Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
iw_recv.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006 Oracle. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  *
14  * - Redistributions of source code must retain the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer.
17  *
18  * - Redistributions in binary form must reproduce the above
19  * copyright notice, this list of conditions and the following
20  * disclaimer in the documentation and/or other materials
21  * provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "iw.h"
41 
42 static struct kmem_cache *rds_iw_incoming_slab;
43 static struct kmem_cache *rds_iw_frag_slab;
44 static atomic_t rds_iw_allocation = ATOMIC_INIT(0);
45 
46 static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
47 {
48  rdsdebug("frag %p page %p\n", frag, frag->f_page);
49  __free_page(frag->f_page);
50  frag->f_page = NULL;
51 }
52 
53 static void rds_iw_frag_free(struct rds_page_frag *frag)
54 {
55  rdsdebug("frag %p page %p\n", frag, frag->f_page);
56  BUG_ON(frag->f_page);
57  kmem_cache_free(rds_iw_frag_slab, frag);
58 }
59 
60 /*
61  * We map a page at a time. Its fragments are posted in order. This
62  * is called in fragment order as the fragments get send completion events.
63  * Only the last frag in the page performs the unmapping.
64  *
65  * It's OK for ring cleanup to call this in whatever order it likes because
66  * DMA is not in flight and so we can unmap while other ring entries still
67  * hold page references in their frags.
68  */
69 static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
70  struct rds_iw_recv_work *recv)
71 {
72  struct rds_page_frag *frag = recv->r_frag;
73 
74  rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75  if (frag->f_mapped)
76  ib_dma_unmap_page(ic->i_cm_id->device,
77  frag->f_mapped,
78  RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79  frag->f_mapped = 0;
80 }
81 
83 {
84  struct rds_iw_recv_work *recv;
85  u32 i;
86 
87  for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88  struct ib_sge *sge;
89 
90  recv->r_iwinc = NULL;
91  recv->r_frag = NULL;
92 
93  recv->r_wr.next = NULL;
94  recv->r_wr.wr_id = i;
95  recv->r_wr.sg_list = recv->r_sge;
96  recv->r_wr.num_sge = RDS_IW_RECV_SGE;
97 
98  sge = rds_iw_data_sge(ic, recv->r_sge);
99  sge->addr = 0;
100  sge->length = RDS_FRAG_SIZE;
101  sge->lkey = 0;
102 
103  sge = rds_iw_header_sge(ic, recv->r_sge);
104  sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105  sge->length = sizeof(struct rds_header);
106  sge->lkey = 0;
107  }
108 }
109 
110 static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111  struct rds_iw_recv_work *recv)
112 {
113  if (recv->r_iwinc) {
114  rds_inc_put(&recv->r_iwinc->ii_inc);
115  recv->r_iwinc = NULL;
116  }
117  if (recv->r_frag) {
118  rds_iw_recv_unmap_page(ic, recv);
119  if (recv->r_frag->f_page)
120  rds_iw_frag_drop_page(recv->r_frag);
121  rds_iw_frag_free(recv->r_frag);
122  recv->r_frag = NULL;
123  }
124 }
125 
127 {
128  u32 i;
129 
130  for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131  rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
132 
133  if (ic->i_frag.f_page)
134  rds_iw_frag_drop_page(&ic->i_frag);
135 }
136 
137 static int rds_iw_recv_refill_one(struct rds_connection *conn,
138  struct rds_iw_recv_work *recv,
139  gfp_t kptr_gfp, gfp_t page_gfp)
140 {
141  struct rds_iw_connection *ic = conn->c_transport_data;
143  struct ib_sge *sge;
144  int ret = -ENOMEM;
145 
146  if (!recv->r_iwinc) {
147  if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148  rds_iw_stats_inc(s_iw_rx_alloc_limit);
149  goto out;
150  }
151  recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152  kptr_gfp);
153  if (!recv->r_iwinc) {
154  atomic_dec(&rds_iw_allocation);
155  goto out;
156  }
157  INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158  rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
159  }
160 
161  if (!recv->r_frag) {
162  recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163  if (!recv->r_frag)
164  goto out;
165  INIT_LIST_HEAD(&recv->r_frag->f_item);
166  recv->r_frag->f_page = NULL;
167  }
168 
169  if (!ic->i_frag.f_page) {
170  ic->i_frag.f_page = alloc_page(page_gfp);
171  if (!ic->i_frag.f_page)
172  goto out;
173  ic->i_frag.f_offset = 0;
174  }
175 
176  dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177  ic->i_frag.f_page,
178  ic->i_frag.f_offset,
179  RDS_FRAG_SIZE,
181  if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182  goto out;
183 
184  /*
185  * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186  * must be called on this recv. This happens as completions hit
187  * in order or on connection shutdown.
188  */
189  recv->r_frag->f_page = ic->i_frag.f_page;
190  recv->r_frag->f_offset = ic->i_frag.f_offset;
191  recv->r_frag->f_mapped = dma_addr;
192 
193  sge = rds_iw_data_sge(ic, recv->r_sge);
194  sge->addr = dma_addr;
195  sge->length = RDS_FRAG_SIZE;
196 
197  sge = rds_iw_header_sge(ic, recv->r_sge);
198  sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199  sge->length = sizeof(struct rds_header);
200 
201  get_page(recv->r_frag->f_page);
202 
203  if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204  ic->i_frag.f_offset += RDS_FRAG_SIZE;
205  } else {
206  put_page(ic->i_frag.f_page);
207  ic->i_frag.f_page = NULL;
208  ic->i_frag.f_offset = 0;
209  }
210 
211  ret = 0;
212 out:
213  return ret;
214 }
215 
216 /*
217  * This tries to allocate and post unused work requests after making sure that
218  * they have all the allocations they need to queue received fragments into
219  * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
220  * pairs don't go unmatched.
221  *
222  * -1 is returned if posting fails due to temporary resource exhaustion.
223  */
224 int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225  gfp_t page_gfp, int prefill)
226 {
227  struct rds_iw_connection *ic = conn->c_transport_data;
228  struct rds_iw_recv_work *recv;
229  struct ib_recv_wr *failed_wr;
230  unsigned int posted = 0;
231  int ret = 0;
232  u32 pos;
233 
234  while ((prefill || rds_conn_up(conn)) &&
235  rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236  if (pos >= ic->i_recv_ring.w_nr) {
237  printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238  pos);
239  ret = -EINVAL;
240  break;
241  }
242 
243  recv = &ic->i_recvs[pos];
244  ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245  if (ret) {
246  ret = -1;
247  break;
248  }
249 
250  /* XXX when can this fail? */
251  ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252  rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
253  recv->r_iwinc, recv->r_frag->f_page,
254  (long) recv->r_frag->f_mapped, ret);
255  if (ret) {
256  rds_iw_conn_error(conn, "recv post on "
257  "%pI4 returned %d, disconnecting and "
258  "reconnecting\n", &conn->c_faddr,
259  ret);
260  ret = -1;
261  break;
262  }
263 
264  posted++;
265  }
266 
267  /* We're doing flow control - update the window. */
268  if (ic->i_flowctl && posted)
269  rds_iw_advertise_credits(conn, posted);
270 
271  if (ret)
273  return ret;
274 }
275 
276 static void rds_iw_inc_purge(struct rds_incoming *inc)
277 {
278  struct rds_iw_incoming *iwinc;
279  struct rds_page_frag *frag;
280  struct rds_page_frag *pos;
281 
282  iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
283  rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284 
285  list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
286  list_del_init(&frag->f_item);
287  rds_iw_frag_drop_page(frag);
288  rds_iw_frag_free(frag);
289  }
290 }
291 
293 {
294  struct rds_iw_incoming *iwinc;
295 
296  iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297 
298  rds_iw_inc_purge(inc);
299  rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
300  BUG_ON(!list_empty(&iwinc->ii_frags));
301  kmem_cache_free(rds_iw_incoming_slab, iwinc);
302  atomic_dec(&rds_iw_allocation);
303  BUG_ON(atomic_read(&rds_iw_allocation) < 0);
304 }
305 
306 int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307  size_t size)
308 {
309  struct rds_iw_incoming *iwinc;
310  struct rds_page_frag *frag;
311  struct iovec *iov = first_iov;
312  unsigned long to_copy;
313  unsigned long frag_off = 0;
314  unsigned long iov_off = 0;
315  int copied = 0;
316  int ret;
317  u32 len;
318 
319  iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
320  frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
321  len = be32_to_cpu(inc->i_hdr.h_len);
322 
323  while (copied < size && copied < len) {
324  if (frag_off == RDS_FRAG_SIZE) {
325  frag = list_entry(frag->f_item.next,
326  struct rds_page_frag, f_item);
327  frag_off = 0;
328  }
329  while (iov_off == iov->iov_len) {
330  iov_off = 0;
331  iov++;
332  }
333 
334  to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335  to_copy = min_t(size_t, to_copy, size - copied);
336  to_copy = min_t(unsigned long, to_copy, len - copied);
337 
338  rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339  "[%p, %lu] + %lu\n",
340  to_copy, iov->iov_base, iov->iov_len, iov_off,
341  frag->f_page, frag->f_offset, frag_off);
342 
343  /* XXX needs + offset for multiple recvs per page */
344  ret = rds_page_copy_to_user(frag->f_page,
345  frag->f_offset + frag_off,
346  iov->iov_base + iov_off,
347  to_copy);
348  if (ret) {
349  copied = ret;
350  break;
351  }
352 
353  iov_off += to_copy;
354  frag_off += to_copy;
355  copied += to_copy;
356  }
357 
358  return copied;
359 }
360 
361 /* ic starts out kzalloc()ed */
363 {
364  struct ib_send_wr *wr = &ic->i_ack_wr;
365  struct ib_sge *sge = &ic->i_ack_sge;
366 
367  sge->addr = ic->i_ack_dma;
368  sge->length = sizeof(struct rds_header);
369  sge->lkey = rds_iw_local_dma_lkey(ic);
370 
371  wr->sg_list = sge;
372  wr->num_sge = 1;
373  wr->opcode = IB_WR_SEND;
374  wr->wr_id = RDS_IW_ACK_WR_ID;
376 }
377 
378 /*
379  * You'd think that with reliable IB connections you wouldn't need to ack
380  * messages that have been received. The problem is that IB hardware generates
381  * an ack message before it has DMAed the message into memory. This creates a
382  * potential message loss if the HCA is disabled for any reason between when it
383  * sends the ack and before the message is DMAed and processed. This is only a
384  * potential issue if another HCA is available for fail-over.
385  *
386  * When the remote host receives our ack they'll free the sent message from
387  * their send queue. To decrease the latency of this we always send an ack
388  * immediately after we've received messages.
389  *
390  * For simplicity, we only have one ack in flight at a time. This puts
391  * pressure on senders to have deep enough send queues to absorb the latency of
392  * a single ack frame being in flight. This might not be good enough.
393  *
394  * This is implemented by have a long-lived send_wr and sge which point to a
395  * statically allocated ack frame. This ack wr does not fall under the ring
396  * accounting that the tx and rx wrs do. The QP attribute specifically makes
397  * room for it beyond the ring size. Send completion notices its special
398  * wr_id and avoids working with the ring in that case.
399  */
400 #ifndef KERNEL_HAS_ATOMIC64
401 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
402  int ack_required)
403 {
404  unsigned long flags;
405 
406  spin_lock_irqsave(&ic->i_ack_lock, flags);
407  ic->i_ack_next = seq;
408  if (ack_required)
410  spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 }
412 
413 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
414 {
415  unsigned long flags;
416  u64 seq;
417 
419 
420  spin_lock_irqsave(&ic->i_ack_lock, flags);
421  seq = ic->i_ack_next;
422  spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423 
424  return seq;
425 }
426 #else
427 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
428  int ack_required)
429 {
430  atomic64_set(&ic->i_ack_next, seq);
431  if (ack_required) {
434  }
435 }
436 
437 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
438 {
441 
442  return atomic64_read(&ic->i_ack_next);
443 }
444 #endif
445 
446 
447 static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
448 {
449  struct rds_header *hdr = ic->i_ack;
450  struct ib_send_wr *failed_wr;
451  u64 seq;
452  int ret;
453 
454  seq = rds_iw_get_ack(ic);
455 
456  rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457  rds_message_populate_header(hdr, 0, 0, 0);
458  hdr->h_ack = cpu_to_be64(seq);
459  hdr->h_credit = adv_credits;
460  rds_message_make_checksum(hdr);
461  ic->i_ack_queued = jiffies;
462 
463  ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464  if (unlikely(ret)) {
465  /* Failed to send. Release the WR, and
466  * force another ACK.
467  */
470 
471  rds_iw_stats_inc(s_iw_ack_send_failure);
472 
473  rds_iw_conn_error(ic->conn, "sending ack failed\n");
474  } else
475  rds_iw_stats_inc(s_iw_ack_sent);
476 }
477 
478 /*
479  * There are 3 ways of getting acknowledgements to the peer:
480  * 1. We call rds_iw_attempt_ack from the recv completion handler
481  * to send an ACK-only frame.
482  * However, there can be only one such frame in the send queue
483  * at any time, so we may have to postpone it.
484  * 2. When another (data) packet is transmitted while there's
485  * an ACK in the queue, we piggyback the ACK sequence number
486  * on the data packet.
487  * 3. If the ACK WR is done sending, we get called from the
488  * send queue completion handler, and check whether there's
489  * another ACK pending (postponed because the WR was on the
490  * queue). If so, we transmit it.
491  *
492  * We maintain 2 variables:
493  * - i_ack_flags, which keeps track of whether the ACK WR
494  * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495  * - i_ack_next, which is the last sequence number we received
496  *
497  * Potentially, send queue and receive queue handlers can run concurrently.
498  * It would be nice to not have to use a spinlock to synchronize things,
499  * but the one problem that rules this out is that 64bit updates are
500  * not atomic on all platforms. Things would be a lot simpler if
501  * we had atomic64 or maybe cmpxchg64 everywhere.
502  *
503  * Reconnecting complicates this picture just slightly. When we
504  * reconnect, we may be seeing duplicate packets. The peer
505  * is retransmitting them, because it hasn't seen an ACK for
506  * them. It is important that we ACK these.
507  *
508  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509  * this flag set *MUST* be acknowledged immediately.
510  */
511 
512 /*
513  * When we get here, we're called from the recv queue handler.
514  * Check whether we ought to transmit an ACK.
515  */
517 {
518  unsigned int adv_credits;
519 
521  return;
522 
524  rds_iw_stats_inc(s_iw_ack_send_delayed);
525  return;
526  }
527 
528  /* Can we get a send credit? */
529  if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530  rds_iw_stats_inc(s_iw_tx_throttle);
532  return;
533  }
534 
536  rds_iw_send_ack(ic, adv_credits);
537 }
538 
539 /*
540  * We get here from the send completion handler, when the
541  * adapter tells us the ACK frame was sent.
542  */
544 {
546  rds_iw_attempt_ack(ic);
547 }
548 
549 /*
550  * This is called by the regular xmit code when it wants to piggyback
551  * an ACK on an outgoing frame.
552  */
554 {
556  rds_iw_stats_inc(s_iw_ack_send_piggybacked);
557  return rds_iw_get_ack(ic);
558 }
559 
560 /*
561  * It's kind of lame that we're copying from the posted receive pages into
562  * long-lived bitmaps. We could have posted the bitmaps and rdma written into
563  * them. But receiving new congestion bitmaps should be a *rare* event, so
564  * hopefully we won't need to invest that complexity in making it more
565  * efficient. By copying we can share a simpler core with TCP which has to
566  * copy.
567  */
568 static void rds_iw_cong_recv(struct rds_connection *conn,
569  struct rds_iw_incoming *iwinc)
570 {
571  struct rds_cong_map *map;
572  unsigned int map_off;
573  unsigned int map_page;
574  struct rds_page_frag *frag;
575  unsigned long frag_off;
576  unsigned long to_copy;
577  unsigned long copied;
578  uint64_t uncongested = 0;
579  void *addr;
580 
581  /* catch completely corrupt packets */
582  if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
583  return;
584 
585  map = conn->c_fcong;
586  map_page = 0;
587  map_off = 0;
588 
589  frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
590  frag_off = 0;
591 
592  copied = 0;
593 
594  while (copied < RDS_CONG_MAP_BYTES) {
595  uint64_t *src, *dst;
596  unsigned int k;
597 
598  to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
599  BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
600 
601  addr = kmap_atomic(frag->f_page);
602 
603  src = addr + frag_off;
604  dst = (void *)map->m_page_addrs[map_page] + map_off;
605  for (k = 0; k < to_copy; k += 8) {
606  /* Record ports that became uncongested, ie
607  * bits that changed from 0 to 1. */
608  uncongested |= ~(*src) & *dst;
609  *dst++ = *src++;
610  }
611  kunmap_atomic(addr);
612 
613  copied += to_copy;
614 
615  map_off += to_copy;
616  if (map_off == PAGE_SIZE) {
617  map_off = 0;
618  map_page++;
619  }
620 
621  frag_off += to_copy;
622  if (frag_off == RDS_FRAG_SIZE) {
623  frag = list_entry(frag->f_item.next,
624  struct rds_page_frag, f_item);
625  frag_off = 0;
626  }
627  }
628 
629  /* the congestion map is in little endian order */
630  uncongested = le64_to_cpu(uncongested);
631 
632  rds_cong_map_updated(map, uncongested);
633 }
634 
635 /*
636  * Rings are posted with all the allocations they'll need to queue the
637  * incoming message to the receiving socket so this can't fail.
638  * All fragments start with a header, so we can make sure we're not receiving
639  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
640  */
644  unsigned int ack_required:1;
645  unsigned int ack_next_valid:1;
646  unsigned int ack_recv_valid:1;
647 };
648 
649 static void rds_iw_process_recv(struct rds_connection *conn,
650  struct rds_iw_recv_work *recv, u32 byte_len,
651  struct rds_iw_ack_state *state)
652 {
653  struct rds_iw_connection *ic = conn->c_transport_data;
654  struct rds_iw_incoming *iwinc = ic->i_iwinc;
655  struct rds_header *ihdr, *hdr;
656 
657  /* XXX shut down the connection if port 0,0 are seen? */
658 
659  rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
660  byte_len);
661 
662  if (byte_len < sizeof(struct rds_header)) {
663  rds_iw_conn_error(conn, "incoming message "
664  "from %pI4 didn't include a "
665  "header, disconnecting and "
666  "reconnecting\n",
667  &conn->c_faddr);
668  return;
669  }
670  byte_len -= sizeof(struct rds_header);
671 
672  ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
673 
674  /* Validate the checksum. */
675  if (!rds_message_verify_checksum(ihdr)) {
676  rds_iw_conn_error(conn, "incoming message "
677  "from %pI4 has corrupted header - "
678  "forcing a reconnect\n",
679  &conn->c_faddr);
680  rds_stats_inc(s_recv_drop_bad_checksum);
681  return;
682  }
683 
684  /* Process the ACK sequence which comes with every packet */
685  state->ack_recv = be64_to_cpu(ihdr->h_ack);
686  state->ack_recv_valid = 1;
687 
688  /* Process the credits update if there was one */
689  if (ihdr->h_credit)
690  rds_iw_send_add_credits(conn, ihdr->h_credit);
691 
692  if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
693  /* This is an ACK-only packet. The fact that it gets
694  * special treatment here is that historically, ACKs
695  * were rather special beasts.
696  */
697  rds_iw_stats_inc(s_iw_ack_received);
698 
699  /*
700  * Usually the frags make their way on to incs and are then freed as
701  * the inc is freed. We don't go that route, so we have to drop the
702  * page ref ourselves. We can't just leave the page on the recv
703  * because that confuses the dma mapping of pages and each recv's use
704  * of a partial page. We can leave the frag, though, it will be
705  * reused.
706  *
707  * FIXME: Fold this into the code path below.
708  */
709  rds_iw_frag_drop_page(recv->r_frag);
710  return;
711  }
712 
713  /*
714  * If we don't already have an inc on the connection then this
715  * fragment has a header and starts a message.. copy its header
716  * into the inc and save the inc so we can hang upcoming fragments
717  * off its list.
718  */
719  if (!iwinc) {
720  iwinc = recv->r_iwinc;
721  recv->r_iwinc = NULL;
722  ic->i_iwinc = iwinc;
723 
724  hdr = &iwinc->ii_inc.i_hdr;
725  memcpy(hdr, ihdr, sizeof(*hdr));
726  ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
727 
728  rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
729  ic->i_recv_data_rem, hdr->h_flags);
730  } else {
731  hdr = &iwinc->ii_inc.i_hdr;
732  /* We can't just use memcmp here; fragments of a
733  * single message may carry different ACKs */
734  if (hdr->h_sequence != ihdr->h_sequence ||
735  hdr->h_len != ihdr->h_len ||
736  hdr->h_sport != ihdr->h_sport ||
737  hdr->h_dport != ihdr->h_dport) {
738  rds_iw_conn_error(conn,
739  "fragment header mismatch; forcing reconnect\n");
740  return;
741  }
742  }
743 
744  list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
745  recv->r_frag = NULL;
746 
747  if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
749  else {
750  ic->i_recv_data_rem = 0;
751  ic->i_iwinc = NULL;
752 
753  if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
754  rds_iw_cong_recv(conn, iwinc);
755  else {
756  rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
757  &iwinc->ii_inc, GFP_ATOMIC);
758  state->ack_next = be64_to_cpu(hdr->h_sequence);
759  state->ack_next_valid = 1;
760  }
761 
762  /* Evaluate the ACK_REQUIRED flag *after* we received
763  * the complete frame, and after bumping the next_rx
764  * sequence. */
765  if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
766  rds_stats_inc(s_recv_ack_required);
767  state->ack_required = 1;
768  }
769 
770  rds_inc_put(&iwinc->ii_inc);
771  }
772 }
773 
774 /*
775  * Plucking the oldest entry from the ring can be done concurrently with
776  * the thread refilling the ring. Each ring operation is protected by
777  * spinlocks and the transient state of refilling doesn't change the
778  * recording of which entry is oldest.
779  *
780  * This relies on IB only calling one cq comp_handler for each cq so that
781  * there will only be one caller of rds_recv_incoming() per RDS connection.
782  */
784 {
785  struct rds_connection *conn = context;
786  struct rds_iw_connection *ic = conn->c_transport_data;
787 
788  rdsdebug("conn %p cq %p\n", conn, cq);
789 
790  rds_iw_stats_inc(s_iw_rx_cq_call);
791 
792  tasklet_schedule(&ic->i_recv_tasklet);
793 }
794 
795 static inline void rds_poll_cq(struct rds_iw_connection *ic,
796  struct rds_iw_ack_state *state)
797 {
798  struct rds_connection *conn = ic->conn;
799  struct ib_wc wc;
800  struct rds_iw_recv_work *recv;
801 
802  while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
803  rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
804  (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
805  be32_to_cpu(wc.ex.imm_data));
806  rds_iw_stats_inc(s_iw_rx_cq_event);
807 
808  recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
809 
810  rds_iw_recv_unmap_page(ic, recv);
811 
812  /*
813  * Also process recvs in connecting state because it is possible
814  * to get a recv completion _before_ the rdmacm ESTABLISHED
815  * event is processed.
816  */
817  if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
818  /* We expect errors as the qp is drained during shutdown */
819  if (wc.status == IB_WC_SUCCESS) {
820  rds_iw_process_recv(conn, recv, wc.byte_len, state);
821  } else {
822  rds_iw_conn_error(conn, "recv completion on "
823  "%pI4 had status %u, disconnecting and "
824  "reconnecting\n", &conn->c_faddr,
825  wc.status);
826  }
827  }
828 
829  rds_iw_ring_free(&ic->i_recv_ring, 1);
830  }
831 }
832 
833 void rds_iw_recv_tasklet_fn(unsigned long data)
834 {
835  struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
836  struct rds_connection *conn = ic->conn;
837  struct rds_iw_ack_state state = { 0, };
838 
839  rds_poll_cq(ic, &state);
840  ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
841  rds_poll_cq(ic, &state);
842 
843  if (state.ack_next_valid)
844  rds_iw_set_ack(ic, state.ack_next, state.ack_required);
845  if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
846  rds_send_drop_acked(conn, state.ack_recv, NULL);
847  ic->i_ack_recv = state.ack_recv;
848  }
849  if (rds_conn_up(conn))
850  rds_iw_attempt_ack(ic);
851 
852  /* If we ever end up with a really empty receive ring, we're
853  * in deep trouble, as the sender will definitely see RNR
854  * timeouts. */
855  if (rds_iw_ring_empty(&ic->i_recv_ring))
856  rds_iw_stats_inc(s_iw_rx_ring_empty);
857 
858  /*
859  * If the ring is running low, then schedule the thread to refill.
860  */
861  if (rds_iw_ring_low(&ic->i_recv_ring))
862  queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
863 }
864 
865 int rds_iw_recv(struct rds_connection *conn)
866 {
867  struct rds_iw_connection *ic = conn->c_transport_data;
868  int ret = 0;
869 
870  rdsdebug("conn %p\n", conn);
871 
872  /*
873  * If we get a temporary posting failure in this context then
874  * we're really low and we want the caller to back off for a bit.
875  */
876  mutex_lock(&ic->i_recv_mutex);
878  ret = -ENOMEM;
879  else
880  rds_iw_stats_inc(s_iw_rx_refill_from_thread);
882 
883  if (rds_conn_up(conn))
884  rds_iw_attempt_ack(ic);
885 
886  return ret;
887 }
888 
890 {
891  struct sysinfo si;
892  int ret = -ENOMEM;
893 
894  /* Default to 30% of all available RAM for recv memory */
895  si_meminfo(&si);
897 
898  rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
899  sizeof(struct rds_iw_incoming),
900  0, 0, NULL);
901  if (!rds_iw_incoming_slab)
902  goto out;
903 
904  rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
905  sizeof(struct rds_page_frag),
906  0, 0, NULL);
907  if (!rds_iw_frag_slab)
908  kmem_cache_destroy(rds_iw_incoming_slab);
909  else
910  ret = 0;
911 out:
912  return ret;
913 }
914 
916 {
917  kmem_cache_destroy(rds_iw_incoming_slab);
918  kmem_cache_destroy(rds_iw_frag_slab);
919 }