zero for security reasons.
352  */
353  target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
354 
355  xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
356 
357  xsave_hdr->xstate_bv &= pcntxt_mask;
358  /*
359  * These bits must be zero.
360  */
361  xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
362 
363  return ret;
364 }
365 
366 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
367 
368 /*
369  * FPU tag word conversions.
370  */
371 
372 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
373 {
374  unsigned int tmp; /* to avoid 16 bit prefixes in the code */
375 
376  /* Transform each pair of bits into 01 (valid) or 00 (empty) */
377  tmp = ~twd;
378  tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
379  /* and move the valid bits to the lower byte. */
380  tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
381  tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
382  tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
383 
384  return tmp;
385 }
386 
387 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
388 #define FP_EXP_TAG_VALID 0
389 #define FP_EXP_TAG_ZERO 1
390 #define FP_EXP_TAG_SPECIAL 2
391 #define FP_EXP_TAG_EMPTY 3
392 
393 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
394 {
395  struct _fpxreg *st;
396  u32 tos = (fxsave->swd >> 11) & 7;
397  u32 twd = (unsigned long) fxsave->twd;
398  u32 tag;
399  u32 ret = 0xffff0000u;
400  int i;
401 
402  for (i = 0; i < 8; i++, twd >>= 1) {
403  if (twd & 0x1) {
404  st = FPREG_ADDR(fxsave, (i - tos) & 7);
405 
406  switch (st->exponent & 0x7fff) {
407  case 0x7fff:
408  tag = FP_EXP_TAG_SPECIAL;
409  break;
410  case 0x0000:
411  if (!st->significand[0] &&
412  !st->significand[1] &&
413  !st->significand[2] &&
414  !st->significand[3])
415  tag = FP_EXP_TAG_ZERO;
416  else
417  tag = FP_EXP_TAG_SPECIAL;
418  break;
419  default:
420  if (st->significand[3] & 0x8000)
421  tag = FP_EXP_TAG_VALID;
422  else
423  tag = FP_EXP_TAG_SPECIAL;
424  break;
425  }
426  } else {
427  tag = FP_EXP_TAG_EMPTY;
428  }
429  ret |= tag << (2 * i);
430  }
431  return ret;
432 }
433 
434 /*
435  * FXSR floating point environment conversions.
436  */
437 
438 void
440 {
441  struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
442  struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
443  struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
444  int i;
445 
446  env->cwd = fxsave->cwd | 0xffff0000u;
447  env->swd = fxsave->swd | 0xffff0000u;
448  env->twd = twd_fxsr_to_i387(fxsave);
449 
450 #ifdef CONFIG_X86_64
451  env->fip = fxsave->rip;
452  env->foo = fxsave->rdp;
453  /*
454  * should be actually ds/cs at fpu exception time, but
455  * that information is not available in 64bit mode.
456  */
457  env->fcs = task_pt_regs(tsk)->cs;
458  if (tsk == current) {
459  savesegment(ds, env->fos);
460  } else {
461  env->fos = tsk->thread.ds;
462  }
463  env->fos |= 0xffff0000;
464 #else
465  env->fip = fxsave->fip;
466  env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
467  env->foo = fxsave->foo;
468  env->fos = fxsave->fos;
469 #endif
470 
471  for (i = 0; i < 8; ++i)
472  memcpy(&to[i], &from[i], sizeof(to[0]));
473 }
474 
475 void convert_to_fxsr(struct task_struct *tsk,
476  const struct user_i387_ia32_struct *env)
477 
478 {
479  struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
480  struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
481  struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
482  int i;
483 
484  fxsave->cwd = env->cwd;
485  fxsave->swd = env->swd;
486  fxsave->twd = twd_i387_to_fxsr(env->twd);
487  fxsave->fop = (u16) ((u32) env->fcs >> 16);
488 #ifdef CONFIG_X86_64
489  fxsave->rip = env->fip;
490  fxsave->rdp = env->foo;
491  /* cs and ds ignored */
492 #else
493  fxsave->fip = env->fip;
494  fxsave->fcs = (env->fcs & 0xffff);
495  fxsave->foo = env->foo;
496  fxsave->fos = env->fos;
497 #endif
498 
499  for (i = 0; i < 8; ++i)
500  memcpy(&to[i], &from[i], sizeof(from[0]));
501 }
502 
503 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
504  unsigned int pos, unsigned int count,
505  void *kbuf, void __user *ubuf)
506 {
507  struct user_i387_ia32_struct env;
508  int ret;
509 
510  ret = init_fpu(target);
511  if (ret)
512  return ret;
513 
514  if (!HAVE_HWFP)
515  return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
516 
517  if (!cpu_has_fxsr) {
518  return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
519  &target->thread.fpu.state->fsave, 0,
520  -1);
521  }
522 
523  sanitize_i387_state(target);
524 
525  if (kbuf && pos == 0 && count == sizeof(env)) {
526  convert_from_fxsr(kbuf, target);
527  return 0;
528  }
529 
530  convert_from_fxsr(&env, target);
531 
532  return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
533 }
534 
535 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
536  unsigned int pos, unsigned int count,
537  const void *kbuf, const void __user *ubuf)
538 {
539  struct user_i387_ia32_struct env;
540  int ret;
541 
542  ret = init_fpu(target);
543  if (ret)
544  return ret;
545 
546  sanitize_i387_state(target);
547 
548  if (!HAVE_HWFP)
549  return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
550 
551  if (!cpu_has_fxsr) {
552  return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
553  &target->thread.fpu.state->fsave, 0, -1);
554  }
555 
556  if (pos > 0 || count < sizeof(env))
557  convert_from_fxsr(&env, target);
558 
559  ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
560  if (!ret)
561  convert_to_fxsr(target, &env);
562 
563  /*
564  * update the header bit in the xsave header, indicating the
565  * presence of FP.
566  */
567  if (cpu_has_xsave)
568  target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
569  return ret;
570 }
571 
572 /*
573  * FPU state for core dumps.
574  * This is only used for a.out dumps now.
575  * It is declared generically using elf_fpregset_t (which is
576  * struct user_i387_struct) but is in fact only used for 32-bit
577  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
578  */
579 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
580 {
581  struct task_struct *tsk = current;
582  int fpvalid;
583 
584  fpvalid = !!used_math();
585  if (fpvalid)
586  fpvalid = !fpregs_get(tsk, NULL,
587  0, sizeof(struct user_i387_ia32_struct),
588  fpu, NULL);
589 
590  return fpvalid;
591 }
593 
594 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */