Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
jfs_dtree.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  * jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  * case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  * entries which folds to the same key makes up a equivalent class
63  * whose members are stored as contiguous cluster (may cross page boundary)
64  * but whose order is arbitrary and acts as duplicate, e.g.,
65  * abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  * fold search key;
82  *
83  * case-insensitive search of B-tree:
84  * for internal entry, router key is already folded;
85  * for leaf entry, fold the entry key before comparison.
86  *
87  * if (leaf entry case-insensitive match found)
88  * if (next entry satisfies case-insensitive match)
89  * return EDUPLICATE;
90  * if (prev entry satisfies case-insensitive match)
91  * return EDUPLICATE;
92  * return match;
93  * else
94  * return no match;
95  *
96  * serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  * log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include <linux/slab.h>
106 #include "jfs_incore.h"
107 #include "jfs_superblock.h"
108 #include "jfs_filsys.h"
109 #include "jfs_metapage.h"
110 #include "jfs_dmap.h"
111 #include "jfs_unicode.h"
112 #include "jfs_debug.h"
113 
114 /* dtree split parameter */
115 struct dtsplit {
116  struct metapage *mp;
121  struct pxdlist *pxdlist;
122 };
123 
124 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 
126 /* get page buffer for specified block address */
127 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
128 {\
129  BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
130  if (!(RC))\
131  {\
132  if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
133  ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
134  {\
135  BT_PUTPAGE(MP);\
136  jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
137  MP = NULL;\
138  RC = -EIO;\
139  }\
140  }\
141 }
142 
143 /* for consistency */
144 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 
146 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
147  BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
148 
149 /*
150  * forward references
151  */
152 static int dtSplitUp(tid_t tid, struct inode *ip,
153  struct dtsplit * split, struct btstack * btstack);
154 
155 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
156  struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
157 
158 static int dtExtendPage(tid_t tid, struct inode *ip,
159  struct dtsplit * split, struct btstack * btstack);
160 
161 static int dtSplitRoot(tid_t tid, struct inode *ip,
162  struct dtsplit * split, struct metapage ** rmpp);
163 
164 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
165  dtpage_t * fp, struct btstack * btstack);
166 
167 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
168 
169 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
170 
171 static int dtReadNext(struct inode *ip,
172  loff_t * offset, struct btstack * btstack);
173 
174 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
175 
176 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
177  int flag);
178 
179 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
180  int flag);
181 
182 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
183  int ri, struct component_name * key, int flag);
184 
185 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
186  ddata_t * data, struct dt_lock **);
187 
188 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
189  struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
190  int do_index);
191 
192 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
193 
194 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
195 
196 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
197 
198 #define ciToUpper(c) UniStrupr((c)->name)
199 
200 /*
201  * read_index_page()
202  *
203  * Reads a page of a directory's index table.
204  * Having metadata mapped into the directory inode's address space
205  * presents a multitude of problems. We avoid this by mapping to
206  * the absolute address space outside of the *_metapage routines
207  */
208 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
209 {
210  int rc;
211  s64 xaddr;
212  int xflag;
213  s32 xlen;
214 
215  rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
216  if (rc || (xaddr == 0))
217  return NULL;
218 
219  return read_metapage(inode, xaddr, PSIZE, 1);
220 }
221 
222 /*
223  * get_index_page()
224  *
225  * Same as get_index_page(), but get's a new page without reading
226  */
227 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
228 {
229  int rc;
230  s64 xaddr;
231  int xflag;
232  s32 xlen;
233 
234  rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
235  if (rc || (xaddr == 0))
236  return NULL;
237 
238  return get_metapage(inode, xaddr, PSIZE, 1);
239 }
240 
241 /*
242  * find_index()
243  *
244  * Returns dtree page containing directory table entry for specified
245  * index and pointer to its entry.
246  *
247  * mp must be released by caller.
248  */
249 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
250  struct metapage ** mp, s64 *lblock)
251 {
252  struct jfs_inode_info *jfs_ip = JFS_IP(ip);
253  s64 blkno;
254  s64 offset;
255  int page_offset;
256  struct dir_table_slot *slot;
257  static int maxWarnings = 10;
258 
259  if (index < 2) {
260  if (maxWarnings) {
261  jfs_warn("find_entry called with index = %d", index);
262  maxWarnings--;
263  }
264  return NULL;
265  }
266 
267  if (index >= jfs_ip->next_index) {
268  jfs_warn("find_entry called with index >= next_index");
269  return NULL;
270  }
271 
272  if (jfs_dirtable_inline(ip)) {
273  /*
274  * Inline directory table
275  */
276  *mp = NULL;
277  slot = &jfs_ip->i_dirtable[index - 2];
278  } else {
279  offset = (index - 2) * sizeof(struct dir_table_slot);
280  page_offset = offset & (PSIZE - 1);
281  blkno = ((offset + 1) >> L2PSIZE) <<
282  JFS_SBI(ip->i_sb)->l2nbperpage;
283 
284  if (*mp && (*lblock != blkno)) {
285  release_metapage(*mp);
286  *mp = NULL;
287  }
288  if (!(*mp)) {
289  *lblock = blkno;
290  *mp = read_index_page(ip, blkno);
291  }
292  if (!(*mp)) {
293  jfs_err("free_index: error reading directory table");
294  return NULL;
295  }
296 
297  slot =
298  (struct dir_table_slot *) ((char *) (*mp)->data +
299  page_offset);
300  }
301  return slot;
302 }
303 
304 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
305  u32 index)
306 {
307  struct tlock *tlck;
308  struct linelock *llck;
309  struct lv *lv;
310 
311  tlck = txLock(tid, ip, mp, tlckDATA);
312  llck = (struct linelock *) tlck->lock;
313 
314  if (llck->index >= llck->maxcnt)
315  llck = txLinelock(llck);
316  lv = &llck->lv[llck->index];
317 
318  /*
319  * Linelock slot size is twice the size of directory table
320  * slot size. 512 entries per page.
321  */
322  lv->offset = ((index - 2) & 511) >> 1;
323  lv->length = 1;
324  llck->index++;
325 }
326 
327 /*
328  * add_index()
329  *
330  * Adds an entry to the directory index table. This is used to provide
331  * each directory entry with a persistent index in which to resume
332  * directory traversals
333  */
334 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
335 {
336  struct super_block *sb = ip->i_sb;
337  struct jfs_sb_info *sbi = JFS_SBI(sb);
338  struct jfs_inode_info *jfs_ip = JFS_IP(ip);
339  u64 blkno;
340  struct dir_table_slot *dirtab_slot;
341  u32 index;
342  struct linelock *llck;
343  struct lv *lv;
344  struct metapage *mp;
345  s64 offset;
347  struct tlock *tlck;
348  s64 xaddr;
349 
350  ASSERT(DO_INDEX(ip));
351 
352  if (jfs_ip->next_index < 2) {
353  jfs_warn("add_index: next_index = %d. Resetting!",
354  jfs_ip->next_index);
355  jfs_ip->next_index = 2;
356  }
357 
358  index = jfs_ip->next_index++;
359 
360  if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
361  /*
362  * i_size reflects size of index table, or 8 bytes per entry.
363  */
364  ip->i_size = (loff_t) (index - 1) << 3;
365 
366  /*
367  * dir table fits inline within inode
368  */
369  dirtab_slot = &jfs_ip->i_dirtable[index-2];
370  dirtab_slot->flag = DIR_INDEX_VALID;
371  dirtab_slot->slot = slot;
372  DTSaddress(dirtab_slot, bn);
373 
375 
376  return index;
377  }
378  if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
379  struct dir_table_slot temp_table[12];
380 
381  /*
382  * It's time to move the inline table to an external
383  * page and begin to build the xtree
384  */
385  if (dquot_alloc_block(ip, sbi->nbperpage))
386  goto clean_up;
387  if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
388  dquot_free_block(ip, sbi->nbperpage);
389  goto clean_up;
390  }
391 
392  /*
393  * Save the table, we're going to overwrite it with the
394  * xtree root
395  */
396  memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
397 
398  /*
399  * Initialize empty x-tree
400  */
401  xtInitRoot(tid, ip);
402 
403  /*
404  * Add the first block to the xtree
405  */
406  if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
407  /* This really shouldn't fail */
408  jfs_warn("add_index: xtInsert failed!");
409  memcpy(&jfs_ip->i_dirtable, temp_table,
410  sizeof (temp_table));
411  dbFree(ip, xaddr, sbi->nbperpage);
412  dquot_free_block(ip, sbi->nbperpage);
413  goto clean_up;
414  }
415  ip->i_size = PSIZE;
416 
417  mp = get_index_page(ip, 0);
418  if (!mp) {
419  jfs_err("add_index: get_metapage failed!");
420  xtTruncate(tid, ip, 0, COMMIT_PWMAP);
421  memcpy(&jfs_ip->i_dirtable, temp_table,
422  sizeof (temp_table));
423  goto clean_up;
424  }
425  tlck = txLock(tid, ip, mp, tlckDATA);
426  llck = (struct linelock *) & tlck->lock;
427  ASSERT(llck->index == 0);
428  lv = &llck->lv[0];
429 
430  lv->offset = 0;
431  lv->length = 6; /* tlckDATA slot size is 16 bytes */
432  llck->index++;
433 
434  memcpy(mp->data, temp_table, sizeof(temp_table));
435 
437  release_metapage(mp);
438 
439  /*
440  * Logging is now directed by xtree tlocks
441  */
443  }
444 
445  offset = (index - 2) * sizeof(struct dir_table_slot);
446  page_offset = offset & (PSIZE - 1);
447  blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
448  if (page_offset == 0) {
449  /*
450  * This will be the beginning of a new page
451  */
452  xaddr = 0;
453  if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
454  jfs_warn("add_index: xtInsert failed!");
455  goto clean_up;
456  }
457  ip->i_size += PSIZE;
458 
459  if ((mp = get_index_page(ip, blkno)))
460  memset(mp->data, 0, PSIZE); /* Just looks better */
461  else
462  xtTruncate(tid, ip, offset, COMMIT_PWMAP);
463  } else
464  mp = read_index_page(ip, blkno);
465 
466  if (!mp) {
467  jfs_err("add_index: get/read_metapage failed!");
468  goto clean_up;
469  }
470 
471  lock_index(tid, ip, mp, index);
472 
473  dirtab_slot =
474  (struct dir_table_slot *) ((char *) mp->data + page_offset);
475  dirtab_slot->flag = DIR_INDEX_VALID;
476  dirtab_slot->slot = slot;
477  DTSaddress(dirtab_slot, bn);
478 
480  release_metapage(mp);
481 
482  return index;
483 
484  clean_up:
485 
486  jfs_ip->next_index--;
487 
488  return 0;
489 }
490 
491 /*
492  * free_index()
493  *
494  * Marks an entry to the directory index table as free.
495  */
496 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
497 {
498  struct dir_table_slot *dirtab_slot;
499  s64 lblock;
500  struct metapage *mp = NULL;
501 
502  dirtab_slot = find_index(ip, index, &mp, &lblock);
503 
504  if (!dirtab_slot)
505  return;
506 
507  dirtab_slot->flag = DIR_INDEX_FREE;
508  dirtab_slot->slot = dirtab_slot->addr1 = 0;
509  dirtab_slot->addr2 = cpu_to_le32(next);
510 
511  if (mp) {
512  lock_index(tid, ip, mp, index);
514  release_metapage(mp);
515  } else
517 }
518 
519 /*
520  * modify_index()
521  *
522  * Changes an entry in the directory index table
523  */
524 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
525  int slot, struct metapage ** mp, s64 *lblock)
526 {
527  struct dir_table_slot *dirtab_slot;
528 
529  dirtab_slot = find_index(ip, index, mp, lblock);
530 
531  if (!dirtab_slot)
532  return;
533 
534  DTSaddress(dirtab_slot, bn);
535  dirtab_slot->slot = slot;
536 
537  if (*mp) {
538  lock_index(tid, ip, *mp, index);
539  mark_metapage_dirty(*mp);
540  } else
542 }
543 
544 /*
545  * read_index()
546  *
547  * reads a directory table slot
548  */
549 static int read_index(struct inode *ip, u32 index,
550  struct dir_table_slot * dirtab_slot)
551 {
552  s64 lblock;
553  struct metapage *mp = NULL;
554  struct dir_table_slot *slot;
555 
556  slot = find_index(ip, index, &mp, &lblock);
557  if (!slot) {
558  return -EIO;
559  }
560 
561  memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
562 
563  if (mp)
564  release_metapage(mp);
565 
566  return 0;
567 }
568 
569 /*
570  * dtSearch()
571  *
572  * function:
573  * Search for the entry with specified key
574  *
575  * parameter:
576  *
577  * return: 0 - search result on stack, leaf page pinned;
578  * errno - I/O error
579  */
580 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
581  struct btstack * btstack, int flag)
582 {
583  int rc = 0;
584  int cmp = 1; /* init for empty page */
585  s64 bn;
586  struct metapage *mp;
587  dtpage_t *p;
588  s8 *stbl;
589  int base, index, lim;
590  struct btframe *btsp;
591  pxd_t *pxd;
592  int psize = 288; /* initial in-line directory */
593  ino_t inumber;
594  struct component_name ciKey;
595  struct super_block *sb = ip->i_sb;
596 
597  ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS);
598  if (!ciKey.name) {
599  rc = -ENOMEM;
600  goto dtSearch_Exit2;
601  }
602 
603 
604  /* uppercase search key for c-i directory */
605  UniStrcpy(ciKey.name, key->name);
606  ciKey.namlen = key->namlen;
607 
608  /* only uppercase if case-insensitive support is on */
609  if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
610  ciToUpper(&ciKey);
611  }
612  BT_CLR(btstack); /* reset stack */
613 
614  /* init level count for max pages to split */
615  btstack->nsplit = 1;
616 
617  /*
618  * search down tree from root:
619  *
620  * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621  * internal page, child page Pi contains entry with k, Ki <= K < Kj.
622  *
623  * if entry with search key K is not found
624  * internal page search find the entry with largest key Ki
625  * less than K which point to the child page to search;
626  * leaf page search find the entry with smallest key Kj
627  * greater than K so that the returned index is the position of
628  * the entry to be shifted right for insertion of new entry.
629  * for empty tree, search key is greater than any key of the tree.
630  *
631  * by convention, root bn = 0.
632  */
633  for (bn = 0;;) {
634  /* get/pin the page to search */
635  DT_GETPAGE(ip, bn, mp, psize, p, rc);
636  if (rc)
637  goto dtSearch_Exit1;
638 
639  /* get sorted entry table of the page */
640  stbl = DT_GETSTBL(p);
641 
642  /*
643  * binary search with search key K on the current page.
644  */
645  for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
646  index = base + (lim >> 1);
647 
648  if (p->header.flag & BT_LEAF) {
649  /* uppercase leaf name to compare */
650  cmp =
651  ciCompare(&ciKey, p, stbl[index],
652  JFS_SBI(sb)->mntflag);
653  } else {
654  /* router key is in uppercase */
655 
656  cmp = dtCompare(&ciKey, p, stbl[index]);
657 
658 
659  }
660  if (cmp == 0) {
661  /*
662  * search hit
663  */
664  /* search hit - leaf page:
665  * return the entry found
666  */
667  if (p->header.flag & BT_LEAF) {
668  inumber = le32_to_cpu(
669  ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
670 
671  /*
672  * search for JFS_LOOKUP
673  */
674  if (flag == JFS_LOOKUP) {
675  *data = inumber;
676  rc = 0;
677  goto out;
678  }
679 
680  /*
681  * search for JFS_CREATE
682  */
683  if (flag == JFS_CREATE) {
684  *data = inumber;
685  rc = -EEXIST;
686  goto out;
687  }
688 
689  /*
690  * search for JFS_REMOVE or JFS_RENAME
691  */
692  if ((flag == JFS_REMOVE ||
693  flag == JFS_RENAME) &&
694  *data != inumber) {
695  rc = -ESTALE;
696  goto out;
697  }
698 
699  /*
700  * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
701  */
702  /* save search result */
703  *data = inumber;
704  btsp = btstack->top;
705  btsp->bn = bn;
706  btsp->index = index;
707  btsp->mp = mp;
708 
709  rc = 0;
710  goto dtSearch_Exit1;
711  }
712 
713  /* search hit - internal page:
714  * descend/search its child page
715  */
716  goto getChild;
717  }
718 
719  if (cmp > 0) {
720  base = index + 1;
721  --lim;
722  }
723  }
724 
725  /*
726  * search miss
727  *
728  * base is the smallest index with key (Kj) greater than
729  * search key (K) and may be zero or (maxindex + 1) index.
730  */
731  /*
732  * search miss - leaf page
733  *
734  * return location of entry (base) where new entry with
735  * search key K is to be inserted.
736  */
737  if (p->header.flag & BT_LEAF) {
738  /*
739  * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
740  */
741  if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
742  flag == JFS_RENAME) {
743  rc = -ENOENT;
744  goto out;
745  }
746 
747  /*
748  * search for JFS_CREATE|JFS_FINDDIR:
749  *
750  * save search result
751  */
752  *data = 0;
753  btsp = btstack->top;
754  btsp->bn = bn;
755  btsp->index = base;
756  btsp->mp = mp;
757 
758  rc = 0;
759  goto dtSearch_Exit1;
760  }
761 
762  /*
763  * search miss - internal page
764  *
765  * if base is non-zero, decrement base by one to get the parent
766  * entry of the child page to search.
767  */
768  index = base ? base - 1 : base;
769 
770  /*
771  * go down to child page
772  */
773  getChild:
774  /* update max. number of pages to split */
775  if (BT_STACK_FULL(btstack)) {
776  /* Something's corrupted, mark filesystem dirty so
777  * chkdsk will fix it.
778  */
779  jfs_error(sb, "stack overrun in dtSearch!");
780  BT_STACK_DUMP(btstack);
781  rc = -EIO;
782  goto out;
783  }
784  btstack->nsplit++;
785 
786  /* push (bn, index) of the parent page/entry */
787  BT_PUSH(btstack, bn, index);
788 
789  /* get the child page block number */
790  pxd = (pxd_t *) & p->slot[stbl[index]];
791  bn = addressPXD(pxd);
792  psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
793 
794  /* unpin the parent page */
795  DT_PUTPAGE(mp);
796  }
797 
798  out:
799  DT_PUTPAGE(mp);
800 
801  dtSearch_Exit1:
802 
803  kfree(ciKey.name);
804 
805  dtSearch_Exit2:
806 
807  return rc;
808 }
809 
810 
811 /*
812  * dtInsert()
813  *
814  * function: insert an entry to directory tree
815  *
816  * parameter:
817  *
818  * return: 0 - success;
819  * errno - failure;
820  */
821 int dtInsert(tid_t tid, struct inode *ip,
822  struct component_name * name, ino_t * fsn, struct btstack * btstack)
823 {
824  int rc = 0;
825  struct metapage *mp; /* meta-page buffer */
826  dtpage_t *p; /* base B+-tree index page */
827  s64 bn;
828  int index;
829  struct dtsplit split; /* split information */
830  ddata_t data;
831  struct dt_lock *dtlck;
832  int n;
833  struct tlock *tlck;
834  struct lv *lv;
835 
836  /*
837  * retrieve search result
838  *
839  * dtSearch() returns (leaf page pinned, index at which to insert).
840  * n.b. dtSearch() may return index of (maxindex + 1) of
841  * the full page.
842  */
843  DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
844 
845  /*
846  * insert entry for new key
847  */
848  if (DO_INDEX(ip)) {
849  if (JFS_IP(ip)->next_index == DIREND) {
850  DT_PUTPAGE(mp);
851  return -EMLINK;
852  }
853  n = NDTLEAF(name->namlen);
854  data.leaf.tid = tid;
855  data.leaf.ip = ip;
856  } else {
857  n = NDTLEAF_LEGACY(name->namlen);
858  data.leaf.ip = NULL; /* signifies legacy directory format */
859  }
860  data.leaf.ino = *fsn;
861 
862  /*
863  * leaf page does not have enough room for new entry:
864  *
865  * extend/split the leaf page;
866  *
867  * dtSplitUp() will insert the entry and unpin the leaf page.
868  */
869  if (n > p->header.freecnt) {
870  split.mp = mp;
871  split.index = index;
872  split.nslot = n;
873  split.key = name;
874  split.data = &data;
875  rc = dtSplitUp(tid, ip, &split, btstack);
876  return rc;
877  }
878 
879  /*
880  * leaf page does have enough room for new entry:
881  *
882  * insert the new data entry into the leaf page;
883  */
884  BT_MARK_DIRTY(mp, ip);
885  /*
886  * acquire a transaction lock on the leaf page
887  */
888  tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
889  dtlck = (struct dt_lock *) & tlck->lock;
890  ASSERT(dtlck->index == 0);
891  lv = & dtlck->lv[0];
892 
893  /* linelock header */
894  lv->offset = 0;
895  lv->length = 1;
896  dtlck->index++;
897 
898  dtInsertEntry(p, index, name, &data, &dtlck);
899 
900  /* linelock stbl of non-root leaf page */
901  if (!(p->header.flag & BT_ROOT)) {
902  if (dtlck->index >= dtlck->maxcnt)
903  dtlck = (struct dt_lock *) txLinelock(dtlck);
904  lv = & dtlck->lv[dtlck->index];
905  n = index >> L2DTSLOTSIZE;
906  lv->offset = p->header.stblindex + n;
907  lv->length =
908  ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
909  dtlck->index++;
910  }
911 
912  /* unpin the leaf page */
913  DT_PUTPAGE(mp);
914 
915  return 0;
916 }
917 
918 
919 /*
920  * dtSplitUp()
921  *
922  * function: propagate insertion bottom up;
923  *
924  * parameter:
925  *
926  * return: 0 - success;
927  * errno - failure;
928  * leaf page unpinned;
929  */
930 static int dtSplitUp(tid_t tid,
931  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
932 {
933  struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
934  int rc = 0;
935  struct metapage *smp;
936  dtpage_t *sp; /* split page */
937  struct metapage *rmp;
938  dtpage_t *rp; /* new right page split from sp */
939  pxd_t rpxd; /* new right page extent descriptor */
940  struct metapage *lmp;
941  dtpage_t *lp; /* left child page */
942  int skip; /* index of entry of insertion */
943  struct btframe *parent; /* parent page entry on traverse stack */
944  s64 xaddr, nxaddr;
945  int xlen, xsize;
946  struct pxdlist pxdlist;
947  pxd_t *pxd;
948  struct component_name key = { 0, NULL };
949  ddata_t *data = split->data;
950  int n;
951  struct dt_lock *dtlck;
952  struct tlock *tlck;
953  struct lv *lv;
954  int quota_allocation = 0;
955 
956  /* get split page */
957  smp = split->mp;
958  sp = DT_PAGE(ip, smp);
959 
960  key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS);
961  if (!key.name) {
962  DT_PUTPAGE(smp);
963  rc = -ENOMEM;
964  goto dtSplitUp_Exit;
965  }
966 
967  /*
968  * split leaf page
969  *
970  * The split routines insert the new entry, and
971  * acquire txLock as appropriate.
972  */
973  /*
974  * split root leaf page:
975  */
976  if (sp->header.flag & BT_ROOT) {
977  /*
978  * allocate a single extent child page
979  */
980  xlen = 1;
981  n = sbi->bsize >> L2DTSLOTSIZE;
982  n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
983  n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
984  if (n <= split->nslot)
985  xlen++;
986  if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
987  DT_PUTPAGE(smp);
988  goto freeKeyName;
989  }
990 
991  pxdlist.maxnpxd = 1;
992  pxdlist.npxd = 0;
993  pxd = &pxdlist.pxd[0];
994  PXDaddress(pxd, xaddr);
995  PXDlength(pxd, xlen);
996  split->pxdlist = &pxdlist;
997  rc = dtSplitRoot(tid, ip, split, &rmp);
998 
999  if (rc)
1000  dbFree(ip, xaddr, xlen);
1001  else
1002  DT_PUTPAGE(rmp);
1003 
1004  DT_PUTPAGE(smp);
1005 
1006  if (!DO_INDEX(ip))
1007  ip->i_size = xlen << sbi->l2bsize;
1008 
1009  goto freeKeyName;
1010  }
1011 
1012  /*
1013  * extend first leaf page
1014  *
1015  * extend the 1st extent if less than buffer page size
1016  * (dtExtendPage() reurns leaf page unpinned)
1017  */
1018  pxd = &sp->header.self;
1019  xlen = lengthPXD(pxd);
1020  xsize = xlen << sbi->l2bsize;
1021  if (xsize < PSIZE) {
1022  xaddr = addressPXD(pxd);
1023  n = xsize >> L2DTSLOTSIZE;
1024  n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1025  if ((n + sp->header.freecnt) <= split->nslot)
1026  n = xlen + (xlen << 1);
1027  else
1028  n = xlen;
1029 
1030  /* Allocate blocks to quota. */
1031  rc = dquot_alloc_block(ip, n);
1032  if (rc)
1033  goto extendOut;
1034  quota_allocation += n;
1035 
1036  if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1037  (s64) n, &nxaddr)))
1038  goto extendOut;
1039 
1040  pxdlist.maxnpxd = 1;
1041  pxdlist.npxd = 0;
1042  pxd = &pxdlist.pxd[0];
1043  PXDaddress(pxd, nxaddr)
1044  PXDlength(pxd, xlen + n);
1045  split->pxdlist = &pxdlist;
1046  if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1047  nxaddr = addressPXD(pxd);
1048  if (xaddr != nxaddr) {
1049  /* free relocated extent */
1050  xlen = lengthPXD(pxd);
1051  dbFree(ip, nxaddr, (s64) xlen);
1052  } else {
1053  /* free extended delta */
1054  xlen = lengthPXD(pxd) - n;
1055  xaddr = addressPXD(pxd) + xlen;
1056  dbFree(ip, xaddr, (s64) n);
1057  }
1058  } else if (!DO_INDEX(ip))
1059  ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1060 
1061 
1062  extendOut:
1063  DT_PUTPAGE(smp);
1064  goto freeKeyName;
1065  }
1066 
1067  /*
1068  * split leaf page <sp> into <sp> and a new right page <rp>.
1069  *
1070  * return <rp> pinned and its extent descriptor <rpxd>
1071  */
1072  /*
1073  * allocate new directory page extent and
1074  * new index page(s) to cover page split(s)
1075  *
1076  * allocation hint: ?
1077  */
1078  n = btstack->nsplit;
1079  pxdlist.maxnpxd = pxdlist.npxd = 0;
1080  xlen = sbi->nbperpage;
1081  for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1082  if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1083  PXDaddress(pxd, xaddr);
1084  PXDlength(pxd, xlen);
1085  pxdlist.maxnpxd++;
1086  continue;
1087  }
1088 
1089  DT_PUTPAGE(smp);
1090 
1091  /* undo allocation */
1092  goto splitOut;
1093  }
1094 
1095  split->pxdlist = &pxdlist;
1096  if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1097  DT_PUTPAGE(smp);
1098 
1099  /* undo allocation */
1100  goto splitOut;
1101  }
1102 
1103  if (!DO_INDEX(ip))
1104  ip->i_size += PSIZE;
1105 
1106  /*
1107  * propagate up the router entry for the leaf page just split
1108  *
1109  * insert a router entry for the new page into the parent page,
1110  * propagate the insert/split up the tree by walking back the stack
1111  * of (bn of parent page, index of child page entry in parent page)
1112  * that were traversed during the search for the page that split.
1113  *
1114  * the propagation of insert/split up the tree stops if the root
1115  * splits or the page inserted into doesn't have to split to hold
1116  * the new entry.
1117  *
1118  * the parent entry for the split page remains the same, and
1119  * a new entry is inserted at its right with the first key and
1120  * block number of the new right page.
1121  *
1122  * There are a maximum of 4 pages pinned at any time:
1123  * two children, left parent and right parent (when the parent splits).
1124  * keep the child pages pinned while working on the parent.
1125  * make sure that all pins are released at exit.
1126  */
1127  while ((parent = BT_POP(btstack)) != NULL) {
1128  /* parent page specified by stack frame <parent> */
1129 
1130  /* keep current child pages (<lp>, <rp>) pinned */
1131  lmp = smp;
1132  lp = sp;
1133 
1134  /*
1135  * insert router entry in parent for new right child page <rp>
1136  */
1137  /* get the parent page <sp> */
1138  DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1139  if (rc) {
1140  DT_PUTPAGE(lmp);
1141  DT_PUTPAGE(rmp);
1142  goto splitOut;
1143  }
1144 
1145  /*
1146  * The new key entry goes ONE AFTER the index of parent entry,
1147  * because the split was to the right.
1148  */
1149  skip = parent->index + 1;
1150 
1151  /*
1152  * compute the key for the router entry
1153  *
1154  * key suffix compression:
1155  * for internal pages that have leaf pages as children,
1156  * retain only what's needed to distinguish between
1157  * the new entry and the entry on the page to its left.
1158  * If the keys compare equal, retain the entire key.
1159  *
1160  * note that compression is performed only at computing
1161  * router key at the lowest internal level.
1162  * further compression of the key between pairs of higher
1163  * level internal pages loses too much information and
1164  * the search may fail.
1165  * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1166  * results in two adjacent parent entries (a)(xx).
1167  * if split occurs between these two entries, and
1168  * if compression is applied, the router key of parent entry
1169  * of right page (x) will divert search for x into right
1170  * subtree and miss x in the left subtree.)
1171  *
1172  * the entire key must be retained for the next-to-leftmost
1173  * internal key at any level of the tree, or search may fail
1174  * (e.g., ?)
1175  */
1176  switch (rp->header.flag & BT_TYPE) {
1177  case BT_LEAF:
1178  /*
1179  * compute the length of prefix for suffix compression
1180  * between last entry of left page and first entry
1181  * of right page
1182  */
1183  if ((sp->header.flag & BT_ROOT && skip > 1) ||
1184  sp->header.prev != 0 || skip > 1) {
1185  /* compute uppercase router prefix key */
1186  rc = ciGetLeafPrefixKey(lp,
1187  lp->header.nextindex-1,
1188  rp, 0, &key,
1189  sbi->mntflag);
1190  if (rc) {
1191  DT_PUTPAGE(lmp);
1192  DT_PUTPAGE(rmp);
1193  DT_PUTPAGE(smp);
1194  goto splitOut;
1195  }
1196  } else {
1197  /* next to leftmost entry of
1198  lowest internal level */
1199 
1200  /* compute uppercase router key */
1201  dtGetKey(rp, 0, &key, sbi->mntflag);
1202  key.name[key.namlen] = 0;
1203 
1204  if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1205  ciToUpper(&key);
1206  }
1207 
1208  n = NDTINTERNAL(key.namlen);
1209  break;
1210 
1211  case BT_INTERNAL:
1212  dtGetKey(rp, 0, &key, sbi->mntflag);
1213  n = NDTINTERNAL(key.namlen);
1214  break;
1215 
1216  default:
1217  jfs_err("dtSplitUp(): UFO!");
1218  break;
1219  }
1220 
1221  /* unpin left child page */
1222  DT_PUTPAGE(lmp);
1223 
1224  /*
1225  * compute the data for the router entry
1226  */
1227  data->xd = rpxd; /* child page xd */
1228 
1229  /*
1230  * parent page is full - split the parent page
1231  */
1232  if (n > sp->header.freecnt) {
1233  /* init for parent page split */
1234  split->mp = smp;
1235  split->index = skip; /* index at insert */
1236  split->nslot = n;
1237  split->key = &key;
1238  /* split->data = data; */
1239 
1240  /* unpin right child page */
1241  DT_PUTPAGE(rmp);
1242 
1243  /* The split routines insert the new entry,
1244  * acquire txLock as appropriate.
1245  * return <rp> pinned and its block number <rbn>.
1246  */
1247  rc = (sp->header.flag & BT_ROOT) ?
1248  dtSplitRoot(tid, ip, split, &rmp) :
1249  dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1250  if (rc) {
1251  DT_PUTPAGE(smp);
1252  goto splitOut;
1253  }
1254 
1255  /* smp and rmp are pinned */
1256  }
1257  /*
1258  * parent page is not full - insert router entry in parent page
1259  */
1260  else {
1261  BT_MARK_DIRTY(smp, ip);
1262  /*
1263  * acquire a transaction lock on the parent page
1264  */
1265  tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1266  dtlck = (struct dt_lock *) & tlck->lock;
1267  ASSERT(dtlck->index == 0);
1268  lv = & dtlck->lv[0];
1269 
1270  /* linelock header */
1271  lv->offset = 0;
1272  lv->length = 1;
1273  dtlck->index++;
1274 
1275  /* linelock stbl of non-root parent page */
1276  if (!(sp->header.flag & BT_ROOT)) {
1277  lv++;
1278  n = skip >> L2DTSLOTSIZE;
1279  lv->offset = sp->header.stblindex + n;
1280  lv->length =
1281  ((sp->header.nextindex -
1282  1) >> L2DTSLOTSIZE) - n + 1;
1283  dtlck->index++;
1284  }
1285 
1286  dtInsertEntry(sp, skip, &key, data, &dtlck);
1287 
1288  /* exit propagate up */
1289  break;
1290  }
1291  }
1292 
1293  /* unpin current split and its right page */
1294  DT_PUTPAGE(smp);
1295  DT_PUTPAGE(rmp);
1296 
1297  /*
1298  * free remaining extents allocated for split
1299  */
1300  splitOut:
1301  n = pxdlist.npxd;
1302  pxd = &pxdlist.pxd[n];
1303  for (; n < pxdlist.maxnpxd; n++, pxd++)
1304  dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1305 
1306  freeKeyName:
1307  kfree(key.name);
1308 
1309  /* Rollback quota allocation */
1310  if (rc && quota_allocation)
1311  dquot_free_block(ip, quota_allocation);
1312 
1313  dtSplitUp_Exit:
1314 
1315  return rc;
1316 }
1317 
1318 
1319 /*
1320  * dtSplitPage()
1321  *
1322  * function: Split a non-root page of a btree.
1323  *
1324  * parameter:
1325  *
1326  * return: 0 - success;
1327  * errno - failure;
1328  * return split and new page pinned;
1329  */
1330 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1331  struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1332 {
1333  int rc = 0;
1334  struct metapage *smp;
1335  dtpage_t *sp;
1336  struct metapage *rmp;
1337  dtpage_t *rp; /* new right page allocated */
1338  s64 rbn; /* new right page block number */
1339  struct metapage *mp;
1340  dtpage_t *p;
1341  s64 nextbn;
1342  struct pxdlist *pxdlist;
1343  pxd_t *pxd;
1344  int skip, nextindex, half, left, nxt, off, si;
1345  struct ldtentry *ldtentry;
1346  struct idtentry *idtentry;
1347  u8 *stbl;
1348  struct dtslot *f;
1349  int fsi, stblsize;
1350  int n;
1351  struct dt_lock *sdtlck, *rdtlck;
1352  struct tlock *tlck;
1353  struct dt_lock *dtlck;
1354  struct lv *slv, *rlv, *lv;
1355 
1356  /* get split page */
1357  smp = split->mp;
1358  sp = DT_PAGE(ip, smp);
1359 
1360  /*
1361  * allocate the new right page for the split
1362  */
1363  pxdlist = split->pxdlist;
1364  pxd = &pxdlist->pxd[pxdlist->npxd];
1365  pxdlist->npxd++;
1366  rbn = addressPXD(pxd);
1367  rmp = get_metapage(ip, rbn, PSIZE, 1);
1368  if (rmp == NULL)
1369  return -EIO;
1370 
1371  /* Allocate blocks to quota. */
1372  rc = dquot_alloc_block(ip, lengthPXD(pxd));
1373  if (rc) {
1374  release_metapage(rmp);
1375  return rc;
1376  }
1377 
1378  jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1379 
1380  BT_MARK_DIRTY(rmp, ip);
1381  /*
1382  * acquire a transaction lock on the new right page
1383  */
1384  tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1385  rdtlck = (struct dt_lock *) & tlck->lock;
1386 
1387  rp = (dtpage_t *) rmp->data;
1388  *rpp = rp;
1389  rp->header.self = *pxd;
1390 
1391  BT_MARK_DIRTY(smp, ip);
1392  /*
1393  * acquire a transaction lock on the split page
1394  *
1395  * action:
1396  */
1397  tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1398  sdtlck = (struct dt_lock *) & tlck->lock;
1399 
1400  /* linelock header of split page */
1401  ASSERT(sdtlck->index == 0);
1402  slv = & sdtlck->lv[0];
1403  slv->offset = 0;
1404  slv->length = 1;
1405  sdtlck->index++;
1406 
1407  /*
1408  * initialize/update sibling pointers between sp and rp
1409  */
1410  nextbn = le64_to_cpu(sp->header.next);
1411  rp->header.next = cpu_to_le64(nextbn);
1412  rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1413  sp->header.next = cpu_to_le64(rbn);
1414 
1415  /*
1416  * initialize new right page
1417  */
1418  rp->header.flag = sp->header.flag;
1419 
1420  /* compute sorted entry table at start of extent data area */
1421  rp->header.nextindex = 0;
1422  rp->header.stblindex = 1;
1423 
1424  n = PSIZE >> L2DTSLOTSIZE;
1425  rp->header.maxslot = n;
1426  stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1427 
1428  /* init freelist */
1429  fsi = rp->header.stblindex + stblsize;
1430  rp->header.freelist = fsi;
1431  rp->header.freecnt = rp->header.maxslot - fsi;
1432 
1433  /*
1434  * sequential append at tail: append without split
1435  *
1436  * If splitting the last page on a level because of appending
1437  * a entry to it (skip is maxentry), it's likely that the access is
1438  * sequential. Adding an empty page on the side of the level is less
1439  * work and can push the fill factor much higher than normal.
1440  * If we're wrong it's no big deal, we'll just do the split the right
1441  * way next time.
1442  * (It may look like it's equally easy to do a similar hack for
1443  * reverse sorted data, that is, split the tree left,
1444  * but it's not. Be my guest.)
1445  */
1446  if (nextbn == 0 && split->index == sp->header.nextindex) {
1447  /* linelock header + stbl (first slot) of new page */
1448  rlv = & rdtlck->lv[rdtlck->index];
1449  rlv->offset = 0;
1450  rlv->length = 2;
1451  rdtlck->index++;
1452 
1453  /*
1454  * initialize freelist of new right page
1455  */
1456  f = &rp->slot[fsi];
1457  for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1458  f->next = fsi;
1459  f->next = -1;
1460 
1461  /* insert entry at the first entry of the new right page */
1462  dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1463 
1464  goto out;
1465  }
1466 
1467  /*
1468  * non-sequential insert (at possibly middle page)
1469  */
1470 
1471  /*
1472  * update prev pointer of previous right sibling page;
1473  */
1474  if (nextbn != 0) {
1475  DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1476  if (rc) {
1477  discard_metapage(rmp);
1478  return rc;
1479  }
1480 
1481  BT_MARK_DIRTY(mp, ip);
1482  /*
1483  * acquire a transaction lock on the next page
1484  */
1485  tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1486  jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1487  tlck, ip, mp);
1488  dtlck = (struct dt_lock *) & tlck->lock;
1489 
1490  /* linelock header of previous right sibling page */
1491  lv = & dtlck->lv[dtlck->index];
1492  lv->offset = 0;
1493  lv->length = 1;
1494  dtlck->index++;
1495 
1496  p->header.prev = cpu_to_le64(rbn);
1497 
1498  DT_PUTPAGE(mp);
1499  }
1500 
1501  /*
1502  * split the data between the split and right pages.
1503  */
1504  skip = split->index;
1505  half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1506  left = 0;
1507 
1508  /*
1509  * compute fill factor for split pages
1510  *
1511  * <nxt> traces the next entry to move to rp
1512  * <off> traces the next entry to stay in sp
1513  */
1514  stbl = (u8 *) & sp->slot[sp->header.stblindex];
1515  nextindex = sp->header.nextindex;
1516  for (nxt = off = 0; nxt < nextindex; ++off) {
1517  if (off == skip)
1518  /* check for fill factor with new entry size */
1519  n = split->nslot;
1520  else {
1521  si = stbl[nxt];
1522  switch (sp->header.flag & BT_TYPE) {
1523  case BT_LEAF:
1524  ldtentry = (struct ldtentry *) & sp->slot[si];
1525  if (DO_INDEX(ip))
1526  n = NDTLEAF(ldtentry->namlen);
1527  else
1528  n = NDTLEAF_LEGACY(ldtentry->
1529  namlen);
1530  break;
1531 
1532  case BT_INTERNAL:
1533  idtentry = (struct idtentry *) & sp->slot[si];
1534  n = NDTINTERNAL(idtentry->namlen);
1535  break;
1536 
1537  default:
1538  break;
1539  }
1540 
1541  ++nxt; /* advance to next entry to move in sp */
1542  }
1543 
1544  left += n;
1545  if (left >= half)
1546  break;
1547  }
1548 
1549  /* <nxt> poins to the 1st entry to move */
1550 
1551  /*
1552  * move entries to right page
1553  *
1554  * dtMoveEntry() initializes rp and reserves entry for insertion
1555  *
1556  * split page moved out entries are linelocked;
1557  * new/right page moved in entries are linelocked;
1558  */
1559  /* linelock header + stbl of new right page */
1560  rlv = & rdtlck->lv[rdtlck->index];
1561  rlv->offset = 0;
1562  rlv->length = 5;
1563  rdtlck->index++;
1564 
1565  dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1566 
1567  sp->header.nextindex = nxt;
1568 
1569  /*
1570  * finalize freelist of new right page
1571  */
1572  fsi = rp->header.freelist;
1573  f = &rp->slot[fsi];
1574  for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1575  f->next = fsi;
1576  f->next = -1;
1577 
1578  /*
1579  * Update directory index table for entries now in right page
1580  */
1581  if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1582  s64 lblock;
1583 
1584  mp = NULL;
1585  stbl = DT_GETSTBL(rp);
1586  for (n = 0; n < rp->header.nextindex; n++) {
1587  ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1588  modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1589  rbn, n, &mp, &lblock);
1590  }
1591  if (mp)
1592  release_metapage(mp);
1593  }
1594 
1595  /*
1596  * the skipped index was on the left page,
1597  */
1598  if (skip <= off) {
1599  /* insert the new entry in the split page */
1600  dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1601 
1602  /* linelock stbl of split page */
1603  if (sdtlck->index >= sdtlck->maxcnt)
1604  sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1605  slv = & sdtlck->lv[sdtlck->index];
1606  n = skip >> L2DTSLOTSIZE;
1607  slv->offset = sp->header.stblindex + n;
1608  slv->length =
1609  ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1610  sdtlck->index++;
1611  }
1612  /*
1613  * the skipped index was on the right page,
1614  */
1615  else {
1616  /* adjust the skip index to reflect the new position */
1617  skip -= nxt;
1618 
1619  /* insert the new entry in the right page */
1620  dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1621  }
1622 
1623  out:
1624  *rmpp = rmp;
1625  *rpxdp = *pxd;
1626 
1627  return rc;
1628 }
1629 
1630 
1631 /*
1632  * dtExtendPage()
1633  *
1634  * function: extend 1st/only directory leaf page
1635  *
1636  * parameter:
1637  *
1638  * return: 0 - success;
1639  * errno - failure;
1640  * return extended page pinned;
1641  */
1642 static int dtExtendPage(tid_t tid,
1643  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1644 {
1645  struct super_block *sb = ip->i_sb;
1646  int rc;
1647  struct metapage *smp, *pmp, *mp;
1648  dtpage_t *sp, *pp;
1649  struct pxdlist *pxdlist;
1650  pxd_t *pxd, *tpxd;
1651  int xlen, xsize;
1652  int newstblindex, newstblsize;
1653  int oldstblindex, oldstblsize;
1654  int fsi, last;
1655  struct dtslot *f;
1656  struct btframe *parent;
1657  int n;
1658  struct dt_lock *dtlck;
1659  s64 xaddr, txaddr;
1660  struct tlock *tlck;
1661  struct pxd_lock *pxdlock;
1662  struct lv *lv;
1663  uint type;
1664  struct ldtentry *ldtentry;
1665  u8 *stbl;
1666 
1667  /* get page to extend */
1668  smp = split->mp;
1669  sp = DT_PAGE(ip, smp);
1670 
1671  /* get parent/root page */
1672  parent = BT_POP(btstack);
1673  DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1674  if (rc)
1675  return (rc);
1676 
1677  /*
1678  * extend the extent
1679  */
1680  pxdlist = split->pxdlist;
1681  pxd = &pxdlist->pxd[pxdlist->npxd];
1682  pxdlist->npxd++;
1683 
1684  xaddr = addressPXD(pxd);
1685  tpxd = &sp->header.self;
1686  txaddr = addressPXD(tpxd);
1687  /* in-place extension */
1688  if (xaddr == txaddr) {
1689  type = tlckEXTEND;
1690  }
1691  /* relocation */
1692  else {
1693  type = tlckNEW;
1694 
1695  /* save moved extent descriptor for later free */
1696  tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1697  pxdlock = (struct pxd_lock *) & tlck->lock;
1698  pxdlock->flag = mlckFREEPXD;
1699  pxdlock->pxd = sp->header.self;
1700  pxdlock->index = 1;
1701 
1702  /*
1703  * Update directory index table to reflect new page address
1704  */
1705  if (DO_INDEX(ip)) {
1706  s64 lblock;
1707 
1708  mp = NULL;
1709  stbl = DT_GETSTBL(sp);
1710  for (n = 0; n < sp->header.nextindex; n++) {
1711  ldtentry =
1712  (struct ldtentry *) & sp->slot[stbl[n]];
1713  modify_index(tid, ip,
1714  le32_to_cpu(ldtentry->index),
1715  xaddr, n, &mp, &lblock);
1716  }
1717  if (mp)
1718  release_metapage(mp);
1719  }
1720  }
1721 
1722  /*
1723  * extend the page
1724  */
1725  sp->header.self = *pxd;
1726 
1727  jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1728 
1729  BT_MARK_DIRTY(smp, ip);
1730  /*
1731  * acquire a transaction lock on the extended/leaf page
1732  */
1733  tlck = txLock(tid, ip, smp, tlckDTREE | type);
1734  dtlck = (struct dt_lock *) & tlck->lock;
1735  lv = & dtlck->lv[0];
1736 
1737  /* update buffer extent descriptor of extended page */
1738  xlen = lengthPXD(pxd);
1739  xsize = xlen << JFS_SBI(sb)->l2bsize;
1740 
1741  /*
1742  * copy old stbl to new stbl at start of extended area
1743  */
1744  oldstblindex = sp->header.stblindex;
1745  oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1746  newstblindex = sp->header.maxslot;
1747  n = xsize >> L2DTSLOTSIZE;
1748  newstblsize = (n + 31) >> L2DTSLOTSIZE;
1749  memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1750  sp->header.nextindex);
1751 
1752  /*
1753  * in-line extension: linelock old area of extended page
1754  */
1755  if (type == tlckEXTEND) {
1756  /* linelock header */
1757  lv->offset = 0;
1758  lv->length = 1;
1759  dtlck->index++;
1760  lv++;
1761 
1762  /* linelock new stbl of extended page */
1763  lv->offset = newstblindex;
1764  lv->length = newstblsize;
1765  }
1766  /*
1767  * relocation: linelock whole relocated area
1768  */
1769  else {
1770  lv->offset = 0;
1771  lv->length = sp->header.maxslot + newstblsize;
1772  }
1773 
1774  dtlck->index++;
1775 
1776  sp->header.maxslot = n;
1777  sp->header.stblindex = newstblindex;
1778  /* sp->header.nextindex remains the same */
1779 
1780  /*
1781  * add old stbl region at head of freelist
1782  */
1783  fsi = oldstblindex;
1784  f = &sp->slot[fsi];
1785  last = sp->header.freelist;
1786  for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1787  f->next = last;
1788  last = fsi;
1789  }
1790  sp->header.freelist = last;
1791  sp->header.freecnt += oldstblsize;
1792 
1793  /*
1794  * append free region of newly extended area at tail of freelist
1795  */
1796  /* init free region of newly extended area */
1797  fsi = n = newstblindex + newstblsize;
1798  f = &sp->slot[fsi];
1799  for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1800  f->next = fsi;
1801  f->next = -1;
1802 
1803  /* append new free region at tail of old freelist */
1804  fsi = sp->header.freelist;
1805  if (fsi == -1)
1806  sp->header.freelist = n;
1807  else {
1808  do {
1809  f = &sp->slot[fsi];
1810  fsi = f->next;
1811  } while (fsi != -1);
1812 
1813  f->next = n;
1814  }
1815 
1816  sp->header.freecnt += sp->header.maxslot - n;
1817 
1818  /*
1819  * insert the new entry
1820  */
1821  dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1822 
1823  BT_MARK_DIRTY(pmp, ip);
1824  /*
1825  * linelock any freeslots residing in old extent
1826  */
1827  if (type == tlckEXTEND) {
1828  n = sp->header.maxslot >> 2;
1829  if (sp->header.freelist < n)
1830  dtLinelockFreelist(sp, n, &dtlck);
1831  }
1832 
1833  /*
1834  * update parent entry on the parent/root page
1835  */
1836  /*
1837  * acquire a transaction lock on the parent/root page
1838  */
1839  tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1840  dtlck = (struct dt_lock *) & tlck->lock;
1841  lv = & dtlck->lv[dtlck->index];
1842 
1843  /* linelock parent entry - 1st slot */
1844  lv->offset = 1;
1845  lv->length = 1;
1846  dtlck->index++;
1847 
1848  /* update the parent pxd for page extension */
1849  tpxd = (pxd_t *) & pp->slot[1];
1850  *tpxd = *pxd;
1851 
1852  DT_PUTPAGE(pmp);
1853  return 0;
1854 }
1855 
1856 
1857 /*
1858  * dtSplitRoot()
1859  *
1860  * function:
1861  * split the full root page into
1862  * original/root/split page and new right page
1863  * i.e., root remains fixed in tree anchor (inode) and
1864  * the root is copied to a single new right child page
1865  * since root page << non-root page, and
1866  * the split root page contains a single entry for the
1867  * new right child page.
1868  *
1869  * parameter:
1870  *
1871  * return: 0 - success;
1872  * errno - failure;
1873  * return new page pinned;
1874  */
1875 static int dtSplitRoot(tid_t tid,
1876  struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1877 {
1878  struct super_block *sb = ip->i_sb;
1879  struct metapage *smp;
1880  dtroot_t *sp;
1881  struct metapage *rmp;
1882  dtpage_t *rp;
1883  s64 rbn;
1884  int xlen;
1885  int xsize;
1886  struct dtslot *f;
1887  s8 *stbl;
1888  int fsi, stblsize, n;
1889  struct idtentry *s;
1890  pxd_t *ppxd;
1891  struct pxdlist *pxdlist;
1892  pxd_t *pxd;
1893  struct dt_lock *dtlck;
1894  struct tlock *tlck;
1895  struct lv *lv;
1896  int rc;
1897 
1898  /* get split root page */
1899  smp = split->mp;
1900  sp = &JFS_IP(ip)->i_dtroot;
1901 
1902  /*
1903  * allocate/initialize a single (right) child page
1904  *
1905  * N.B. at first split, a one (or two) block to fit new entry
1906  * is allocated; at subsequent split, a full page is allocated;
1907  */
1908  pxdlist = split->pxdlist;
1909  pxd = &pxdlist->pxd[pxdlist->npxd];
1910  pxdlist->npxd++;
1911  rbn = addressPXD(pxd);
1912  xlen = lengthPXD(pxd);
1913  xsize = xlen << JFS_SBI(sb)->l2bsize;
1914  rmp = get_metapage(ip, rbn, xsize, 1);
1915  if (!rmp)
1916  return -EIO;
1917 
1918  rp = rmp->data;
1919 
1920  /* Allocate blocks to quota. */
1921  rc = dquot_alloc_block(ip, lengthPXD(pxd));
1922  if (rc) {
1923  release_metapage(rmp);
1924  return rc;
1925  }
1926 
1927  BT_MARK_DIRTY(rmp, ip);
1928  /*
1929  * acquire a transaction lock on the new right page
1930  */
1931  tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1932  dtlck = (struct dt_lock *) & tlck->lock;
1933 
1934  rp->header.flag =
1935  (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1936  rp->header.self = *pxd;
1937 
1938  /* initialize sibling pointers */
1939  rp->header.next = 0;
1940  rp->header.prev = 0;
1941 
1942  /*
1943  * move in-line root page into new right page extent
1944  */
1945  /* linelock header + copied entries + new stbl (1st slot) in new page */
1946  ASSERT(dtlck->index == 0);
1947  lv = & dtlck->lv[0];
1948  lv->offset = 0;
1949  lv->length = 10; /* 1 + 8 + 1 */
1950  dtlck->index++;
1951 
1952  n = xsize >> L2DTSLOTSIZE;
1953  rp->header.maxslot = n;
1954  stblsize = (n + 31) >> L2DTSLOTSIZE;
1955 
1956  /* copy old stbl to new stbl at start of extended area */
1957  rp->header.stblindex = DTROOTMAXSLOT;
1958  stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1959  memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1960  rp->header.nextindex = sp->header.nextindex;
1961 
1962  /* copy old data area to start of new data area */
1963  memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1964 
1965  /*
1966  * append free region of newly extended area at tail of freelist
1967  */
1968  /* init free region of newly extended area */
1969  fsi = n = DTROOTMAXSLOT + stblsize;
1970  f = &rp->slot[fsi];
1971  for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1972  f->next = fsi;
1973  f->next = -1;
1974 
1975  /* append new free region at tail of old freelist */
1976  fsi = sp->header.freelist;
1977  if (fsi == -1)
1978  rp->header.freelist = n;
1979  else {
1980  rp->header.freelist = fsi;
1981 
1982  do {
1983  f = &rp->slot[fsi];
1984  fsi = f->next;
1985  } while (fsi != -1);
1986 
1987  f->next = n;
1988  }
1989 
1990  rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1991 
1992  /*
1993  * Update directory index table for entries now in right page
1994  */
1995  if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1996  s64 lblock;
1997  struct metapage *mp = NULL;
1998  struct ldtentry *ldtentry;
1999 
2000  stbl = DT_GETSTBL(rp);
2001  for (n = 0; n < rp->header.nextindex; n++) {
2002  ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2003  modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2004  rbn, n, &mp, &lblock);
2005  }
2006  if (mp)
2007  release_metapage(mp);
2008  }
2009  /*
2010  * insert the new entry into the new right/child page
2011  * (skip index in the new right page will not change)
2012  */
2013  dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2014 
2015  /*
2016  * reset parent/root page
2017  *
2018  * set the 1st entry offset to 0, which force the left-most key
2019  * at any level of the tree to be less than any search key.
2020  *
2021  * The btree comparison code guarantees that the left-most key on any
2022  * level of the tree is never used, so it doesn't need to be filled in.
2023  */
2024  BT_MARK_DIRTY(smp, ip);
2025  /*
2026  * acquire a transaction lock on the root page (in-memory inode)
2027  */
2028  tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2029  dtlck = (struct dt_lock *) & tlck->lock;
2030 
2031  /* linelock root */
2032  ASSERT(dtlck->index == 0);
2033  lv = & dtlck->lv[0];
2034  lv->offset = 0;
2035  lv->length = DTROOTMAXSLOT;
2036  dtlck->index++;
2037 
2038  /* update page header of root */
2039  if (sp->header.flag & BT_LEAF) {
2040  sp->header.flag &= ~BT_LEAF;
2041  sp->header.flag |= BT_INTERNAL;
2042  }
2043 
2044  /* init the first entry */
2045  s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2046  ppxd = (pxd_t *) s;
2047  *ppxd = *pxd;
2048  s->next = -1;
2049  s->namlen = 0;
2050 
2051  stbl = sp->header.stbl;
2052  stbl[0] = DTENTRYSTART;
2053  sp->header.nextindex = 1;
2054 
2055  /* init freelist */
2056  fsi = DTENTRYSTART + 1;
2057  f = &sp->slot[fsi];
2058 
2059  /* init free region of remaining area */
2060  for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2061  f->next = fsi;
2062  f->next = -1;
2063 
2064  sp->header.freelist = DTENTRYSTART + 1;
2065  sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2066 
2067  *rmpp = rmp;
2068 
2069  return 0;
2070 }
2071 
2072 
2073 /*
2074  * dtDelete()
2075  *
2076  * function: delete the entry(s) referenced by a key.
2077  *
2078  * parameter:
2079  *
2080  * return:
2081  */
2082 int dtDelete(tid_t tid,
2083  struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2084 {
2085  int rc = 0;
2086  s64 bn;
2087  struct metapage *mp, *imp;
2088  dtpage_t *p;
2089  int index;
2090  struct btstack btstack;
2091  struct dt_lock *dtlck;
2092  struct tlock *tlck;
2093  struct lv *lv;
2094  int i;
2095  struct ldtentry *ldtentry;
2096  u8 *stbl;
2097  u32 table_index, next_index;
2098  struct metapage *nmp;
2099  dtpage_t *np;
2100 
2101  /*
2102  * search for the entry to delete:
2103  *
2104  * dtSearch() returns (leaf page pinned, index at which to delete).
2105  */
2106  if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2107  return rc;
2108 
2109  /* retrieve search result */
2110  DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2111 
2112  /*
2113  * We need to find put the index of the next entry into the
2114  * directory index table in order to resume a readdir from this
2115  * entry.
2116  */
2117  if (DO_INDEX(ip)) {
2118  stbl = DT_GETSTBL(p);
2119  ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2120  table_index = le32_to_cpu(ldtentry->index);
2121  if (index == (p->header.nextindex - 1)) {
2122  /*
2123  * Last entry in this leaf page
2124  */
2125  if ((p->header.flag & BT_ROOT)
2126  || (p->header.next == 0))
2127  next_index = -1;
2128  else {
2129  /* Read next leaf page */
2130  DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2131  nmp, PSIZE, np, rc);
2132  if (rc)
2133  next_index = -1;
2134  else {
2135  stbl = DT_GETSTBL(np);
2136  ldtentry =
2137  (struct ldtentry *) & np->
2138  slot[stbl[0]];
2139  next_index =
2140  le32_to_cpu(ldtentry->index);
2141  DT_PUTPAGE(nmp);
2142  }
2143  }
2144  } else {
2145  ldtentry =
2146  (struct ldtentry *) & p->slot[stbl[index + 1]];
2147  next_index = le32_to_cpu(ldtentry->index);
2148  }
2149  free_index(tid, ip, table_index, next_index);
2150  }
2151  /*
2152  * the leaf page becomes empty, delete the page
2153  */
2154  if (p->header.nextindex == 1) {
2155  /* delete empty page */
2156  rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2157  }
2158  /*
2159  * the leaf page has other entries remaining:
2160  *
2161  * delete the entry from the leaf page.
2162  */
2163  else {
2164  BT_MARK_DIRTY(mp, ip);
2165  /*
2166  * acquire a transaction lock on the leaf page
2167  */
2168  tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2169  dtlck = (struct dt_lock *) & tlck->lock;
2170 
2171  /*
2172  * Do not assume that dtlck->index will be zero. During a
2173  * rename within a directory, this transaction may have
2174  * modified this page already when adding the new entry.
2175  */
2176 
2177  /* linelock header */
2178  if (dtlck->index >= dtlck->maxcnt)
2179  dtlck = (struct dt_lock *) txLinelock(dtlck);
2180  lv = & dtlck->lv[dtlck->index];
2181  lv->offset = 0;
2182  lv->length = 1;
2183  dtlck->index++;
2184 
2185  /* linelock stbl of non-root leaf page */
2186  if (!(p->header.flag & BT_ROOT)) {
2187  if (dtlck->index >= dtlck->maxcnt)
2188  dtlck = (struct dt_lock *) txLinelock(dtlck);
2189  lv = & dtlck->lv[dtlck->index];
2190  i = index >> L2DTSLOTSIZE;
2191  lv->offset = p->header.stblindex + i;
2192  lv->length =
2193  ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2194  i + 1;
2195  dtlck->index++;
2196  }
2197 
2198  /* free the leaf entry */
2199  dtDeleteEntry(p, index, &dtlck);
2200 
2201  /*
2202  * Update directory index table for entries moved in stbl
2203  */
2204  if (DO_INDEX(ip) && index < p->header.nextindex) {
2205  s64 lblock;
2206 
2207  imp = NULL;
2208  stbl = DT_GETSTBL(p);
2209  for (i = index; i < p->header.nextindex; i++) {
2210  ldtentry =
2211  (struct ldtentry *) & p->slot[stbl[i]];
2212  modify_index(tid, ip,
2213  le32_to_cpu(ldtentry->index),
2214  bn, i, &imp, &lblock);
2215  }
2216  if (imp)
2217  release_metapage(imp);
2218  }
2219 
2220  DT_PUTPAGE(mp);
2221  }
2222 
2223  return rc;
2224 }
2225 
2226 
2227 /*
2228  * dtDeleteUp()
2229  *
2230  * function:
2231  * free empty pages as propagating deletion up the tree
2232  *
2233  * parameter:
2234  *
2235  * return:
2236  */
2237 static int dtDeleteUp(tid_t tid, struct inode *ip,
2238  struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2239 {
2240  int rc = 0;
2241  struct metapage *mp;
2242  dtpage_t *p;
2243  int index, nextindex;
2244  int xlen;
2245  struct btframe *parent;
2246  struct dt_lock *dtlck;
2247  struct tlock *tlck;
2248  struct lv *lv;
2249  struct pxd_lock *pxdlock;
2250  int i;
2251 
2252  /*
2253  * keep the root leaf page which has become empty
2254  */
2255  if (BT_IS_ROOT(fmp)) {
2256  /*
2257  * reset the root
2258  *
2259  * dtInitRoot() acquires txlock on the root
2260  */
2261  dtInitRoot(tid, ip, PARENT(ip));
2262 
2263  DT_PUTPAGE(fmp);
2264 
2265  return 0;
2266  }
2267 
2268  /*
2269  * free the non-root leaf page
2270  */
2271  /*
2272  * acquire a transaction lock on the page
2273  *
2274  * write FREEXTENT|NOREDOPAGE log record
2275  * N.B. linelock is overlaid as freed extent descriptor, and
2276  * the buffer page is freed;
2277  */
2278  tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2279  pxdlock = (struct pxd_lock *) & tlck->lock;
2280  pxdlock->flag = mlckFREEPXD;
2281  pxdlock->pxd = fp->header.self;
2282  pxdlock->index = 1;
2283 
2284  /* update sibling pointers */
2285  if ((rc = dtRelink(tid, ip, fp))) {
2286  BT_PUTPAGE(fmp);
2287  return rc;
2288  }
2289 
2290  xlen = lengthPXD(&fp->header.self);
2291 
2292  /* Free quota allocation. */
2293  dquot_free_block(ip, xlen);
2294 
2295  /* free/invalidate its buffer page */
2296  discard_metapage(fmp);
2297 
2298  /*
2299  * propagate page deletion up the directory tree
2300  *
2301  * If the delete from the parent page makes it empty,
2302  * continue all the way up the tree.
2303  * stop if the root page is reached (which is never deleted) or
2304  * if the entry deletion does not empty the page.
2305  */
2306  while ((parent = BT_POP(btstack)) != NULL) {
2307  /* pin the parent page <sp> */
2308  DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2309  if (rc)
2310  return rc;
2311 
2312  /*
2313  * free the extent of the child page deleted
2314  */
2315  index = parent->index;
2316 
2317  /*
2318  * delete the entry for the child page from parent
2319  */
2320  nextindex = p->header.nextindex;
2321 
2322  /*
2323  * the parent has the single entry being deleted:
2324  *
2325  * free the parent page which has become empty.
2326  */
2327  if (nextindex == 1) {
2328  /*
2329  * keep the root internal page which has become empty
2330  */
2331  if (p->header.flag & BT_ROOT) {
2332  /*
2333  * reset the root
2334  *
2335  * dtInitRoot() acquires txlock on the root
2336  */
2337  dtInitRoot(tid, ip, PARENT(ip));
2338 
2339  DT_PUTPAGE(mp);
2340 
2341  return 0;
2342  }
2343  /*
2344  * free the parent page
2345  */
2346  else {
2347  /*
2348  * acquire a transaction lock on the page
2349  *
2350  * write FREEXTENT|NOREDOPAGE log record
2351  */
2352  tlck =
2353  txMaplock(tid, ip,
2354  tlckDTREE | tlckFREE);
2355  pxdlock = (struct pxd_lock *) & tlck->lock;
2356  pxdlock->flag = mlckFREEPXD;
2357  pxdlock->pxd = p->header.self;
2358  pxdlock->index = 1;
2359 
2360  /* update sibling pointers */
2361  if ((rc = dtRelink(tid, ip, p))) {
2362  DT_PUTPAGE(mp);
2363  return rc;
2364  }
2365 
2366  xlen = lengthPXD(&p->header.self);
2367 
2368  /* Free quota allocation */
2369  dquot_free_block(ip, xlen);
2370 
2371  /* free/invalidate its buffer page */
2372  discard_metapage(mp);
2373 
2374  /* propagate up */
2375  continue;
2376  }
2377  }
2378 
2379  /*
2380  * the parent has other entries remaining:
2381  *
2382  * delete the router entry from the parent page.
2383  */
2384  BT_MARK_DIRTY(mp, ip);
2385  /*
2386  * acquire a transaction lock on the page
2387  *
2388  * action: router entry deletion
2389  */
2390  tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2391  dtlck = (struct dt_lock *) & tlck->lock;
2392 
2393  /* linelock header */
2394  if (dtlck->index >= dtlck->maxcnt)
2395  dtlck = (struct dt_lock *) txLinelock(dtlck);
2396  lv = & dtlck->lv[dtlck->index];
2397  lv->offset = 0;
2398  lv->length = 1;
2399  dtlck->index++;
2400 
2401  /* linelock stbl of non-root leaf page */
2402  if (!(p->header.flag & BT_ROOT)) {
2403  if (dtlck->index < dtlck->maxcnt)
2404  lv++;
2405  else {
2406  dtlck = (struct dt_lock *) txLinelock(dtlck);
2407  lv = & dtlck->lv[0];
2408  }
2409  i = index >> L2DTSLOTSIZE;
2410  lv->offset = p->header.stblindex + i;
2411  lv->length =
2412  ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2413  i + 1;
2414  dtlck->index++;
2415  }
2416 
2417  /* free the router entry */
2418  dtDeleteEntry(p, index, &dtlck);
2419 
2420  /* reset key of new leftmost entry of level (for consistency) */
2421  if (index == 0 &&
2422  ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2423  dtTruncateEntry(p, 0, &dtlck);
2424 
2425  /* unpin the parent page */
2426  DT_PUTPAGE(mp);
2427 
2428  /* exit propagation up */
2429  break;
2430  }
2431 
2432  if (!DO_INDEX(ip))
2433  ip->i_size -= PSIZE;
2434 
2435  return 0;
2436 }
2437 
2438 #ifdef _NOTYET
2439 /*
2440  * NAME: dtRelocate()
2441  *
2442  * FUNCTION: relocate dtpage (internal or leaf) of directory;
2443  * This function is mainly used by defragfs utility.
2444  */
2445 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2446  s64 nxaddr)
2447 {
2448  int rc = 0;
2449  struct metapage *mp, *pmp, *lmp, *rmp;
2450  dtpage_t *p, *pp, *rp = 0, *lp= 0;
2451  s64 bn;
2452  int index;
2453  struct btstack btstack;
2454  pxd_t *pxd;
2455  s64 oxaddr, nextbn, prevbn;
2456  int xlen, xsize;
2457  struct tlock *tlck;
2458  struct dt_lock *dtlck;
2459  struct pxd_lock *pxdlock;
2460  s8 *stbl;
2461  struct lv *lv;
2462 
2463  oxaddr = addressPXD(opxd);
2464  xlen = lengthPXD(opxd);
2465 
2466  jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2467  (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2468  xlen);
2469 
2470  /*
2471  * 1. get the internal parent dtpage covering
2472  * router entry for the tartget page to be relocated;
2473  */
2474  rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2475  if (rc)
2476  return rc;
2477 
2478  /* retrieve search result */
2479  DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2480  jfs_info("dtRelocate: parent router entry validated.");
2481 
2482  /*
2483  * 2. relocate the target dtpage
2484  */
2485  /* read in the target page from src extent */
2486  DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2487  if (rc) {
2488  /* release the pinned parent page */
2489  DT_PUTPAGE(pmp);
2490  return rc;
2491  }
2492 
2493  /*
2494  * read in sibling pages if any to update sibling pointers;
2495  */
2496  rmp = NULL;
2497  if (p->header.next) {
2498  nextbn = le64_to_cpu(p->header.next);
2499  DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2500  if (rc) {
2501  DT_PUTPAGE(mp);
2502  DT_PUTPAGE(pmp);
2503  return (rc);
2504  }
2505  }
2506 
2507  lmp = NULL;
2508  if (p->header.prev) {
2509  prevbn = le64_to_cpu(p->header.prev);
2510  DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2511  if (rc) {
2512  DT_PUTPAGE(mp);
2513  DT_PUTPAGE(pmp);
2514  if (rmp)
2515  DT_PUTPAGE(rmp);
2516  return (rc);
2517  }
2518  }
2519 
2520  /* at this point, all xtpages to be updated are in memory */
2521 
2522  /*
2523  * update sibling pointers of sibling dtpages if any;
2524  */
2525  if (lmp) {
2526  tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2527  dtlck = (struct dt_lock *) & tlck->lock;
2528  /* linelock header */
2529  ASSERT(dtlck->index == 0);
2530  lv = & dtlck->lv[0];
2531  lv->offset = 0;
2532  lv->length = 1;
2533  dtlck->index++;
2534 
2535  lp->header.next = cpu_to_le64(nxaddr);
2536  DT_PUTPAGE(lmp);
2537  }
2538 
2539  if (rmp) {
2540  tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2541  dtlck = (struct dt_lock *) & tlck->lock;
2542  /* linelock header */
2543  ASSERT(dtlck->index == 0);
2544  lv = & dtlck->lv[0];
2545  lv->offset = 0;
2546  lv->length = 1;
2547  dtlck->index++;
2548 
2549  rp->header.prev = cpu_to_le64(nxaddr);
2550  DT_PUTPAGE(rmp);
2551  }
2552 
2553  /*
2554  * update the target dtpage to be relocated
2555  *
2556  * write LOG_REDOPAGE of LOG_NEW type for dst page
2557  * for the whole target page (logredo() will apply
2558  * after image and update bmap for allocation of the
2559  * dst extent), and update bmap for allocation of
2560  * the dst extent;
2561  */
2562  tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2563  dtlck = (struct dt_lock *) & tlck->lock;
2564  /* linelock header */
2565  ASSERT(dtlck->index == 0);
2566  lv = & dtlck->lv[0];
2567 
2568  /* update the self address in the dtpage header */
2569  pxd = &p->header.self;
2570  PXDaddress(pxd, nxaddr);
2571 
2572  /* the dst page is the same as the src page, i.e.,
2573  * linelock for afterimage of the whole page;
2574  */
2575  lv->offset = 0;
2576  lv->length = p->header.maxslot;
2577  dtlck->index++;
2578 
2579  /* update the buffer extent descriptor of the dtpage */
2580  xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2581 
2582  /* unpin the relocated page */
2583  DT_PUTPAGE(mp);
2584  jfs_info("dtRelocate: target dtpage relocated.");
2585 
2586  /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2587  * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2588  * will also force a bmap update ).
2589  */
2590 
2591  /*
2592  * 3. acquire maplock for the source extent to be freed;
2593  */
2594  /* for dtpage relocation, write a LOG_NOREDOPAGE record
2595  * for the source dtpage (logredo() will init NoRedoPage
2596  * filter and will also update bmap for free of the source
2597  * dtpage), and upadte bmap for free of the source dtpage;
2598  */
2599  tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2600  pxdlock = (struct pxd_lock *) & tlck->lock;
2601  pxdlock->flag = mlckFREEPXD;
2602  PXDaddress(&pxdlock->pxd, oxaddr);
2603  PXDlength(&pxdlock->pxd, xlen);
2604  pxdlock->index = 1;
2605 
2606  /*
2607  * 4. update the parent router entry for relocation;
2608  *
2609  * acquire tlck for the parent entry covering the target dtpage;
2610  * write LOG_REDOPAGE to apply after image only;
2611  */
2612  jfs_info("dtRelocate: update parent router entry.");
2613  tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2614  dtlck = (struct dt_lock *) & tlck->lock;
2615  lv = & dtlck->lv[dtlck->index];
2616 
2617  /* update the PXD with the new address */
2618  stbl = DT_GETSTBL(pp);
2619  pxd = (pxd_t *) & pp->slot[stbl[index]];
2620  PXDaddress(pxd, nxaddr);
2621  lv->offset = stbl[index];
2622  lv->length = 1;
2623  dtlck->index++;
2624 
2625  /* unpin the parent dtpage */
2626  DT_PUTPAGE(pmp);
2627 
2628  return rc;
2629 }
2630 
2631 /*
2632  * NAME: dtSearchNode()
2633  *
2634  * FUNCTION: Search for an dtpage containing a specified address
2635  * This function is mainly used by defragfs utility.
2636  *
2637  * NOTE: Search result on stack, the found page is pinned at exit.
2638  * The result page must be an internal dtpage.
2639  * lmxaddr give the address of the left most page of the
2640  * dtree level, in which the required dtpage resides.
2641  */
2642 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2643  struct btstack * btstack)
2644 {
2645  int rc = 0;
2646  s64 bn;
2647  struct metapage *mp;
2648  dtpage_t *p;
2649  int psize = 288; /* initial in-line directory */
2650  s8 *stbl;
2651  int i;
2652  pxd_t *pxd;
2653  struct btframe *btsp;
2654 
2655  BT_CLR(btstack); /* reset stack */
2656 
2657  /*
2658  * descend tree to the level with specified leftmost page
2659  *
2660  * by convention, root bn = 0.
2661  */
2662  for (bn = 0;;) {
2663  /* get/pin the page to search */
2664  DT_GETPAGE(ip, bn, mp, psize, p, rc);
2665  if (rc)
2666  return rc;
2667 
2668  /* does the xaddr of leftmost page of the levevl
2669  * matches levevl search key ?
2670  */
2671  if (p->header.flag & BT_ROOT) {
2672  if (lmxaddr == 0)
2673  break;
2674  } else if (addressPXD(&p->header.self) == lmxaddr)
2675  break;
2676 
2677  /*
2678  * descend down to leftmost child page
2679  */
2680  if (p->header.flag & BT_LEAF) {
2681  DT_PUTPAGE(mp);
2682  return -ESTALE;
2683  }
2684 
2685  /* get the leftmost entry */
2686  stbl = DT_GETSTBL(p);
2687  pxd = (pxd_t *) & p->slot[stbl[0]];
2688 
2689  /* get the child page block address */
2690  bn = addressPXD(pxd);
2691  psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2692  /* unpin the parent page */
2693  DT_PUTPAGE(mp);
2694  }
2695 
2696  /*
2697  * search each page at the current levevl
2698  */
2699  loop:
2700  stbl = DT_GETSTBL(p);
2701  for (i = 0; i < p->header.nextindex; i++) {
2702  pxd = (pxd_t *) & p->slot[stbl[i]];
2703 
2704  /* found the specified router entry */
2705  if (addressPXD(pxd) == addressPXD(kpxd) &&
2706  lengthPXD(pxd) == lengthPXD(kpxd)) {
2707  btsp = btstack->top;
2708  btsp->bn = bn;
2709  btsp->index = i;
2710  btsp->mp = mp;
2711 
2712  return 0;
2713  }
2714  }
2715 
2716  /* get the right sibling page if any */
2717  if (p->header.next)
2718  bn = le64_to_cpu(p->header.next);
2719  else {
2720  DT_PUTPAGE(mp);
2721  return -ESTALE;
2722  }
2723 
2724  /* unpin current page */
2725  DT_PUTPAGE(mp);
2726 
2727  /* get the right sibling page */
2728  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2729  if (rc)
2730  return rc;
2731 
2732  goto loop;
2733 }
2734 #endif /* _NOTYET */
2735 
2736 /*
2737  * dtRelink()
2738  *
2739  * function:
2740  * link around a freed page.
2741  *
2742  * parameter:
2743  * fp: page to be freed
2744  *
2745  * return:
2746  */
2747 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2748 {
2749  int rc;
2750  struct metapage *mp;
2751  s64 nextbn, prevbn;
2752  struct tlock *tlck;
2753  struct dt_lock *dtlck;
2754  struct lv *lv;
2755 
2756  nextbn = le64_to_cpu(p->header.next);
2757  prevbn = le64_to_cpu(p->header.prev);
2758 
2759  /* update prev pointer of the next page */
2760  if (nextbn != 0) {
2761  DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2762  if (rc)
2763  return rc;
2764 
2765  BT_MARK_DIRTY(mp, ip);
2766  /*
2767  * acquire a transaction lock on the next page
2768  *
2769  * action: update prev pointer;
2770  */
2771  tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2772  jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2773  tlck, ip, mp);
2774  dtlck = (struct dt_lock *) & tlck->lock;
2775 
2776  /* linelock header */
2777  if (dtlck->index >= dtlck->maxcnt)
2778  dtlck = (struct dt_lock *) txLinelock(dtlck);
2779  lv = & dtlck->lv[dtlck->index];
2780  lv->offset = 0;
2781  lv->length = 1;
2782  dtlck->index++;
2783 
2784  p->header.prev = cpu_to_le64(prevbn);
2785  DT_PUTPAGE(mp);
2786  }
2787 
2788  /* update next pointer of the previous page */
2789  if (prevbn != 0) {
2790  DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2791  if (rc)
2792  return rc;
2793 
2794  BT_MARK_DIRTY(mp, ip);
2795  /*
2796  * acquire a transaction lock on the prev page
2797  *
2798  * action: update next pointer;
2799  */
2800  tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2801  jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2802  tlck, ip, mp);
2803  dtlck = (struct dt_lock *) & tlck->lock;
2804 
2805  /* linelock header */
2806  if (dtlck->index >= dtlck->maxcnt)
2807  dtlck = (struct dt_lock *) txLinelock(dtlck);
2808  lv = & dtlck->lv[dtlck->index];
2809  lv->offset = 0;
2810  lv->length = 1;
2811  dtlck->index++;
2812 
2813  p->header.next = cpu_to_le64(nextbn);
2814  DT_PUTPAGE(mp);
2815  }
2816 
2817  return 0;
2818 }
2819 
2820 
2821 /*
2822  * dtInitRoot()
2823  *
2824  * initialize directory root (inline in inode)
2825  */
2826 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2827 {
2828  struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2829  dtroot_t *p;
2830  int fsi;
2831  struct dtslot *f;
2832  struct tlock *tlck;
2833  struct dt_lock *dtlck;
2834  struct lv *lv;
2835  u16 xflag_save;
2836 
2837  /*
2838  * If this was previously an non-empty directory, we need to remove
2839  * the old directory table.
2840  */
2841  if (DO_INDEX(ip)) {
2842  if (!jfs_dirtable_inline(ip)) {
2843  struct tblock *tblk = tid_to_tblock(tid);
2844  /*
2845  * We're playing games with the tid's xflag. If
2846  * we're removing a regular file, the file's xtree
2847  * is committed with COMMIT_PMAP, but we always
2848  * commit the directories xtree with COMMIT_PWMAP.
2849  */
2850  xflag_save = tblk->xflag;
2851  tblk->xflag = 0;
2852  /*
2853  * xtTruncate isn't guaranteed to fully truncate
2854  * the xtree. The caller needs to check i_size
2855  * after committing the transaction to see if
2856  * additional truncation is needed. The
2857  * COMMIT_Stale flag tells caller that we
2858  * initiated the truncation.
2859  */
2860  xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2861  set_cflag(COMMIT_Stale, ip);
2862 
2863  tblk->xflag = xflag_save;
2864  } else
2865  ip->i_size = 1;
2866 
2867  jfs_ip->next_index = 2;
2868  } else
2869  ip->i_size = IDATASIZE;
2870 
2871  /*
2872  * acquire a transaction lock on the root
2873  *
2874  * action: directory initialization;
2875  */
2876  tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2878  dtlck = (struct dt_lock *) & tlck->lock;
2879 
2880  /* linelock root */
2881  ASSERT(dtlck->index == 0);
2882  lv = & dtlck->lv[0];
2883  lv->offset = 0;
2884  lv->length = DTROOTMAXSLOT;
2885  dtlck->index++;
2886 
2887  p = &jfs_ip->i_dtroot;
2888 
2889  p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2890 
2891  p->header.nextindex = 0;
2892 
2893  /* init freelist */
2894  fsi = 1;
2895  f = &p->slot[fsi];
2896 
2897  /* init data area of root */
2898  for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2899  f->next = fsi;
2900  f->next = -1;
2901 
2902  p->header.freelist = 1;
2903  p->header.freecnt = 8;
2904 
2905  /* init '..' entry */
2906  p->header.idotdot = cpu_to_le32(idotdot);
2907 
2908  return;
2909 }
2910 
2911 /*
2912  * add_missing_indices()
2913  *
2914  * function: Fix dtree page in which one or more entries has an invalid index.
2915  * fsck.jfs should really fix this, but it currently does not.
2916  * Called from jfs_readdir when bad index is detected.
2917  */
2918 static void add_missing_indices(struct inode *inode, s64 bn)
2919 {
2920  struct ldtentry *d;
2921  struct dt_lock *dtlck;
2922  int i;
2923  uint index;
2924  struct lv *lv;
2925  struct metapage *mp;
2926  dtpage_t *p;
2927  int rc;
2928  s8 *stbl;
2929  tid_t tid;
2930  struct tlock *tlck;
2931 
2932  tid = txBegin(inode->i_sb, 0);
2933 
2934  DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2935 
2936  if (rc) {
2937  printk(KERN_ERR "DT_GETPAGE failed!\n");
2938  goto end;
2939  }
2940  BT_MARK_DIRTY(mp, inode);
2941 
2942  ASSERT(p->header.flag & BT_LEAF);
2943 
2944  tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2945  if (BT_IS_ROOT(mp))
2946  tlck->type |= tlckBTROOT;
2947 
2948  dtlck = (struct dt_lock *) &tlck->lock;
2949 
2950  stbl = DT_GETSTBL(p);
2951  for (i = 0; i < p->header.nextindex; i++) {
2952  d = (struct ldtentry *) &p->slot[stbl[i]];
2953  index = le32_to_cpu(d->index);
2954  if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2955  d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2956  if (dtlck->index >= dtlck->maxcnt)
2957  dtlck = (struct dt_lock *) txLinelock(dtlck);
2958  lv = &dtlck->lv[dtlck->index];
2959  lv->offset = stbl[i];
2960  lv->length = 1;
2961  dtlck->index++;
2962  }
2963  }
2964 
2965  DT_PUTPAGE(mp);
2966  (void) txCommit(tid, 1, &inode, 0);
2967 end:
2968  txEnd(tid);
2969 }
2970 
2971 /*
2972  * Buffer to hold directory entry info while traversing a dtree page
2973  * before being fed to the filldir function
2974  */
2975 struct jfs_dirent {
2976  loff_t position;
2977  int ino;
2979  char name[0];
2980 };
2981 
2982 /*
2983  * function to determine next variable-sized jfs_dirent in buffer
2984  */
2985 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2986 {
2987  return (struct jfs_dirent *)
2988  ((char *)dirent +
2989  ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2990  sizeof (loff_t) - 1) &
2991  ~(sizeof (loff_t) - 1)));
2992 }
2993 
2994 /*
2995  * jfs_readdir()
2996  *
2997  * function: read directory entries sequentially
2998  * from the specified entry offset
2999  *
3000  * parameter:
3001  *
3002  * return: offset = (pn, index) of start entry
3003  * of next jfs_readdir()/dtRead()
3004  */
3005 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3006 {
3007  struct inode *ip = filp->f_path.dentry->d_inode;
3008  struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3009  int rc = 0;
3010  loff_t dtpos; /* legacy OS/2 style position */
3011  struct dtoffset {
3012  s16 pn;
3013  s16 index;
3014  s32 unused;
3015  } *dtoffset = (struct dtoffset *) &dtpos;
3016  s64 bn;
3017  struct metapage *mp;
3018  dtpage_t *p;
3019  int index;
3020  s8 *stbl;
3021  struct btstack btstack;
3022  int i, next;
3023  struct ldtentry *d;
3024  struct dtslot *t;
3025  int d_namleft, len, outlen;
3026  unsigned long dirent_buf;
3027  char *name_ptr;
3028  u32 dir_index;
3029  int do_index = 0;
3030  uint loop_count = 0;
3031  struct jfs_dirent *jfs_dirent;
3032  int jfs_dirents;
3033  int overflow, fix_page, page_fixed = 0;
3034  static int unique_pos = 2; /* If we can't fix broken index */
3035 
3036  if (filp->f_pos == DIREND)
3037  return 0;
3038 
3039  if (DO_INDEX(ip)) {
3040  /*
3041  * persistent index is stored in directory entries.
3042  * Special cases: 0 = .
3043  * 1 = ..
3044  * -1 = End of directory
3045  */
3046  do_index = 1;
3047 
3048  dir_index = (u32) filp->f_pos;
3049 
3050  if (dir_index > 1) {
3051  struct dir_table_slot dirtab_slot;
3052 
3053  if (dtEmpty(ip) ||
3054  (dir_index >= JFS_IP(ip)->next_index)) {
3055  /* Stale position. Directory has shrunk */
3056  filp->f_pos = DIREND;
3057  return 0;
3058  }
3059  repeat:
3060  rc = read_index(ip, dir_index, &dirtab_slot);
3061  if (rc) {
3062  filp->f_pos = DIREND;
3063  return rc;
3064  }
3065  if (dirtab_slot.flag == DIR_INDEX_FREE) {
3066  if (loop_count++ > JFS_IP(ip)->next_index) {
3067  jfs_err("jfs_readdir detected "
3068  "infinite loop!");
3069  filp->f_pos = DIREND;
3070  return 0;
3071  }
3072  dir_index = le32_to_cpu(dirtab_slot.addr2);
3073  if (dir_index == -1) {
3074  filp->f_pos = DIREND;
3075  return 0;
3076  }
3077  goto repeat;
3078  }
3079  bn = addressDTS(&dirtab_slot);
3080  index = dirtab_slot.slot;
3081  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3082  if (rc) {
3083  filp->f_pos = DIREND;
3084  return 0;
3085  }
3086  if (p->header.flag & BT_INTERNAL) {
3087  jfs_err("jfs_readdir: bad index table");
3088  DT_PUTPAGE(mp);
3089  filp->f_pos = -1;
3090  return 0;
3091  }
3092  } else {
3093  if (dir_index == 0) {
3094  /*
3095  * self "."
3096  */
3097  filp->f_pos = 0;
3098  if (filldir(dirent, ".", 1, 0, ip->i_ino,
3099  DT_DIR))
3100  return 0;
3101  }
3102  /*
3103  * parent ".."
3104  */
3105  filp->f_pos = 1;
3106  if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3107  return 0;
3108 
3109  /*
3110  * Find first entry of left-most leaf
3111  */
3112  if (dtEmpty(ip)) {
3113  filp->f_pos = DIREND;
3114  return 0;
3115  }
3116 
3117  if ((rc = dtReadFirst(ip, &btstack)))
3118  return rc;
3119 
3120  DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3121  }
3122  } else {
3123  /*
3124  * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3125  *
3126  * pn = index = 0: First entry "."
3127  * pn = 0; index = 1: Second entry ".."
3128  * pn > 0: Real entries, pn=1 -> leftmost page
3129  * pn = index = -1: No more entries
3130  */
3131  dtpos = filp->f_pos;
3132  if (dtpos == 0) {
3133  /* build "." entry */
3134 
3135  if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3136  DT_DIR))
3137  return 0;
3138  dtoffset->index = 1;
3139  filp->f_pos = dtpos;
3140  }
3141 
3142  if (dtoffset->pn == 0) {
3143  if (dtoffset->index == 1) {
3144  /* build ".." entry */
3145 
3146  if (filldir(dirent, "..", 2, filp->f_pos,
3147  PARENT(ip), DT_DIR))
3148  return 0;
3149  } else {
3150  jfs_err("jfs_readdir called with "
3151  "invalid offset!");
3152  }
3153  dtoffset->pn = 1;
3154  dtoffset->index = 0;
3155  filp->f_pos = dtpos;
3156  }
3157 
3158  if (dtEmpty(ip)) {
3159  filp->f_pos = DIREND;
3160  return 0;
3161  }
3162 
3163  if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3164  jfs_err("jfs_readdir: unexpected rc = %d "
3165  "from dtReadNext", rc);
3166  filp->f_pos = DIREND;
3167  return 0;
3168  }
3169  /* get start leaf page and index */
3170  DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3171 
3172  /* offset beyond directory eof ? */
3173  if (bn < 0) {
3174  filp->f_pos = DIREND;
3175  return 0;
3176  }
3177  }
3178 
3179  dirent_buf = __get_free_page(GFP_KERNEL);
3180  if (dirent_buf == 0) {
3181  DT_PUTPAGE(mp);
3182  jfs_warn("jfs_readdir: __get_free_page failed!");
3183  filp->f_pos = DIREND;
3184  return -ENOMEM;
3185  }
3186 
3187  while (1) {
3188  jfs_dirent = (struct jfs_dirent *) dirent_buf;
3189  jfs_dirents = 0;
3190  overflow = fix_page = 0;
3191 
3192  stbl = DT_GETSTBL(p);
3193 
3194  for (i = index; i < p->header.nextindex; i++) {
3195  d = (struct ldtentry *) & p->slot[stbl[i]];
3196 
3197  if (((long) jfs_dirent + d->namlen + 1) >
3198  (dirent_buf + PAGE_SIZE)) {
3199  /* DBCS codepages could overrun dirent_buf */
3200  index = i;
3201  overflow = 1;
3202  break;
3203  }
3204 
3205  d_namleft = d->namlen;
3206  name_ptr = jfs_dirent->name;
3207  jfs_dirent->ino = le32_to_cpu(d->inumber);
3208 
3209  if (do_index) {
3210  len = min(d_namleft, DTLHDRDATALEN);
3211  jfs_dirent->position = le32_to_cpu(d->index);
3212  /*
3213  * d->index should always be valid, but it
3214  * isn't. fsck.jfs doesn't create the
3215  * directory index for the lost+found
3216  * directory. Rather than let it go,
3217  * we can try to fix it.
3218  */
3219  if ((jfs_dirent->position < 2) ||
3220  (jfs_dirent->position >=
3221  JFS_IP(ip)->next_index)) {
3222  if (!page_fixed && !isReadOnly(ip)) {
3223  fix_page = 1;
3224  /*
3225  * setting overflow and setting
3226  * index to i will cause the
3227  * same page to be processed
3228  * again starting here
3229  */
3230  overflow = 1;
3231  index = i;
3232  break;
3233  }
3234  jfs_dirent->position = unique_pos++;
3235  }
3236  } else {
3237  jfs_dirent->position = dtpos;
3238  len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3239  }
3240 
3241  /* copy the name of head/only segment */
3242  outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3243  codepage);
3244  jfs_dirent->name_len = outlen;
3245 
3246  /* copy name in the additional segment(s) */
3247  next = d->next;
3248  while (next >= 0) {
3249  t = (struct dtslot *) & p->slot[next];
3250  name_ptr += outlen;
3251  d_namleft -= len;
3252  /* Sanity Check */
3253  if (d_namleft == 0) {
3254  jfs_error(ip->i_sb,
3255  "JFS:Dtree error: ino = "
3256  "%ld, bn=%Ld, index = %d",
3257  (long)ip->i_ino,
3258  (long long)bn,
3259  i);
3260  goto skip_one;
3261  }
3262  len = min(d_namleft, DTSLOTDATALEN);
3263  outlen = jfs_strfromUCS_le(name_ptr, t->name,
3264  len, codepage);
3265  jfs_dirent->name_len += outlen;
3266 
3267  next = t->next;
3268  }
3269 
3270  jfs_dirents++;
3271  jfs_dirent = next_jfs_dirent(jfs_dirent);
3272 skip_one:
3273  if (!do_index)
3274  dtoffset->index++;
3275  }
3276 
3277  if (!overflow) {
3278  /* Point to next leaf page */
3279  if (p->header.flag & BT_ROOT)
3280  bn = 0;
3281  else {
3282  bn = le64_to_cpu(p->header.next);
3283  index = 0;
3284  /* update offset (pn:index) for new page */
3285  if (!do_index) {
3286  dtoffset->pn++;
3287  dtoffset->index = 0;
3288  }
3289  }
3290  page_fixed = 0;
3291  }
3292 
3293  /* unpin previous leaf page */
3294  DT_PUTPAGE(mp);
3295 
3296  jfs_dirent = (struct jfs_dirent *) dirent_buf;
3297  while (jfs_dirents--) {
3298  filp->f_pos = jfs_dirent->position;
3299  if (filldir(dirent, jfs_dirent->name,
3300  jfs_dirent->name_len, filp->f_pos,
3301  jfs_dirent->ino, DT_UNKNOWN))
3302  goto out;
3303  jfs_dirent = next_jfs_dirent(jfs_dirent);
3304  }
3305 
3306  if (fix_page) {
3307  add_missing_indices(ip, bn);
3308  page_fixed = 1;
3309  }
3310 
3311  if (!overflow && (bn == 0)) {
3312  filp->f_pos = DIREND;
3313  break;
3314  }
3315 
3316  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3317  if (rc) {
3318  free_page(dirent_buf);
3319  return rc;
3320  }
3321  }
3322 
3323  out:
3324  free_page(dirent_buf);
3325 
3326  return rc;
3327 }
3328 
3329 
3330 /*
3331  * dtReadFirst()
3332  *
3333  * function: get the leftmost page of the directory
3334  */
3335 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3336 {
3337  int rc = 0;
3338  s64 bn;
3339  int psize = 288; /* initial in-line directory */
3340  struct metapage *mp;
3341  dtpage_t *p;
3342  s8 *stbl;
3343  struct btframe *btsp;
3344  pxd_t *xd;
3345 
3346  BT_CLR(btstack); /* reset stack */
3347 
3348  /*
3349  * descend leftmost path of the tree
3350  *
3351  * by convention, root bn = 0.
3352  */
3353  for (bn = 0;;) {
3354  DT_GETPAGE(ip, bn, mp, psize, p, rc);
3355  if (rc)
3356  return rc;
3357 
3358  /*
3359  * leftmost leaf page
3360  */
3361  if (p->header.flag & BT_LEAF) {
3362  /* return leftmost entry */
3363  btsp = btstack->top;
3364  btsp->bn = bn;
3365  btsp->index = 0;
3366  btsp->mp = mp;
3367 
3368  return 0;
3369  }
3370 
3371  /*
3372  * descend down to leftmost child page
3373  */
3374  if (BT_STACK_FULL(btstack)) {
3375  DT_PUTPAGE(mp);
3376  jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3377  BT_STACK_DUMP(btstack);
3378  return -EIO;
3379  }
3380  /* push (bn, index) of the parent page/entry */
3381  BT_PUSH(btstack, bn, 0);
3382 
3383  /* get the leftmost entry */
3384  stbl = DT_GETSTBL(p);
3385  xd = (pxd_t *) & p->slot[stbl[0]];
3386 
3387  /* get the child page block address */
3388  bn = addressPXD(xd);
3389  psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3390 
3391  /* unpin the parent page */
3392  DT_PUTPAGE(mp);
3393  }
3394 }
3395 
3396 
3397 /*
3398  * dtReadNext()
3399  *
3400  * function: get the page of the specified offset (pn:index)
3401  *
3402  * return: if (offset > eof), bn = -1;
3403  *
3404  * note: if index > nextindex of the target leaf page,
3405  * start with 1st entry of next leaf page;
3406  */
3407 static int dtReadNext(struct inode *ip, loff_t * offset,
3408  struct btstack * btstack)
3409 {
3410  int rc = 0;
3411  struct dtoffset {
3412  s16 pn;
3413  s16 index;
3414  s32 unused;
3415  } *dtoffset = (struct dtoffset *) offset;
3416  s64 bn;
3417  struct metapage *mp;
3418  dtpage_t *p;
3419  int index;
3420  int pn;
3421  s8 *stbl;
3422  struct btframe *btsp, *parent;
3423  pxd_t *xd;
3424 
3425  /*
3426  * get leftmost leaf page pinned
3427  */
3428  if ((rc = dtReadFirst(ip, btstack)))
3429  return rc;
3430 
3431  /* get leaf page */
3432  DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3433 
3434  /* get the start offset (pn:index) */
3435  pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3436  index = dtoffset->index;
3437 
3438  /* start at leftmost page ? */
3439  if (pn == 0) {
3440  /* offset beyond eof ? */
3441  if (index < p->header.nextindex)
3442  goto out;
3443 
3444  if (p->header.flag & BT_ROOT) {
3445  bn = -1;
3446  goto out;
3447  }
3448 
3449  /* start with 1st entry of next leaf page */
3450  dtoffset->pn++;
3451  dtoffset->index = index = 0;
3452  goto a;
3453  }
3454 
3455  /* start at non-leftmost page: scan parent pages for large pn */
3456  if (p->header.flag & BT_ROOT) {
3457  bn = -1;
3458  goto out;
3459  }
3460 
3461  /* start after next leaf page ? */
3462  if (pn > 1)
3463  goto b;
3464 
3465  /* get leaf page pn = 1 */
3466  a:
3467  bn = le64_to_cpu(p->header.next);
3468 
3469  /* unpin leaf page */
3470  DT_PUTPAGE(mp);
3471 
3472  /* offset beyond eof ? */
3473  if (bn == 0) {
3474  bn = -1;
3475  goto out;
3476  }
3477 
3478  goto c;
3479 
3480  /*
3481  * scan last internal page level to get target leaf page
3482  */
3483  b:
3484  /* unpin leftmost leaf page */
3485  DT_PUTPAGE(mp);
3486 
3487  /* get left most parent page */
3488  btsp = btstack->top;
3489  parent = btsp - 1;
3490  bn = parent->bn;
3491  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3492  if (rc)
3493  return rc;
3494 
3495  /* scan parent pages at last internal page level */
3496  while (pn >= p->header.nextindex) {
3497  pn -= p->header.nextindex;
3498 
3499  /* get next parent page address */
3500  bn = le64_to_cpu(p->header.next);
3501 
3502  /* unpin current parent page */
3503  DT_PUTPAGE(mp);
3504 
3505  /* offset beyond eof ? */
3506  if (bn == 0) {
3507  bn = -1;
3508  goto out;
3509  }
3510 
3511  /* get next parent page */
3512  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3513  if (rc)
3514  return rc;
3515 
3516  /* update parent page stack frame */
3517  parent->bn = bn;
3518  }
3519 
3520  /* get leaf page address */
3521  stbl = DT_GETSTBL(p);
3522  xd = (pxd_t *) & p->slot[stbl[pn]];
3523  bn = addressPXD(xd);
3524 
3525  /* unpin parent page */
3526  DT_PUTPAGE(mp);
3527 
3528  /*
3529  * get target leaf page
3530  */
3531  c:
3532  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3533  if (rc)
3534  return rc;
3535 
3536  /*
3537  * leaf page has been completed:
3538  * start with 1st entry of next leaf page
3539  */
3540  if (index >= p->header.nextindex) {
3541  bn = le64_to_cpu(p->header.next);
3542 
3543  /* unpin leaf page */
3544  DT_PUTPAGE(mp);
3545 
3546  /* offset beyond eof ? */
3547  if (bn == 0) {
3548  bn = -1;
3549  goto out;
3550  }
3551 
3552  /* get next leaf page */
3553  DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3554  if (rc)
3555  return rc;
3556 
3557  /* start with 1st entry of next leaf page */
3558  dtoffset->pn++;
3559  dtoffset->index = 0;
3560  }
3561 
3562  out:
3563  /* return target leaf page pinned */
3564  btsp = btstack->top;
3565  btsp->bn = bn;
3566  btsp->index = dtoffset->index;
3567  btsp->mp = mp;
3568 
3569  return 0;
3570 }
3571 
3572 
3573 /*
3574  * dtCompare()
3575  *
3576  * function: compare search key with an internal entry
3577  *
3578  * return:
3579  * < 0 if k is < record
3580  * = 0 if k is = record
3581  * > 0 if k is > record
3582  */
3583 static int dtCompare(struct component_name * key, /* search key */
3584  dtpage_t * p, /* directory page */
3585  int si)
3586 { /* entry slot index */
3587  wchar_t *kname;
3588  __le16 *name;
3589  int klen, namlen, len, rc;
3590  struct idtentry *ih;
3591  struct dtslot *t;
3592 
3593  /*
3594  * force the left-most key on internal pages, at any level of
3595  * the tree, to be less than any search key.
3596  * this obviates having to update the leftmost key on an internal
3597  * page when the user inserts a new key in the tree smaller than
3598  * anything that has been stored.
3599  *
3600  * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3601  * at any internal page at any level of the tree,
3602  * it descends to child of the entry anyway -
3603  * ? make the entry as min size dummy entry)
3604  *
3605  * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3606  * return (1);
3607  */
3608 
3609  kname = key->name;
3610  klen = key->namlen;
3611 
3612  ih = (struct idtentry *) & p->slot[si];
3613  si = ih->next;
3614  name = ih->name;
3615  namlen = ih->namlen;
3616  len = min(namlen, DTIHDRDATALEN);
3617 
3618  /* compare with head/only segment */
3619  len = min(klen, len);
3620  if ((rc = UniStrncmp_le(kname, name, len)))
3621  return rc;
3622 
3623  klen -= len;
3624  namlen -= len;
3625 
3626  /* compare with additional segment(s) */
3627  kname += len;
3628  while (klen > 0 && namlen > 0) {
3629  /* compare with next name segment */
3630  t = (struct dtslot *) & p->slot[si];
3631  len = min(namlen, DTSLOTDATALEN);
3632  len = min(klen, len);
3633  name = t->name;
3634  if ((rc = UniStrncmp_le(kname, name, len)))
3635  return rc;
3636 
3637  klen -= len;
3638  namlen -= len;
3639  kname += len;
3640  si = t->next;
3641  }
3642 
3643  return (klen - namlen);
3644 }
3645 
3646 
3647 
3648 
3649 /*
3650  * ciCompare()
3651  *
3652  * function: compare search key with an (leaf/internal) entry
3653  *
3654  * return:
3655  * < 0 if k is < record
3656  * = 0 if k is = record
3657  * > 0 if k is > record
3658  */
3659 static int ciCompare(struct component_name * key, /* search key */
3660  dtpage_t * p, /* directory page */
3661  int si, /* entry slot index */
3662  int flag)
3663 {
3664  wchar_t *kname, x;
3665  __le16 *name;
3666  int klen, namlen, len, rc;
3667  struct ldtentry *lh;
3668  struct idtentry *ih;
3669  struct dtslot *t;
3670  int i;
3671 
3672  /*
3673  * force the left-most key on internal pages, at any level of
3674  * the tree, to be less than any search key.
3675  * this obviates having to update the leftmost key on an internal
3676  * page when the user inserts a new key in the tree smaller than
3677  * anything that has been stored.
3678  *
3679  * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3680  * at any internal page at any level of the tree,
3681  * it descends to child of the entry anyway -
3682  * ? make the entry as min size dummy entry)
3683  *
3684  * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3685  * return (1);
3686  */
3687 
3688  kname = key->name;
3689  klen = key->namlen;
3690 
3691  /*
3692  * leaf page entry
3693  */
3694  if (p->header.flag & BT_LEAF) {
3695  lh = (struct ldtentry *) & p->slot[si];
3696  si = lh->next;
3697  name = lh->name;
3698  namlen = lh->namlen;
3699  if (flag & JFS_DIR_INDEX)
3700  len = min(namlen, DTLHDRDATALEN);
3701  else
3702  len = min(namlen, DTLHDRDATALEN_LEGACY);
3703  }
3704  /*
3705  * internal page entry
3706  */
3707  else {
3708  ih = (struct idtentry *) & p->slot[si];
3709  si = ih->next;
3710  name = ih->name;
3711  namlen = ih->namlen;
3712  len = min(namlen, DTIHDRDATALEN);
3713  }
3714 
3715  /* compare with head/only segment */
3716  len = min(klen, len);
3717  for (i = 0; i < len; i++, kname++, name++) {
3718  /* only uppercase if case-insensitive support is on */
3719  if ((flag & JFS_OS2) == JFS_OS2)
3720  x = UniToupper(le16_to_cpu(*name));
3721  else
3722  x = le16_to_cpu(*name);
3723  if ((rc = *kname - x))
3724  return rc;
3725  }
3726 
3727  klen -= len;
3728  namlen -= len;
3729 
3730  /* compare with additional segment(s) */
3731  while (klen > 0 && namlen > 0) {
3732  /* compare with next name segment */
3733  t = (struct dtslot *) & p->slot[si];
3734  len = min(namlen, DTSLOTDATALEN);
3735  len = min(klen, len);
3736  name = t->name;
3737  for (i = 0; i < len; i++, kname++, name++) {
3738  /* only uppercase if case-insensitive support is on */
3739  if ((flag & JFS_OS2) == JFS_OS2)
3740  x = UniToupper(le16_to_cpu(*name));
3741  else
3742  x = le16_to_cpu(*name);
3743 
3744  if ((rc = *kname - x))
3745  return rc;
3746  }
3747 
3748  klen -= len;
3749  namlen -= len;
3750  si = t->next;
3751  }
3752 
3753  return (klen - namlen);
3754 }
3755 
3756 
3757 /*
3758  * ciGetLeafPrefixKey()
3759  *
3760  * function: compute prefix of suffix compression
3761  * from two adjacent leaf entries
3762  * across page boundary
3763  *
3764  * return: non-zero on error
3765  *
3766  */
3767 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3768  int ri, struct component_name * key, int flag)
3769 {
3770  int klen, namlen;
3771  wchar_t *pl, *pr, *kname;
3772  struct component_name lkey;
3773  struct component_name rkey;
3774 
3775  lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3776  GFP_KERNEL);
3777  if (lkey.name == NULL)
3778  return -ENOMEM;
3779 
3780  rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3781  GFP_KERNEL);
3782  if (rkey.name == NULL) {
3783  kfree(lkey.name);
3784  return -ENOMEM;
3785  }
3786 
3787  /* get left and right key */
3788  dtGetKey(lp, li, &lkey, flag);
3789  lkey.name[lkey.namlen] = 0;
3790 
3791  if ((flag & JFS_OS2) == JFS_OS2)
3792  ciToUpper(&lkey);
3793 
3794  dtGetKey(rp, ri, &rkey, flag);
3795  rkey.name[rkey.namlen] = 0;
3796 
3797 
3798  if ((flag & JFS_OS2) == JFS_OS2)
3799  ciToUpper(&rkey);
3800 
3801  /* compute prefix */
3802  klen = 0;
3803  kname = key->name;
3804  namlen = min(lkey.namlen, rkey.namlen);
3805  for (pl = lkey.name, pr = rkey.name;
3806  namlen; pl++, pr++, namlen--, klen++, kname++) {
3807  *kname = *pr;
3808  if (*pl != *pr) {
3809  key->namlen = klen + 1;
3810  goto free_names;
3811  }
3812  }
3813 
3814  /* l->namlen <= r->namlen since l <= r */
3815  if (lkey.namlen < rkey.namlen) {
3816  *kname = *pr;
3817  key->namlen = klen + 1;
3818  } else /* l->namelen == r->namelen */
3819  key->namlen = klen;
3820 
3821 free_names:
3822  kfree(lkey.name);
3823  kfree(rkey.name);
3824  return 0;
3825 }
3826 
3827 
3828 
3829 /*
3830  * dtGetKey()
3831  *
3832  * function: get key of the entry
3833  */
3834 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3835  struct component_name * key, int flag)
3836 {
3837  int si;
3838  s8 *stbl;
3839  struct ldtentry *lh;
3840  struct idtentry *ih;
3841  struct dtslot *t;
3842  int namlen, len;
3843  wchar_t *kname;
3844  __le16 *name;
3845 
3846  /* get entry */
3847  stbl = DT_GETSTBL(p);
3848  si = stbl[i];
3849  if (p->header.flag & BT_LEAF) {
3850  lh = (struct ldtentry *) & p->slot[si];
3851  si = lh->next;
3852  namlen = lh->namlen;
3853  name = lh->name;
3854  if (flag & JFS_DIR_INDEX)
3855  len = min(namlen, DTLHDRDATALEN);
3856  else
3857  len = min(namlen, DTLHDRDATALEN_LEGACY);
3858  } else {
3859  ih = (struct idtentry *) & p->slot[si];
3860  si = ih->next;
3861  namlen = ih->namlen;
3862  name = ih->name;
3863  len = min(namlen, DTIHDRDATALEN);
3864  }
3865 
3866  key->namlen = namlen;
3867  kname = key->name;
3868 
3869  /*
3870  * move head/only segment
3871  */
3872  UniStrncpy_from_le(kname, name, len);
3873 
3874  /*
3875  * move additional segment(s)
3876  */
3877  while (si >= 0) {
3878  /* get next segment */
3879  t = &p->slot[si];
3880  kname += len;
3881  namlen -= len;
3882  len = min(namlen, DTSLOTDATALEN);
3883  UniStrncpy_from_le(kname, t->name, len);
3884 
3885  si = t->next;
3886  }
3887 }
3888 
3889 
3890 /*
3891  * dtInsertEntry()
3892  *
3893  * function: allocate free slot(s) and
3894  * write a leaf/internal entry
3895  *
3896  * return: entry slot index
3897  */
3898 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3899  ddata_t * data, struct dt_lock ** dtlock)
3900 {
3901  struct dtslot *h, *t;
3902  struct ldtentry *lh = NULL;
3903  struct idtentry *ih = NULL;
3904  int hsi, fsi, klen, len, nextindex;
3905  wchar_t *kname;
3906  __le16 *name;
3907  s8 *stbl;
3908  pxd_t *xd;
3909  struct dt_lock *dtlck = *dtlock;
3910  struct lv *lv;
3911  int xsi, n;
3912  s64 bn = 0;
3913  struct metapage *mp = NULL;
3914 
3915  klen = key->namlen;
3916  kname = key->name;
3917 
3918  /* allocate a free slot */
3919  hsi = fsi = p->header.freelist;
3920  h = &p->slot[fsi];
3921  p->header.freelist = h->next;
3922  --p->header.freecnt;
3923 
3924  /* open new linelock */
3925  if (dtlck->index >= dtlck->maxcnt)
3926  dtlck = (struct dt_lock *) txLinelock(dtlck);
3927 
3928  lv = & dtlck->lv[dtlck->index];
3929  lv->offset = hsi;
3930 
3931  /* write head/only segment */
3932  if (p->header.flag & BT_LEAF) {
3933  lh = (struct ldtentry *) h;
3934  lh->next = h->next;
3935  lh->inumber = cpu_to_le32(data->leaf.ino);
3936  lh->namlen = klen;
3937  name = lh->name;
3938  if (data->leaf.ip) {
3939  len = min(klen, DTLHDRDATALEN);
3940  if (!(p->header.flag & BT_ROOT))
3941  bn = addressPXD(&p->header.self);
3942  lh->index = cpu_to_le32(add_index(data->leaf.tid,
3943  data->leaf.ip,
3944  bn, index));
3945  } else
3946  len = min(klen, DTLHDRDATALEN_LEGACY);
3947  } else {
3948  ih = (struct idtentry *) h;
3949  ih->next = h->next;
3950  xd = (pxd_t *) ih;
3951  *xd = data->xd;
3952  ih->namlen = klen;
3953  name = ih->name;
3954  len = min(klen, DTIHDRDATALEN);
3955  }
3956 
3957  UniStrncpy_to_le(name, kname, len);
3958 
3959  n = 1;
3960  xsi = hsi;
3961 
3962  /* write additional segment(s) */
3963  t = h;
3964  klen -= len;
3965  while (klen) {
3966  /* get free slot */
3967  fsi = p->header.freelist;
3968  t = &p->slot[fsi];
3969  p->header.freelist = t->next;
3970  --p->header.freecnt;
3971 
3972  /* is next slot contiguous ? */
3973  if (fsi != xsi + 1) {
3974  /* close current linelock */
3975  lv->length = n;
3976  dtlck->index++;
3977 
3978  /* open new linelock */
3979  if (dtlck->index < dtlck->maxcnt)
3980  lv++;
3981  else {
3982  dtlck = (struct dt_lock *) txLinelock(dtlck);
3983  lv = & dtlck->lv[0];
3984  }
3985 
3986  lv->offset = fsi;
3987  n = 0;
3988  }
3989 
3990  kname += len;
3991  len = min(klen, DTSLOTDATALEN);
3992  UniStrncpy_to_le(t->name, kname, len);
3993 
3994  n++;
3995  xsi = fsi;
3996  klen -= len;
3997  }
3998 
3999  /* close current linelock */
4000  lv->length = n;
4001  dtlck->index++;
4002 
4003  *dtlock = dtlck;
4004 
4005  /* terminate last/only segment */
4006  if (h == t) {
4007  /* single segment entry */
4008  if (p->header.flag & BT_LEAF)
4009  lh->next = -1;
4010  else
4011  ih->next = -1;
4012  } else
4013  /* multi-segment entry */
4014  t->next = -1;
4015 
4016  /* if insert into middle, shift right succeeding entries in stbl */
4017  stbl = DT_GETSTBL(p);
4018  nextindex = p->header.nextindex;
4019  if (index < nextindex) {
4020  memmove(stbl + index + 1, stbl + index, nextindex - index);
4021 
4022  if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4023  s64 lblock;
4024 
4025  /*
4026  * Need to update slot number for entries that moved
4027  * in the stbl
4028  */
4029  mp = NULL;
4030  for (n = index + 1; n <= nextindex; n++) {
4031  lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4032  modify_index(data->leaf.tid, data->leaf.ip,
4033  le32_to_cpu(lh->index), bn, n,
4034  &mp, &lblock);
4035  }
4036  if (mp)
4037  release_metapage(mp);
4038  }
4039  }
4040 
4041  stbl[index] = hsi;
4042 
4043  /* advance next available entry index of stbl */
4044  ++p->header.nextindex;
4045 }
4046 
4047 
4048 /*
4049  * dtMoveEntry()
4050  *
4051  * function: move entries from split/left page to new/right page
4052  *
4053  * nextindex of dst page and freelist/freecnt of both pages
4054  * are updated.
4055  */
4056 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4057  struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4058  int do_index)
4059 {
4060  int ssi, next; /* src slot index */
4061  int di; /* dst entry index */
4062  int dsi; /* dst slot index */
4063  s8 *sstbl, *dstbl; /* sorted entry table */
4064  int snamlen, len;
4065  struct ldtentry *slh, *dlh = NULL;
4066  struct idtentry *sih, *dih = NULL;
4067  struct dtslot *h, *s, *d;
4068  struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4069  struct lv *slv, *dlv;
4070  int xssi, ns, nd;
4071  int sfsi;
4072 
4073  sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4074  dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4075 
4076  dsi = dp->header.freelist; /* first (whole page) free slot */
4077  sfsi = sp->header.freelist;
4078 
4079  /* linelock destination entry slot */
4080  dlv = & ddtlck->lv[ddtlck->index];
4081  dlv->offset = dsi;
4082 
4083  /* linelock source entry slot */
4084  slv = & sdtlck->lv[sdtlck->index];
4085  slv->offset = sstbl[si];
4086  xssi = slv->offset - 1;
4087 
4088  /*
4089  * move entries
4090  */
4091  ns = nd = 0;
4092  for (di = 0; si < sp->header.nextindex; si++, di++) {
4093  ssi = sstbl[si];
4094  dstbl[di] = dsi;
4095 
4096  /* is next slot contiguous ? */
4097  if (ssi != xssi + 1) {
4098  /* close current linelock */
4099  slv->length = ns;
4100  sdtlck->index++;
4101 
4102  /* open new linelock */
4103  if (sdtlck->index < sdtlck->maxcnt)
4104  slv++;
4105  else {
4106  sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4107  slv = & sdtlck->lv[0];
4108  }
4109 
4110  slv->offset = ssi;
4111  ns = 0;
4112  }
4113 
4114  /*
4115  * move head/only segment of an entry
4116  */
4117  /* get dst slot */
4118  h = d = &dp->slot[dsi];
4119 
4120  /* get src slot and move */
4121  s = &sp->slot[ssi];
4122  if (sp->header.flag & BT_LEAF) {
4123  /* get source entry */
4124  slh = (struct ldtentry *) s;
4125  dlh = (struct ldtentry *) h;
4126  snamlen = slh->namlen;
4127 
4128  if (do_index) {
4129  len = min(snamlen, DTLHDRDATALEN);
4130  dlh->index = slh->index; /* little-endian */
4131  } else
4132  len = min(snamlen, DTLHDRDATALEN_LEGACY);
4133 
4134  memcpy(dlh, slh, 6 + len * 2);
4135 
4136  next = slh->next;
4137 
4138  /* update dst head/only segment next field */
4139  dsi++;
4140  dlh->next = dsi;
4141  } else {
4142  sih = (struct idtentry *) s;
4143  snamlen = sih->namlen;
4144 
4145  len = min(snamlen, DTIHDRDATALEN);
4146  dih = (struct idtentry *) h;
4147  memcpy(dih, sih, 10 + len * 2);
4148  next = sih->next;
4149 
4150  dsi++;
4151  dih->next = dsi;
4152  }
4153 
4154  /* free src head/only segment */
4155  s->next = sfsi;
4156  s->cnt = 1;
4157  sfsi = ssi;
4158 
4159  ns++;
4160  nd++;
4161  xssi = ssi;
4162 
4163  /*
4164  * move additional segment(s) of the entry
4165  */
4166  snamlen -= len;
4167  while ((ssi = next) >= 0) {
4168  /* is next slot contiguous ? */
4169  if (ssi != xssi + 1) {
4170  /* close current linelock */
4171  slv->length = ns;
4172  sdtlck->index++;
4173 
4174  /* open new linelock */
4175  if (sdtlck->index < sdtlck->maxcnt)
4176  slv++;
4177  else {
4178  sdtlck =
4179  (struct dt_lock *)
4180  txLinelock(sdtlck);
4181  slv = & sdtlck->lv[0];
4182  }
4183 
4184  slv->offset = ssi;
4185  ns = 0;
4186  }
4187 
4188  /* get next source segment */
4189  s = &sp->slot[ssi];
4190 
4191  /* get next destination free slot */
4192  d++;
4193 
4194  len = min(snamlen, DTSLOTDATALEN);
4195  UniStrncpy_le(d->name, s->name, len);
4196 
4197  ns++;
4198  nd++;
4199  xssi = ssi;
4200 
4201  dsi++;
4202  d->next = dsi;
4203 
4204  /* free source segment */
4205  next = s->next;
4206  s->next = sfsi;
4207  s->cnt = 1;
4208  sfsi = ssi;
4209 
4210  snamlen -= len;
4211  } /* end while */
4212 
4213  /* terminate dst last/only segment */
4214  if (h == d) {
4215  /* single segment entry */
4216  if (dp->header.flag & BT_LEAF)
4217  dlh->next = -1;
4218  else
4219  dih->next = -1;
4220  } else
4221  /* multi-segment entry */
4222  d->next = -1;
4223  } /* end for */
4224 
4225  /* close current linelock */
4226  slv->length = ns;
4227  sdtlck->index++;
4228  *sdtlock = sdtlck;
4229 
4230  dlv->length = nd;
4231  ddtlck->index++;
4232  *ddtlock = ddtlck;
4233 
4234  /* update source header */
4235  sp->header.freelist = sfsi;
4236  sp->header.freecnt += nd;
4237 
4238  /* update destination header */
4239  dp->header.nextindex = di;
4240 
4241  dp->header.freelist = dsi;
4242  dp->header.freecnt -= nd;
4243 }
4244 
4245 
4246 /*
4247  * dtDeleteEntry()
4248  *
4249  * function: free a (leaf/internal) entry
4250  *
4251  * log freelist header, stbl, and each segment slot of entry
4252  * (even though last/only segment next field is modified,
4253  * physical image logging requires all segment slots of
4254  * the entry logged to avoid applying previous updates
4255  * to the same slots)
4256  */
4257 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4258 {
4259  int fsi; /* free entry slot index */
4260  s8 *stbl;
4261  struct dtslot *t;
4262  int si, freecnt;
4263  struct dt_lock *dtlck = *dtlock;
4264  struct lv *lv;
4265  int xsi, n;
4266 
4267  /* get free entry slot index */
4268  stbl = DT_GETSTBL(p);
4269  fsi = stbl[fi];
4270 
4271  /* open new linelock */
4272  if (dtlck->index >= dtlck->maxcnt)
4273  dtlck = (struct dt_lock *) txLinelock(dtlck);
4274  lv = & dtlck->lv[dtlck->index];
4275 
4276  lv->offset = fsi;
4277 
4278  /* get the head/only segment */
4279  t = &p->slot[fsi];
4280  if (p->header.flag & BT_LEAF)
4281  si = ((struct ldtentry *) t)->next;
4282  else
4283  si = ((struct idtentry *) t)->next;
4284  t->next = si;
4285  t->cnt = 1;
4286 
4287  n = freecnt = 1;
4288  xsi = fsi;
4289 
4290  /* find the last/only segment */
4291  while (si >= 0) {
4292  /* is next slot contiguous ? */
4293  if (si != xsi + 1) {
4294  /* close current linelock */
4295  lv->length = n;
4296  dtlck->index++;
4297 
4298  /* open new linelock */
4299  if (dtlck->index < dtlck->maxcnt)
4300  lv++;
4301  else {
4302  dtlck = (struct dt_lock *) txLinelock(dtlck);
4303  lv = & dtlck->lv[0];
4304  }
4305 
4306  lv->offset = si;
4307  n = 0;
4308  }
4309 
4310  n++;
4311  xsi = si;
4312  freecnt++;
4313 
4314  t = &p->slot[si];
4315  t->cnt = 1;
4316  si = t->next;
4317  }
4318 
4319  /* close current linelock */
4320  lv->length = n;
4321  dtlck->index++;
4322 
4323  *dtlock = dtlck;
4324 
4325  /* update freelist */
4326  t->next = p->header.freelist;
4327  p->header.freelist = fsi;
4328  p->header.freecnt += freecnt;
4329 
4330  /* if delete from middle,
4331  * shift left the succedding entries in the stbl
4332  */
4333  si = p->header.nextindex;
4334  if (fi < si - 1)
4335  memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4336 
4337  p->header.nextindex--;
4338 }
4339 
4340 
4341 /*
4342  * dtTruncateEntry()
4343  *
4344  * function: truncate a (leaf/internal) entry
4345  *
4346  * log freelist header, stbl, and each segment slot of entry
4347  * (even though last/only segment next field is modified,
4348  * physical image logging requires all segment slots of
4349  * the entry logged to avoid applying previous updates
4350  * to the same slots)
4351  */
4352 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4353 {
4354  int tsi; /* truncate entry slot index */
4355  s8 *stbl;
4356  struct dtslot *t;
4357  int si, freecnt;
4358  struct dt_lock *dtlck = *dtlock;
4359  struct lv *lv;
4360  int fsi, xsi, n;
4361 
4362  /* get free entry slot index */
4363  stbl = DT_GETSTBL(p);
4364  tsi = stbl[ti];
4365 
4366  /* open new linelock */
4367  if (dtlck->index >= dtlck->maxcnt)
4368  dtlck = (struct dt_lock *) txLinelock(dtlck);
4369  lv = & dtlck->lv[dtlck->index];
4370 
4371  lv->offset = tsi;
4372 
4373  /* get the head/only segment */
4374  t = &p->slot[tsi];
4375  ASSERT(p->header.flag & BT_INTERNAL);
4376  ((struct idtentry *) t)->namlen = 0;
4377  si = ((struct idtentry *) t)->next;
4378  ((struct idtentry *) t)->next = -1;
4379 
4380  n = 1;
4381  freecnt = 0;
4382  fsi = si;
4383  xsi = tsi;
4384 
4385  /* find the last/only segment */
4386  while (si >= 0) {
4387  /* is next slot contiguous ? */
4388  if (si != xsi + 1) {
4389  /* close current linelock */
4390  lv->length = n;
4391  dtlck->index++;
4392 
4393  /* open new linelock */
4394  if (dtlck->index < dtlck->maxcnt)
4395  lv++;
4396  else {
4397  dtlck = (struct dt_lock *) txLinelock(dtlck);
4398  lv = & dtlck->lv[0];
4399  }
4400 
4401  lv->offset = si;
4402  n = 0;
4403  }
4404 
4405  n++;
4406  xsi = si;
4407  freecnt++;
4408 
4409  t = &p->slot[si];
4410  t->cnt = 1;
4411  si = t->next;
4412  }
4413 
4414  /* close current linelock */
4415  lv->length = n;
4416  dtlck->index++;
4417 
4418  *dtlock = dtlck;
4419 
4420  /* update freelist */
4421  if (freecnt == 0)
4422  return;
4423  t->next = p->header.freelist;
4424  p->header.freelist = fsi;
4425  p->header.freecnt += freecnt;
4426 }
4427 
4428 
4429 /*
4430  * dtLinelockFreelist()
4431  */
4432 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4433  int m, /* max slot index */
4434  struct dt_lock ** dtlock)
4435 {
4436  int fsi; /* free entry slot index */
4437  struct dtslot *t;
4438  int si;
4439  struct dt_lock *dtlck = *dtlock;
4440  struct lv *lv;
4441  int xsi, n;
4442 
4443  /* get free entry slot index */
4444  fsi = p->header.freelist;
4445 
4446  /* open new linelock */
4447  if (dtlck->index >= dtlck->maxcnt)
4448  dtlck = (struct dt_lock *) txLinelock(dtlck);
4449  lv = & dtlck->lv[dtlck->index];
4450 
4451  lv->offset = fsi;
4452 
4453  n = 1;
4454  xsi = fsi;
4455 
4456  t = &p->slot[fsi];
4457  si = t->next;
4458 
4459  /* find the last/only segment */
4460  while (si < m && si >= 0) {
4461  /* is next slot contiguous ? */
4462  if (si != xsi + 1) {
4463  /* close current linelock */
4464  lv->length = n;
4465  dtlck->index++;
4466 
4467  /* open new linelock */
4468  if (dtlck->index < dtlck->maxcnt)
4469  lv++;
4470  else {
4471  dtlck = (struct dt_lock *) txLinelock(dtlck);
4472  lv = & dtlck->lv[0];
4473  }
4474 
4475  lv->offset = si;
4476  n = 0;
4477  }
4478 
4479  n++;
4480  xsi = si;
4481 
4482  t = &p->slot[si];
4483  si = t->next;
4484  }
4485 
4486  /* close current linelock */
4487  lv->length = n;
4488  dtlck->index++;
4489 
4490  *dtlock = dtlck;
4491 }
4492 
4493 
4494 /*
4495  * NAME: dtModify
4496  *
4497  * FUNCTION: Modify the inode number part of a directory entry
4498  *
4499  * PARAMETERS:
4500  * tid - Transaction id
4501  * ip - Inode of parent directory
4502  * key - Name of entry to be modified
4503  * orig_ino - Original inode number expected in entry
4504  * new_ino - New inode number to put into entry
4505  * flag - JFS_RENAME
4506  *
4507  * RETURNS:
4508  * -ESTALE - If entry found does not match orig_ino passed in
4509  * -ENOENT - If no entry can be found to match key
4510  * 0 - If successfully modified entry
4511  */
4512 int dtModify(tid_t tid, struct inode *ip,
4513  struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4514 {
4515  int rc;
4516  s64 bn;
4517  struct metapage *mp;
4518  dtpage_t *p;
4519  int index;
4520  struct btstack btstack;
4521  struct tlock *tlck;
4522  struct dt_lock *dtlck;
4523  struct lv *lv;
4524  s8 *stbl;
4525  int entry_si; /* entry slot index */
4526  struct ldtentry *entry;
4527 
4528  /*
4529  * search for the entry to modify:
4530  *
4531  * dtSearch() returns (leaf page pinned, index at which to modify).
4532  */
4533  if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4534  return rc;
4535 
4536  /* retrieve search result */
4537  DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4538 
4539  BT_MARK_DIRTY(mp, ip);
4540  /*
4541  * acquire a transaction lock on the leaf page of named entry
4542  */
4543  tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4544  dtlck = (struct dt_lock *) & tlck->lock;
4545 
4546  /* get slot index of the entry */
4547  stbl = DT_GETSTBL(p);
4548  entry_si = stbl[index];
4549 
4550  /* linelock entry */
4551  ASSERT(dtlck->index == 0);
4552  lv = & dtlck->lv[0];
4553  lv->offset = entry_si;
4554  lv->length = 1;
4555  dtlck->index++;
4556 
4557  /* get the head/only segment */
4558  entry = (struct ldtentry *) & p->slot[entry_si];
4559 
4560  /* substitute the inode number of the entry */
4561  entry->inumber = cpu_to_le32(new_ino);
4562 
4563  /* unpin the leaf page */
4564  DT_PUTPAGE(mp);
4565 
4566  return 0;
4567 }