Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kdb_bt.c
Go to the documentation of this file.
1 /*
2  * Kernel Debugger Architecture Independent Stack Traceback
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9  * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/kdb.h>
17 #include <linux/nmi.h>
18 #include "kdb_private.h"
19 
20 
21 static void kdb_show_stack(struct task_struct *p, void *addr)
22 {
23  int old_lvl = console_loglevel;
24  console_loglevel = 15;
27  if (addr) {
28  show_stack((struct task_struct *)p, addr);
29  } else if (kdb_current_regs) {
30 #ifdef CONFIG_X86
32 #else
33  show_stack(p, NULL);
34 #endif
35  } else {
36  show_stack(p, NULL);
37  }
38  console_loglevel = old_lvl;
40 }
41 
42 /*
43  * kdb_bt
44  *
45  * This function implements the 'bt' command. Print a stack
46  * traceback.
47  *
48  * bt [<address-expression>] (addr-exp is for alternate stacks)
49  * btp <pid> Kernel stack for <pid>
50  * btt <address-expression> Kernel stack for task structure at
51  * <address-expression>
52  * bta [DRSTCZEUIMA] All useful processes, optionally
53  * filtered by state
54  * btc [<cpu>] The current process on one cpu,
55  * default is all cpus
56  *
57  * bt <address-expression> refers to a address on the stack, that location
58  * is assumed to contain a return address.
59  *
60  * btt <address-expression> refers to the address of a struct task.
61  *
62  * Inputs:
63  * argc argument count
64  * argv argument vector
65  * Outputs:
66  * None.
67  * Returns:
68  * zero for success, a kdb diagnostic if error
69  * Locking:
70  * none.
71  * Remarks:
72  * Backtrack works best when the code uses frame pointers. But even
73  * without frame pointers we should get a reasonable trace.
74  *
75  * mds comes in handy when examining the stack to do a manual traceback or
76  * to get a starting point for bt <address-expression>.
77  */
78 
79 static int
80 kdb_bt1(struct task_struct *p, unsigned long mask,
81  int argcount, int btaprompt)
82 {
83  char buffer[2];
84  if (kdb_getarea(buffer[0], (unsigned long)p) ||
85  kdb_getarea(buffer[0], (unsigned long)(p+1)-1))
86  return KDB_BADADDR;
87  if (!kdb_task_state(p, mask))
88  return 0;
89  kdb_printf("Stack traceback for pid %d\n", p->pid);
90  kdb_ps1(p);
91  kdb_show_stack(p, NULL);
92  if (btaprompt) {
93  kdb_getstr(buffer, sizeof(buffer),
94  "Enter <q> to end, <cr> to continue:");
95  if (buffer[0] == 'q') {
96  kdb_printf("\n");
97  return 1;
98  }
99  }
101  return 0;
102 }
103 
104 int
105 kdb_bt(int argc, const char **argv)
106 {
107  int diag;
108  int argcount = 5;
109  int btaprompt = 1;
110  int nextarg;
111  unsigned long addr;
112  long offset;
113 
114  /* Prompt after each proc in bta */
115  kdbgetintenv("BTAPROMPT", &btaprompt);
116 
117  if (strcmp(argv[0], "bta") == 0) {
118  struct task_struct *g, *p;
119  unsigned long cpu;
120  unsigned long mask = kdb_task_state_string(argc ? argv[1] :
121  NULL);
122  if (argc == 0)
124  /* Run the active tasks first */
125  for_each_online_cpu(cpu) {
126  p = kdb_curr_task(cpu);
127  if (kdb_bt1(p, mask, argcount, btaprompt))
128  return 0;
129  }
130  /* Now the inactive tasks */
131  kdb_do_each_thread(g, p) {
132  if (KDB_FLAG(CMD_INTERRUPT))
133  return 0;
134  if (task_curr(p))
135  continue;
136  if (kdb_bt1(p, mask, argcount, btaprompt))
137  return 0;
138  } kdb_while_each_thread(g, p);
139  } else if (strcmp(argv[0], "btp") == 0) {
140  struct task_struct *p;
141  unsigned long pid;
142  if (argc != 1)
143  return KDB_ARGCOUNT;
144  diag = kdbgetularg((char *)argv[1], &pid);
145  if (diag)
146  return diag;
147  p = find_task_by_pid_ns(pid, &init_pid_ns);
148  if (p) {
150  return kdb_bt1(p, ~0UL, argcount, 0);
151  }
152  kdb_printf("No process with pid == %ld found\n", pid);
153  return 0;
154  } else if (strcmp(argv[0], "btt") == 0) {
155  if (argc != 1)
156  return KDB_ARGCOUNT;
157  diag = kdbgetularg((char *)argv[1], &addr);
158  if (diag)
159  return diag;
160  kdb_set_current_task((struct task_struct *)addr);
161  return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0);
162  } else if (strcmp(argv[0], "btc") == 0) {
163  unsigned long cpu = ~0;
164  struct task_struct *save_current_task = kdb_current_task;
165  char buf[80];
166  if (argc > 1)
167  return KDB_ARGCOUNT;
168  if (argc == 1) {
169  diag = kdbgetularg((char *)argv[1], &cpu);
170  if (diag)
171  return diag;
172  }
173  /* Recursive use of kdb_parse, do not use argv after
174  * this point */
175  argv = NULL;
176  if (cpu != ~0) {
177  if (cpu >= num_possible_cpus() || !cpu_online(cpu)) {
178  kdb_printf("no process for cpu %ld\n", cpu);
179  return 0;
180  }
181  sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu));
182  kdb_parse(buf);
183  return 0;
184  }
185  kdb_printf("btc: cpu status: ");
186  kdb_parse("cpu\n");
187  for_each_online_cpu(cpu) {
188  sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu));
189  kdb_parse(buf);
191  }
192  kdb_set_current_task(save_current_task);
193  return 0;
194  } else {
195  if (argc) {
196  nextarg = 1;
197  diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
198  &offset, NULL);
199  if (diag)
200  return diag;
201  kdb_show_stack(kdb_current_task, (void *)addr);
202  return 0;
203  } else {
204  return kdb_bt1(kdb_current_task, ~0UL, argcount, 0);
205  }
206  }
207 
208  /* NOTREACHED */
209  return 0;
210 }