Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mm.h
Go to the documentation of this file.
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46 
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48 
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51 
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60 
61 extern struct kmem_cache *vm_area_cachep;
62 
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66 
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69 
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_NONE 0x00000000
74 
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79 
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85 
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89 
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92 
93  /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96 
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
105 
106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
110 
111 #if defined(CONFIG_X86)
112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121 #endif
122 
123 #ifndef VM_GROWSUP
124 # define VM_GROWSUP VM_NONE
125 #endif
126 
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129 
130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132 #endif
133 
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #else
137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #endif
139 
140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145 
146 /*
147  * Special vmas that are non-mergable, non-mlock()able.
148  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149  */
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151 
152 /*
153  * mapping from the currently active vm_flags protection bits (the
154  * low four bits) to a page protection mask..
155  */
156 extern pgprot_t protection_map[16];
157 
158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
164 #define FAULT_FLAG_TRIED 0x40 /* second try */
165 
166 /*
167  * vm_fault is filled by the the pagefault handler and passed to the vma's
168  * ->fault function. The vma's ->fault is responsible for returning a bitmask
169  * of VM_FAULT_xxx flags that give details about how the fault was handled.
170  *
171  * pgoff should be used in favour of virtual_address, if possible. If pgoff
172  * is used, one may implement ->remap_pages to get nonlinear mapping support.
173  */
174 struct vm_fault {
175  unsigned int flags; /* FAULT_FLAG_xxx flags */
176  pgoff_t pgoff; /* Logical page offset based on vma */
177  void __user *virtual_address; /* Faulting virtual address */
178 
179  struct page *page; /* ->fault handlers should return a
180  * page here, unless VM_FAULT_NOPAGE
181  * is set (which is also implied by
182  * VM_FAULT_ERROR).
183  */
184 };
185 
186 /*
187  * These are the virtual MM functions - opening of an area, closing and
188  * unmapping it (needed to keep files on disk up-to-date etc), pointer
189  * to the functions called when a no-page or a wp-page exception occurs.
190  */
191 struct vm_operations_struct {
192  void (*open)(struct vm_area_struct * area);
193  void (*close)(struct vm_area_struct * area);
194  int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
195 
196  /* notification that a previously read-only page is about to become
197  * writable, if an error is returned it will cause a SIGBUS */
198  int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
199 
200  /* called by access_process_vm when get_user_pages() fails, typically
201  * for use by special VMAs that can switch between memory and hardware
202  */
203  int (*access)(struct vm_area_struct *vma, unsigned long addr,
204  void *buf, int len, int write);
205 #ifdef CONFIG_NUMA
206  /*
207  * set_policy() op must add a reference to any non-NULL @new mempolicy
208  * to hold the policy upon return. Caller should pass NULL @new to
209  * remove a policy and fall back to surrounding context--i.e. do not
210  * install a MPOL_DEFAULT policy, nor the task or system default
211  * mempolicy.
212  */
213  int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
214 
215  /*
216  * get_policy() op must add reference [mpol_get()] to any policy at
217  * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218  * in mm/mempolicy.c will do this automatically.
219  * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220  * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221  * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222  * must return NULL--i.e., do not "fallback" to task or system default
223  * policy.
224  */
225  struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226  unsigned long addr);
227  int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228  const nodemask_t *to, unsigned long flags);
229 #endif
230  /* called by sys_remap_file_pages() to populate non-linear mapping */
231  int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232  unsigned long size, pgoff_t pgoff);
233 };
234 
235 struct mmu_gather;
236 struct inode;
237 
238 #define page_private(page) ((page)->private)
239 #define set_page_private(page, v) ((page)->private = (v))
240 
241 /* It's valid only if the page is free path or free_list */
242 static inline void set_freepage_migratetype(struct page *page, int migratetype)
243 {
244  page->index = migratetype;
245 }
246 
247 /* It's valid only if the page is free path or free_list */
248 static inline int get_freepage_migratetype(struct page *page)
249 {
250  return page->index;
251 }
252 
253 /*
254  * FIXME: take this include out, include page-flags.h in
255  * files which need it (119 of them)
256  */
257 #include <linux/page-flags.h>
258 #include <linux/huge_mm.h>
259 
260 /*
261  * Methods to modify the page usage count.
262  *
263  * What counts for a page usage:
264  * - cache mapping (page->mapping)
265  * - private data (page->private)
266  * - page mapped in a task's page tables, each mapping
267  * is counted separately
268  *
269  * Also, many kernel routines increase the page count before a critical
270  * routine so they can be sure the page doesn't go away from under them.
271  */
272 
273 /*
274  * Drop a ref, return true if the refcount fell to zero (the page has no users)
275  */
276 static inline int put_page_testzero(struct page *page)
277 {
278  VM_BUG_ON(atomic_read(&page->_count) == 0);
279  return atomic_dec_and_test(&page->_count);
280 }
281 
282 /*
283  * Try to grab a ref unless the page has a refcount of zero, return false if
284  * that is the case.
285  */
286 static inline int get_page_unless_zero(struct page *page)
287 {
288  return atomic_inc_not_zero(&page->_count);
289 }
290 
291 extern int page_is_ram(unsigned long pfn);
292 
293 /* Support for virtually mapped pages */
294 struct page *vmalloc_to_page(const void *addr);
295 unsigned long vmalloc_to_pfn(const void *addr);
296 
297 /*
298  * Determine if an address is within the vmalloc range
299  *
300  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301  * is no special casing required.
302  */
303 static inline int is_vmalloc_addr(const void *x)
304 {
305 #ifdef CONFIG_MMU
306  unsigned long addr = (unsigned long)x;
307 
308  return addr >= VMALLOC_START && addr < VMALLOC_END;
309 #else
310  return 0;
311 #endif
312 }
313 #ifdef CONFIG_MMU
314 extern int is_vmalloc_or_module_addr(const void *x);
315 #else
316 static inline int is_vmalloc_or_module_addr(const void *x)
317 {
318  return 0;
319 }
320 #endif
321 
322 static inline void compound_lock(struct page *page)
323 {
324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
325  VM_BUG_ON(PageSlab(page));
326  bit_spin_lock(PG_compound_lock, &page->flags);
327 #endif
328 }
329 
330 static inline void compound_unlock(struct page *page)
331 {
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333  VM_BUG_ON(PageSlab(page));
334  bit_spin_unlock(PG_compound_lock, &page->flags);
335 #endif
336 }
337 
338 static inline unsigned long compound_lock_irqsave(struct page *page)
339 {
340  unsigned long uninitialized_var(flags);
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343  compound_lock(page);
344 #endif
345  return flags;
346 }
347 
348 static inline void compound_unlock_irqrestore(struct page *page,
349  unsigned long flags)
350 {
351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
352  compound_unlock(page);
353  local_irq_restore(flags);
354 #endif
355 }
356 
357 static inline struct page *compound_head(struct page *page)
358 {
359  if (unlikely(PageTail(page)))
360  return page->first_page;
361  return page;
362 }
363 
364 /*
365  * The atomic page->_mapcount, starts from -1: so that transitions
366  * both from it and to it can be tracked, using atomic_inc_and_test
367  * and atomic_add_negative(-1).
368  */
369 static inline void reset_page_mapcount(struct page *page)
370 {
371  atomic_set(&(page)->_mapcount, -1);
372 }
373 
374 static inline int page_mapcount(struct page *page)
375 {
376  return atomic_read(&(page)->_mapcount) + 1;
377 }
378 
379 static inline int page_count(struct page *page)
380 {
381  return atomic_read(&compound_head(page)->_count);
382 }
383 
384 static inline void get_huge_page_tail(struct page *page)
385 {
386  /*
387  * __split_huge_page_refcount() cannot run
388  * from under us.
389  */
390  VM_BUG_ON(page_mapcount(page) < 0);
391  VM_BUG_ON(atomic_read(&page->_count) != 0);
392  atomic_inc(&page->_mapcount);
393 }
394 
395 extern bool __get_page_tail(struct page *page);
396 
397 static inline void get_page(struct page *page)
398 {
399  if (unlikely(PageTail(page)))
400  if (likely(__get_page_tail(page)))
401  return;
402  /*
403  * Getting a normal page or the head of a compound page
404  * requires to already have an elevated page->_count.
405  */
406  VM_BUG_ON(atomic_read(&page->_count) <= 0);
407  atomic_inc(&page->_count);
408 }
409 
410 static inline struct page *virt_to_head_page(const void *x)
411 {
412  struct page *page = virt_to_page(x);
413  return compound_head(page);
414 }
415 
416 /*
417  * Setup the page count before being freed into the page allocator for
418  * the first time (boot or memory hotplug)
419  */
420 static inline void init_page_count(struct page *page)
421 {
422  atomic_set(&page->_count, 1);
423 }
424 
425 /*
426  * PageBuddy() indicate that the page is free and in the buddy system
427  * (see mm/page_alloc.c).
428  *
429  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430  * -2 so that an underflow of the page_mapcount() won't be mistaken
431  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432  * efficiently by most CPU architectures.
433  */
434 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435 
436 static inline int PageBuddy(struct page *page)
437 {
438  return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
439 }
440 
441 static inline void __SetPageBuddy(struct page *page)
442 {
443  VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
444  atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
445 }
446 
447 static inline void __ClearPageBuddy(struct page *page)
448 {
449  VM_BUG_ON(!PageBuddy(page));
450  atomic_set(&page->_mapcount, -1);
451 }
452 
453 void put_page(struct page *page);
454 void put_pages_list(struct list_head *pages);
455 
456 void split_page(struct page *page, unsigned int order);
457 int split_free_page(struct page *page);
458 int capture_free_page(struct page *page, int alloc_order, int migratetype);
459 
460 /*
461  * Compound pages have a destructor function. Provide a
462  * prototype for that function and accessor functions.
463  * These are _only_ valid on the head of a PG_compound page.
464  */
465 typedef void compound_page_dtor(struct page *);
466 
467 static inline void set_compound_page_dtor(struct page *page,
468  compound_page_dtor *dtor)
469 {
470  page[1].lru.next = (void *)dtor;
471 }
472 
473 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474 {
475  return (compound_page_dtor *)page[1].lru.next;
476 }
477 
478 static inline int compound_order(struct page *page)
479 {
480  if (!PageHead(page))
481  return 0;
482  return (unsigned long)page[1].lru.prev;
483 }
484 
485 static inline int compound_trans_order(struct page *page)
486 {
487  int order;
488  unsigned long flags;
489 
490  if (!PageHead(page))
491  return 0;
492 
493  flags = compound_lock_irqsave(page);
494  order = compound_order(page);
495  compound_unlock_irqrestore(page, flags);
496  return order;
497 }
498 
499 static inline void set_compound_order(struct page *page, unsigned long order)
500 {
501  page[1].lru.prev = (void *)order;
502 }
503 
504 #ifdef CONFIG_MMU
505 /*
506  * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507  * servicing faults for write access. In the normal case, do always want
508  * pte_mkwrite. But get_user_pages can cause write faults for mappings
509  * that do not have writing enabled, when used by access_process_vm.
510  */
511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512 {
513  if (likely(vma->vm_flags & VM_WRITE))
514  pte = pte_mkwrite(pte);
515  return pte;
516 }
517 #endif
518 
519 /*
520  * Multiple processes may "see" the same page. E.g. for untouched
521  * mappings of /dev/null, all processes see the same page full of
522  * zeroes, and text pages of executables and shared libraries have
523  * only one copy in memory, at most, normally.
524  *
525  * For the non-reserved pages, page_count(page) denotes a reference count.
526  * page_count() == 0 means the page is free. page->lru is then used for
527  * freelist management in the buddy allocator.
528  * page_count() > 0 means the page has been allocated.
529  *
530  * Pages are allocated by the slab allocator in order to provide memory
531  * to kmalloc and kmem_cache_alloc. In this case, the management of the
532  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533  * unless a particular usage is carefully commented. (the responsibility of
534  * freeing the kmalloc memory is the caller's, of course).
535  *
536  * A page may be used by anyone else who does a __get_free_page().
537  * In this case, page_count still tracks the references, and should only
538  * be used through the normal accessor functions. The top bits of page->flags
539  * and page->virtual store page management information, but all other fields
540  * are unused and could be used privately, carefully. The management of this
541  * page is the responsibility of the one who allocated it, and those who have
542  * subsequently been given references to it.
543  *
544  * The other pages (we may call them "pagecache pages") are completely
545  * managed by the Linux memory manager: I/O, buffers, swapping etc.
546  * The following discussion applies only to them.
547  *
548  * A pagecache page contains an opaque `private' member, which belongs to the
549  * page's address_space. Usually, this is the address of a circular list of
550  * the page's disk buffers. PG_private must be set to tell the VM to call
551  * into the filesystem to release these pages.
552  *
553  * A page may belong to an inode's memory mapping. In this case, page->mapping
554  * is the pointer to the inode, and page->index is the file offset of the page,
555  * in units of PAGE_CACHE_SIZE.
556  *
557  * If pagecache pages are not associated with an inode, they are said to be
558  * anonymous pages. These may become associated with the swapcache, and in that
559  * case PG_swapcache is set, and page->private is an offset into the swapcache.
560  *
561  * In either case (swapcache or inode backed), the pagecache itself holds one
562  * reference to the page. Setting PG_private should also increment the
563  * refcount. The each user mapping also has a reference to the page.
564  *
565  * The pagecache pages are stored in a per-mapping radix tree, which is
566  * rooted at mapping->page_tree, and indexed by offset.
567  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568  * lists, we instead now tag pages as dirty/writeback in the radix tree.
569  *
570  * All pagecache pages may be subject to I/O:
571  * - inode pages may need to be read from disk,
572  * - inode pages which have been modified and are MAP_SHARED may need
573  * to be written back to the inode on disk,
574  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575  * modified may need to be swapped out to swap space and (later) to be read
576  * back into memory.
577  */
578 
579 /*
580  * The zone field is never updated after free_area_init_core()
581  * sets it, so none of the operations on it need to be atomic.
582  */
583 
584 
585 /*
586  * page->flags layout:
587  *
588  * There are three possibilities for how page->flags get
589  * laid out. The first is for the normal case, without
590  * sparsemem. The second is for sparsemem when there is
591  * plenty of space for node and section. The last is when
592  * we have run out of space and have to fall back to an
593  * alternate (slower) way of determining the node.
594  *
595  * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
596  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
597  * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
598  */
599 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
600 #define SECTIONS_WIDTH SECTIONS_SHIFT
601 #else
602 #define SECTIONS_WIDTH 0
603 #endif
604 
605 #define ZONES_WIDTH ZONES_SHIFT
606 
607 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
608 #define NODES_WIDTH NODES_SHIFT
609 #else
610 #ifdef CONFIG_SPARSEMEM_VMEMMAP
611 #error "Vmemmap: No space for nodes field in page flags"
612 #endif
613 #define NODES_WIDTH 0
614 #endif
615 
616 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
617 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
618 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
619 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
620 
621 /*
622  * We are going to use the flags for the page to node mapping if its in
623  * there. This includes the case where there is no node, so it is implicit.
624  */
625 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
626 #define NODE_NOT_IN_PAGE_FLAGS
627 #endif
628 
629 /*
630  * Define the bit shifts to access each section. For non-existent
631  * sections we define the shift as 0; that plus a 0 mask ensures
632  * the compiler will optimise away reference to them.
633  */
634 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
637 
638 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
639 #ifdef NODE_NOT_IN_PAGE_FLAGS
640 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
641 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
642  SECTIONS_PGOFF : ZONES_PGOFF)
643 #else
644 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
645 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
646  NODES_PGOFF : ZONES_PGOFF)
647 #endif
648 
649 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
650 
651 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653 #endif
654 
655 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
656 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
657 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
658 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
659 
660 static inline enum zone_type page_zonenum(const struct page *page)
661 {
662  return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
663 }
664 
665 /*
666  * The identification function is only used by the buddy allocator for
667  * determining if two pages could be buddies. We are not really
668  * identifying a zone since we could be using a the section number
669  * id if we have not node id available in page flags.
670  * We guarantee only that it will return the same value for two
671  * combinable pages in a zone.
672  */
673 static inline int page_zone_id(struct page *page)
674 {
675  return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
676 }
677 
678 static inline int zone_to_nid(struct zone *zone)
679 {
680 #ifdef CONFIG_NUMA
681  return zone->node;
682 #else
683  return 0;
684 #endif
685 }
686 
687 #ifdef NODE_NOT_IN_PAGE_FLAGS
688 extern int page_to_nid(const struct page *page);
689 #else
690 static inline int page_to_nid(const struct page *page)
691 {
692  return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
693 }
694 #endif
695 
696 static inline struct zone *page_zone(const struct page *page)
697 {
698  return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
699 }
700 
701 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
702 static inline void set_page_section(struct page *page, unsigned long section)
703 {
704  page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
705  page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
706 }
707 
708 static inline unsigned long page_to_section(const struct page *page)
709 {
710  return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
711 }
712 #endif
713 
714 static inline void set_page_zone(struct page *page, enum zone_type zone)
715 {
716  page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
717  page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
718 }
719 
720 static inline void set_page_node(struct page *page, unsigned long node)
721 {
722  page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
723  page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
724 }
725 
726 static inline void set_page_links(struct page *page, enum zone_type zone,
727  unsigned long node, unsigned long pfn)
728 {
729  set_page_zone(page, zone);
730  set_page_node(page, node);
731 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732  set_page_section(page, pfn_to_section_nr(pfn));
733 #endif
734 }
735 
736 /*
737  * Some inline functions in vmstat.h depend on page_zone()
738  */
739 #include <linux/vmstat.h>
740 
741 static __always_inline void *lowmem_page_address(const struct page *page)
742 {
743  return __va(PFN_PHYS(page_to_pfn(page)));
744 }
745 
746 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
747 #define HASHED_PAGE_VIRTUAL
748 #endif
749 
750 #if defined(WANT_PAGE_VIRTUAL)
751 #define page_address(page) ((page)->virtual)
752 #define set_page_address(page, address) \
753  do { \
754  (page)->virtual = (address); \
755  } while(0)
756 #define page_address_init() do { } while(0)
757 #endif
758 
759 #if defined(HASHED_PAGE_VIRTUAL)
760 void *page_address(const struct page *page);
761 void set_page_address(struct page *page, void *virtual);
762 void page_address_init(void);
763 #endif
764 
765 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
766 #define page_address(page) lowmem_page_address(page)
767 #define set_page_address(page, address) do { } while(0)
768 #define page_address_init() do { } while(0)
769 #endif
770 
771 /*
772  * On an anonymous page mapped into a user virtual memory area,
773  * page->mapping points to its anon_vma, not to a struct address_space;
774  * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
775  *
776  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
777  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
778  * and then page->mapping points, not to an anon_vma, but to a private
779  * structure which KSM associates with that merged page. See ksm.h.
780  *
781  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
782  *
783  * Please note that, confusingly, "page_mapping" refers to the inode
784  * address_space which maps the page from disk; whereas "page_mapped"
785  * refers to user virtual address space into which the page is mapped.
786  */
787 #define PAGE_MAPPING_ANON 1
788 #define PAGE_MAPPING_KSM 2
789 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
790 
791 extern struct address_space swapper_space;
792 static inline struct address_space *page_mapping(struct page *page)
793 {
794  struct address_space *mapping = page->mapping;
795 
796  VM_BUG_ON(PageSlab(page));
797  if (unlikely(PageSwapCache(page)))
798  mapping = &swapper_space;
799  else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
800  mapping = NULL;
801  return mapping;
802 }
803 
804 /* Neutral page->mapping pointer to address_space or anon_vma or other */
805 static inline void *page_rmapping(struct page *page)
806 {
807  return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
808 }
809 
810 extern struct address_space *__page_file_mapping(struct page *);
811 
812 static inline
813 struct address_space *page_file_mapping(struct page *page)
814 {
815  if (unlikely(PageSwapCache(page)))
816  return __page_file_mapping(page);
817 
818  return page->mapping;
819 }
820 
821 static inline int PageAnon(struct page *page)
822 {
823  return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
824 }
825 
826 /*
827  * Return the pagecache index of the passed page. Regular pagecache pages
828  * use ->index whereas swapcache pages use ->private
829  */
830 static inline pgoff_t page_index(struct page *page)
831 {
832  if (unlikely(PageSwapCache(page)))
833  return page_private(page);
834  return page->index;
835 }
836 
837 extern pgoff_t __page_file_index(struct page *page);
838 
839 /*
840  * Return the file index of the page. Regular pagecache pages use ->index
841  * whereas swapcache pages use swp_offset(->private)
842  */
843 static inline pgoff_t page_file_index(struct page *page)
844 {
845  if (unlikely(PageSwapCache(page)))
846  return __page_file_index(page);
847 
848  return page->index;
849 }
850 
851 /*
852  * Return true if this page is mapped into pagetables.
853  */
854 static inline int page_mapped(struct page *page)
855 {
856  return atomic_read(&(page)->_mapcount) >= 0;
857 }
858 
859 /*
860  * Different kinds of faults, as returned by handle_mm_fault().
861  * Used to decide whether a process gets delivered SIGBUS or
862  * just gets major/minor fault counters bumped up.
863  */
864 
865 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
866 
867 #define VM_FAULT_OOM 0x0001
868 #define VM_FAULT_SIGBUS 0x0002
869 #define VM_FAULT_MAJOR 0x0004
870 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
871 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
872 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
873 
874 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
875 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
876 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
877 
878 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
879 
880 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
881  VM_FAULT_HWPOISON_LARGE)
882 
883 /* Encode hstate index for a hwpoisoned large page */
884 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
885 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
886 
887 /*
888  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
889  */
890 extern void pagefault_out_of_memory(void);
891 
892 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
893 
894 /*
895  * Flags passed to show_mem() and show_free_areas() to suppress output in
896  * various contexts.
897  */
898 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
899 
900 extern void show_free_areas(unsigned int flags);
901 extern bool skip_free_areas_node(unsigned int flags, int nid);
902 
903 int shmem_zero_setup(struct vm_area_struct *);
904 
905 extern int can_do_mlock(void);
906 extern int user_shm_lock(size_t, struct user_struct *);
907 extern void user_shm_unlock(size_t, struct user_struct *);
908 
909 /*
910  * Parameter block passed down to zap_pte_range in exceptional cases.
911  */
912 struct zap_details {
913  struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
914  struct address_space *check_mapping; /* Check page->mapping if set */
915  pgoff_t first_index; /* Lowest page->index to unmap */
916  pgoff_t last_index; /* Highest page->index to unmap */
917 };
918 
919 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
920  pte_t pte);
921 
922 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
923  unsigned long size);
924 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
925  unsigned long size, struct zap_details *);
926 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
927  unsigned long start, unsigned long end);
928 
945 struct mm_walk {
946  int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
947  int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
948  int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
949  int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
950  int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
951  int (*hugetlb_entry)(pte_t *, unsigned long,
952  unsigned long, unsigned long, struct mm_walk *);
953  struct mm_struct *mm;
954  void *private;
955 };
956 
957 int walk_page_range(unsigned long addr, unsigned long end,
958  struct mm_walk *walk);
959 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
960  unsigned long end, unsigned long floor, unsigned long ceiling);
961 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
962  struct vm_area_struct *vma);
963 void unmap_mapping_range(struct address_space *mapping,
964  loff_t const holebegin, loff_t const holelen, int even_cows);
965 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
966  unsigned long *pfn);
967 int follow_phys(struct vm_area_struct *vma, unsigned long address,
968  unsigned int flags, unsigned long *prot, resource_size_t *phys);
969 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
970  void *buf, int len, int write);
971 
972 static inline void unmap_shared_mapping_range(struct address_space *mapping,
973  loff_t const holebegin, loff_t const holelen)
974 {
975  unmap_mapping_range(mapping, holebegin, holelen, 0);
976 }
977 
978 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
979 extern void truncate_setsize(struct inode *inode, loff_t newsize);
980 extern int vmtruncate(struct inode *inode, loff_t offset);
981 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
982 int truncate_inode_page(struct address_space *mapping, struct page *page);
983 int generic_error_remove_page(struct address_space *mapping, struct page *page);
984 int invalidate_inode_page(struct page *page);
985 
986 #ifdef CONFIG_MMU
987 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
988  unsigned long address, unsigned int flags);
989 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
990  unsigned long address, unsigned int fault_flags);
991 #else
992 static inline int handle_mm_fault(struct mm_struct *mm,
993  struct vm_area_struct *vma, unsigned long address,
994  unsigned int flags)
995 {
996  /* should never happen if there's no MMU */
997  BUG();
998  return VM_FAULT_SIGBUS;
999 }
1000 static inline int fixup_user_fault(struct task_struct *tsk,
1001  struct mm_struct *mm, unsigned long address,
1002  unsigned int fault_flags)
1003 {
1004  /* should never happen if there's no MMU */
1005  BUG();
1006  return -EFAULT;
1007 }
1008 #endif
1009 
1010 extern int make_pages_present(unsigned long addr, unsigned long end);
1011 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1012 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1013  void *buf, int len, int write);
1014 
1015 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1016  unsigned long start, int len, unsigned int foll_flags,
1017  struct page **pages, struct vm_area_struct **vmas,
1018  int *nonblocking);
1019 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1020  unsigned long start, int nr_pages, int write, int force,
1021  struct page **pages, struct vm_area_struct **vmas);
1022 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1023  struct page **pages);
1024 struct kvec;
1025 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1026  struct page **pages);
1027 int get_kernel_page(unsigned long start, int write, struct page **pages);
1028 struct page *get_dump_page(unsigned long addr);
1029 
1030 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1031 extern void do_invalidatepage(struct page *page, unsigned long offset);
1032 
1033 int __set_page_dirty_nobuffers(struct page *page);
1034 int __set_page_dirty_no_writeback(struct page *page);
1036  struct page *page);
1037 void account_page_dirtied(struct page *page, struct address_space *mapping);
1038 void account_page_writeback(struct page *page);
1039 int set_page_dirty(struct page *page);
1040 int set_page_dirty_lock(struct page *page);
1041 int clear_page_dirty_for_io(struct page *page);
1042 
1043 /* Is the vma a continuation of the stack vma above it? */
1044 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1045 {
1046  return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1047 }
1048 
1049 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1050  unsigned long addr)
1051 {
1052  return (vma->vm_flags & VM_GROWSDOWN) &&
1053  (vma->vm_start == addr) &&
1054  !vma_growsdown(vma->vm_prev, addr);
1055 }
1056 
1057 /* Is the vma a continuation of the stack vma below it? */
1058 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1059 {
1060  return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1061 }
1062 
1063 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1064  unsigned long addr)
1065 {
1066  return (vma->vm_flags & VM_GROWSUP) &&
1067  (vma->vm_end == addr) &&
1068  !vma_growsup(vma->vm_next, addr);
1069 }
1070 
1071 extern pid_t
1072 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1073 
1074 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1075  unsigned long old_addr, struct vm_area_struct *new_vma,
1076  unsigned long new_addr, unsigned long len,
1077  bool need_rmap_locks);
1078 extern unsigned long do_mremap(unsigned long addr,
1079  unsigned long old_len, unsigned long new_len,
1080  unsigned long flags, unsigned long new_addr);
1081 extern int mprotect_fixup(struct vm_area_struct *vma,
1082  struct vm_area_struct **pprev, unsigned long start,
1083  unsigned long end, unsigned long newflags);
1084 
1085 /*
1086  * doesn't attempt to fault and will return short.
1087  */
1088 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1089  struct page **pages);
1090 /*
1091  * per-process(per-mm_struct) statistics.
1092  */
1093 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1094 {
1095  long val = atomic_long_read(&mm->rss_stat.count[member]);
1096 
1097 #ifdef SPLIT_RSS_COUNTING
1098  /*
1099  * counter is updated in asynchronous manner and may go to minus.
1100  * But it's never be expected number for users.
1101  */
1102  if (val < 0)
1103  val = 0;
1104 #endif
1105  return (unsigned long)val;
1106 }
1107 
1108 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1109 {
1110  atomic_long_add(value, &mm->rss_stat.count[member]);
1111 }
1112 
1113 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1114 {
1115  atomic_long_inc(&mm->rss_stat.count[member]);
1116 }
1117 
1118 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1119 {
1120  atomic_long_dec(&mm->rss_stat.count[member]);
1121 }
1122 
1123 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1124 {
1125  return get_mm_counter(mm, MM_FILEPAGES) +
1126  get_mm_counter(mm, MM_ANONPAGES);
1127 }
1128 
1129 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1130 {
1131  return max(mm->hiwater_rss, get_mm_rss(mm));
1132 }
1133 
1134 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1135 {
1136  return max(mm->hiwater_vm, mm->total_vm);
1137 }
1138 
1139 static inline void update_hiwater_rss(struct mm_struct *mm)
1140 {
1141  unsigned long _rss = get_mm_rss(mm);
1142 
1143  if ((mm)->hiwater_rss < _rss)
1144  (mm)->hiwater_rss = _rss;
1145 }
1146 
1147 static inline void update_hiwater_vm(struct mm_struct *mm)
1148 {
1149  if (mm->hiwater_vm < mm->total_vm)
1150  mm->hiwater_vm = mm->total_vm;
1151 }
1152 
1153 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1154  struct mm_struct *mm)
1155 {
1156  unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1157 
1158  if (*maxrss < hiwater_rss)
1159  *maxrss = hiwater_rss;
1160 }
1161 
1162 #if defined(SPLIT_RSS_COUNTING)
1163 void sync_mm_rss(struct mm_struct *mm);
1164 #else
1165 static inline void sync_mm_rss(struct mm_struct *mm)
1166 {
1167 }
1168 #endif
1169 
1170 int vma_wants_writenotify(struct vm_area_struct *vma);
1171 
1172 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1173  spinlock_t **ptl);
1174 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1175  spinlock_t **ptl)
1176 {
1177  pte_t *ptep;
1178  __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1179  return ptep;
1180 }
1181 
1182 #ifdef __PAGETABLE_PUD_FOLDED
1183 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1184  unsigned long address)
1185 {
1186  return 0;
1187 }
1188 #else
1189 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1190 #endif
1191 
1192 #ifdef __PAGETABLE_PMD_FOLDED
1193 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1194  unsigned long address)
1195 {
1196  return 0;
1197 }
1198 #else
1199 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1200 #endif
1201 
1202 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1203  pmd_t *pmd, unsigned long address);
1204 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1205 
1206 /*
1207  * The following ifdef needed to get the 4level-fixup.h header to work.
1208  * Remove it when 4level-fixup.h has been removed.
1209  */
1210 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1211 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1212 {
1213  return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1214  NULL: pud_offset(pgd, address);
1215 }
1216 
1217 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1218 {
1219  return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1220  NULL: pmd_offset(pud, address);
1221 }
1222 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1223 
1224 #if USE_SPLIT_PTLOCKS
1225 /*
1226  * We tuck a spinlock to guard each pagetable page into its struct page,
1227  * at page->private, with BUILD_BUG_ON to make sure that this will not
1228  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1229  * When freeing, reset page->mapping so free_pages_check won't complain.
1230  */
1231 #define __pte_lockptr(page) &((page)->ptl)
1232 #define pte_lock_init(_page) do { \
1233  spin_lock_init(__pte_lockptr(_page)); \
1234 } while (0)
1235 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1236 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1237 #else /* !USE_SPLIT_PTLOCKS */
1238 /*
1239  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1240  */
1241 #define pte_lock_init(page) do {} while (0)
1242 #define pte_lock_deinit(page) do {} while (0)
1243 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1244 #endif /* USE_SPLIT_PTLOCKS */
1245 
1246 static inline void pgtable_page_ctor(struct page *page)
1247 {
1248  pte_lock_init(page);
1250 }
1251 
1252 static inline void pgtable_page_dtor(struct page *page)
1253 {
1254  pte_lock_deinit(page);
1256 }
1257 
1258 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1259 ({ \
1260  spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1261  pte_t *__pte = pte_offset_map(pmd, address); \
1262  *(ptlp) = __ptl; \
1263  spin_lock(__ptl); \
1264  __pte; \
1265 })
1266 
1267 #define pte_unmap_unlock(pte, ptl) do { \
1268  spin_unlock(ptl); \
1269  pte_unmap(pte); \
1270 } while (0)
1271 
1272 #define pte_alloc_map(mm, vma, pmd, address) \
1273  ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1274  pmd, address))? \
1275  NULL: pte_offset_map(pmd, address))
1276 
1277 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1278  ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1279  pmd, address))? \
1280  NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1281 
1282 #define pte_alloc_kernel(pmd, address) \
1283  ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1284  NULL: pte_offset_kernel(pmd, address))
1285 
1286 extern void free_area_init(unsigned long * zones_size);
1287 extern void free_area_init_node(int nid, unsigned long * zones_size,
1288  unsigned long zone_start_pfn, unsigned long *zholes_size);
1289 extern void free_initmem(void);
1290 
1291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1292 /*
1293  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1294  * zones, allocate the backing mem_map and account for memory holes in a more
1295  * architecture independent manner. This is a substitute for creating the
1296  * zone_sizes[] and zholes_size[] arrays and passing them to
1297  * free_area_init_node()
1298  *
1299  * An architecture is expected to register range of page frames backed by
1300  * physical memory with memblock_add[_node]() before calling
1301  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1302  * usage, an architecture is expected to do something like
1303  *
1304  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1305  * max_highmem_pfn};
1306  * for_each_valid_physical_page_range()
1307  * memblock_add_node(base, size, nid)
1308  * free_area_init_nodes(max_zone_pfns);
1309  *
1310  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1311  * registered physical page range. Similarly
1312  * sparse_memory_present_with_active_regions() calls memory_present() for
1313  * each range when SPARSEMEM is enabled.
1314  *
1315  * See mm/page_alloc.c for more information on each function exposed by
1316  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1317  */
1318 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1319 unsigned long node_map_pfn_alignment(void);
1320 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1321  unsigned long end_pfn);
1322 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1323  unsigned long end_pfn);
1324 extern void get_pfn_range_for_nid(unsigned int nid,
1325  unsigned long *start_pfn, unsigned long *end_pfn);
1326 extern unsigned long find_min_pfn_with_active_regions(void);
1327 extern void free_bootmem_with_active_regions(int nid,
1328  unsigned long max_low_pfn);
1329 extern void sparse_memory_present_with_active_regions(int nid);
1330 
1331 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1332 
1333 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1334  !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1335 static inline int __early_pfn_to_nid(unsigned long pfn)
1336 {
1337  return 0;
1338 }
1339 #else
1340 /* please see mm/page_alloc.c */
1341 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1342 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1343 /* there is a per-arch backend function. */
1344 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1345 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1346 #endif
1347 
1348 extern void set_dma_reserve(unsigned long new_dma_reserve);
1349 extern void memmap_init_zone(unsigned long, int, unsigned long,
1350  unsigned long, enum memmap_context);
1351 extern void setup_per_zone_wmarks(void);
1352 extern int __meminit init_per_zone_wmark_min(void);
1353 extern void mem_init(void);
1354 extern void __init mmap_init(void);
1355 extern void show_mem(unsigned int flags);
1356 extern void si_meminfo(struct sysinfo * val);
1357 extern void si_meminfo_node(struct sysinfo *val, int nid);
1358 extern int after_bootmem;
1359 
1360 extern __printf(3, 4)
1361 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1362 
1363 extern void setup_per_cpu_pageset(void);
1364 
1365 extern void zone_pcp_update(struct zone *zone);
1366 extern void zone_pcp_reset(struct zone *zone);
1367 
1368 /* nommu.c */
1370 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1371 
1372 /* interval_tree.c */
1373 void vma_interval_tree_insert(struct vm_area_struct *node,
1374  struct rb_root *root);
1375 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1377  struct rb_root *root);
1378 void vma_interval_tree_remove(struct vm_area_struct *node,
1379  struct rb_root *root);
1380 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1381  unsigned long start, unsigned long last);
1382 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1383  unsigned long start, unsigned long last);
1384 
1385 #define vma_interval_tree_foreach(vma, root, start, last) \
1386  for (vma = vma_interval_tree_iter_first(root, start, last); \
1387  vma; vma = vma_interval_tree_iter_next(vma, start, last))
1388 
1389 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1390  struct list_head *list)
1391 {
1392  list_add_tail(&vma->shared.nonlinear, list);
1393 }
1394 
1395 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1396  struct rb_root *root);
1398  struct rb_root *root);
1400  struct rb_root *root, unsigned long start, unsigned long last);
1402  struct anon_vma_chain *node, unsigned long start, unsigned long last);
1403 #ifdef CONFIG_DEBUG_VM_RB
1404 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1405 #endif
1406 
1407 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1408  for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1409  avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1410 
1411 /* mmap.c */
1412 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1413 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1414  unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1415 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1416  struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1417  unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1418  struct mempolicy *);
1419 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1420 extern int split_vma(struct mm_struct *,
1421  struct vm_area_struct *, unsigned long addr, int new_below);
1422 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1423 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1424  struct rb_node **, struct rb_node *);
1425 extern void unlink_file_vma(struct vm_area_struct *);
1426 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1427  unsigned long addr, unsigned long len, pgoff_t pgoff,
1428  bool *need_rmap_locks);
1429 extern void exit_mmap(struct mm_struct *);
1430 
1431 extern int mm_take_all_locks(struct mm_struct *mm);
1432 extern void mm_drop_all_locks(struct mm_struct *mm);
1433 
1434 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1435 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1436 
1437 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1438 extern int install_special_mapping(struct mm_struct *mm,
1439  unsigned long addr, unsigned long len,
1440  unsigned long flags, struct page **pages);
1441 
1442 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1443 
1444 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1445  unsigned long len, unsigned long flags,
1446  vm_flags_t vm_flags, unsigned long pgoff);
1447 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1448  unsigned long, unsigned long,
1449  unsigned long, unsigned long);
1450 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1451 
1452 /* These take the mm semaphore themselves */
1453 extern unsigned long vm_brk(unsigned long, unsigned long);
1454 extern int vm_munmap(unsigned long, size_t);
1455 extern unsigned long vm_mmap(struct file *, unsigned long,
1456  unsigned long, unsigned long,
1457  unsigned long, unsigned long);
1458 
1459 /* truncate.c */
1460 extern void truncate_inode_pages(struct address_space *, loff_t);
1461 extern void truncate_inode_pages_range(struct address_space *,
1462  loff_t lstart, loff_t lend);
1463 
1464 /* generic vm_area_ops exported for stackable file systems */
1465 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1466 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1467 
1468 /* mm/page-writeback.c */
1469 int write_one_page(struct page *page, int wait);
1470 void task_dirty_inc(struct task_struct *tsk);
1471 
1472 /* readahead.c */
1473 #define VM_MAX_READAHEAD 128 /* kbytes */
1474 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1475 
1476 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1477  pgoff_t offset, unsigned long nr_to_read);
1478 
1479 void page_cache_sync_readahead(struct address_space *mapping,
1480  struct file_ra_state *ra,
1481  struct file *filp,
1482  pgoff_t offset,
1483  unsigned long size);
1484 
1485 void page_cache_async_readahead(struct address_space *mapping,
1486  struct file_ra_state *ra,
1487  struct file *filp,
1488  struct page *pg,
1489  pgoff_t offset,
1490  unsigned long size);
1491 
1492 unsigned long max_sane_readahead(unsigned long nr);
1493 unsigned long ra_submit(struct file_ra_state *ra,
1494  struct address_space *mapping,
1495  struct file *filp);
1496 
1497 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1498 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1499 
1500 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1501 extern int expand_downwards(struct vm_area_struct *vma,
1502  unsigned long address);
1503 #if VM_GROWSUP
1504 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1505 #else
1506  #define expand_upwards(vma, address) do { } while (0)
1507 #endif
1508 
1509 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1510 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1511 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1512  struct vm_area_struct **pprev);
1513 
1514 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1515  NULL if none. Assume start_addr < end_addr. */
1516 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1517 {
1518  struct vm_area_struct * vma = find_vma(mm,start_addr);
1519 
1520  if (vma && end_addr <= vma->vm_start)
1521  vma = NULL;
1522  return vma;
1523 }
1524 
1525 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1526 {
1527  return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1528 }
1529 
1530 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1531 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1532  unsigned long vm_start, unsigned long vm_end)
1533 {
1534  struct vm_area_struct *vma = find_vma(mm, vm_start);
1535 
1536  if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1537  vma = NULL;
1538 
1539  return vma;
1540 }
1541 
1542 #ifdef CONFIG_MMU
1543 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1544 #else
1545 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1546 {
1547  return __pgprot(0);
1548 }
1549 #endif
1550 
1551 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1552 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1553  unsigned long pfn, unsigned long size, pgprot_t);
1554 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1555 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556  unsigned long pfn);
1557 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1558  unsigned long pfn);
1559 
1560 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1561  unsigned int foll_flags);
1562 #define FOLL_WRITE 0x01 /* check pte is writable */
1563 #define FOLL_TOUCH 0x02 /* mark page accessed */
1564 #define FOLL_GET 0x04 /* do get_page on page */
1565 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1566 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1567 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1568  * and return without waiting upon it */
1569 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1570 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1571 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1572 
1573 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1574  void *data);
1575 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1576  unsigned long size, pte_fn_t fn, void *data);
1577 
1578 #ifdef CONFIG_PROC_FS
1579 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1580 #else
1581 static inline void vm_stat_account(struct mm_struct *mm,
1582  unsigned long flags, struct file *file, long pages)
1583 {
1584  mm->total_vm += pages;
1585 }
1586 #endif /* CONFIG_PROC_FS */
1587 
1588 #ifdef CONFIG_DEBUG_PAGEALLOC
1589 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1590 #ifdef CONFIG_HIBERNATION
1591 extern bool kernel_page_present(struct page *page);
1592 #endif /* CONFIG_HIBERNATION */
1593 #else
1594 static inline void
1595 kernel_map_pages(struct page *page, int numpages, int enable) {}
1596 #ifdef CONFIG_HIBERNATION
1597 static inline bool kernel_page_present(struct page *page) { return true; }
1598 #endif /* CONFIG_HIBERNATION */
1599 #endif
1600 
1601 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1602 #ifdef __HAVE_ARCH_GATE_AREA
1603 int in_gate_area_no_mm(unsigned long addr);
1604 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1605 #else
1606 int in_gate_area_no_mm(unsigned long addr);
1607 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1608 #endif /* __HAVE_ARCH_GATE_AREA */
1609 
1610 int drop_caches_sysctl_handler(struct ctl_table *, int,
1611  void __user *, size_t *, loff_t *);
1612 unsigned long shrink_slab(struct shrink_control *shrink,
1613  unsigned long nr_pages_scanned,
1614  unsigned long lru_pages);
1615 
1616 #ifndef CONFIG_MMU
1617 #define randomize_va_space 0
1618 #else
1619 extern int randomize_va_space;
1620 #endif
1621 
1622 const char * arch_vma_name(struct vm_area_struct *vma);
1623 void print_vma_addr(char *prefix, unsigned long rip);
1624 
1625 void sparse_mem_maps_populate_node(struct page **map_map,
1626  unsigned long pnum_begin,
1627  unsigned long pnum_end,
1628  unsigned long map_count,
1629  int nodeid);
1630 
1631 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1632 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1633 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1634 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1635 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1636 void *vmemmap_alloc_block(unsigned long size, int node);
1637 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1638 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1639 int vmemmap_populate_basepages(struct page *start_page,
1640  unsigned long pages, int node);
1641 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1642 void vmemmap_populate_print_last(void);
1643 
1644 
1645 enum mf_flags {
1646  MF_COUNT_INCREASED = 1 << 0,
1647  MF_ACTION_REQUIRED = 1 << 1,
1648  MF_MUST_KILL = 1 << 2,
1649 };
1650 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1651 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1652 extern int unpoison_memory(unsigned long pfn);
1653 extern int sysctl_memory_failure_early_kill;
1654 extern int sysctl_memory_failure_recovery;
1655 extern void shake_page(struct page *p, int access);
1656 extern atomic_long_t mce_bad_pages;
1657 extern int soft_offline_page(struct page *page, int flags);
1658 
1659 extern void dump_page(struct page *page);
1660 
1661 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1662 extern void clear_huge_page(struct page *page,
1663  unsigned long addr,
1664  unsigned int pages_per_huge_page);
1665 extern void copy_user_huge_page(struct page *dst, struct page *src,
1666  unsigned long addr, struct vm_area_struct *vma,
1667  unsigned int pages_per_huge_page);
1668 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1669 
1670 #ifdef CONFIG_DEBUG_PAGEALLOC
1671 extern unsigned int _debug_guardpage_minorder;
1672 
1673 static inline unsigned int debug_guardpage_minorder(void)
1674 {
1675  return _debug_guardpage_minorder;
1676 }
1677 
1678 static inline bool page_is_guard(struct page *page)
1679 {
1680  return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1681 }
1682 #else
1683 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1684 static inline bool page_is_guard(struct page *page) { return false; }
1685 #endif /* CONFIG_DEBUG_PAGEALLOC */
1686 
1687 #endif /* __KERNEL__ */
1688 #endif /* _LINUX_MM_H */