Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes-common.c
Go to the documentation of this file.
1 /*
2  * arch/arm/kernel/kprobes-common.c
3  *
4  * Copyright (C) 2011 Jon Medhurst <[email protected]>.
5  *
6  * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/kprobes.h>
16 #include <asm/system_info.h>
17 
18 #include "kprobes.h"
19 
20 
21 #ifndef find_str_pc_offset
22 
23 /*
24  * For STR and STM instructions, an ARM core may choose to use either
25  * a +8 or a +12 displacement from the current instruction's address.
26  * Whichever value is chosen for a given core, it must be the same for
27  * both instructions and may not change. This function measures it.
28  */
29 
31 
33 {
34  int addr, scratch, ret;
35 
36  __asm__ (
37  "sub %[ret], pc, #4 \n\t"
38  "str pc, %[addr] \n\t"
39  "ldr %[scr], %[addr] \n\t"
40  "sub %[ret], %[scr], %[ret] \n\t"
41  : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
42 
44 }
45 
46 #endif /* !find_str_pc_offset */
47 
48 
49 #ifndef test_load_write_pc_interworking
50 
52 
54 {
55  int arch = cpu_architecture();
56  BUG_ON(arch == CPU_ARCH_UNKNOWN);
58 }
59 
60 #endif /* !test_load_write_pc_interworking */
61 
62 
63 #ifndef test_alu_write_pc_interworking
64 
66 
68 {
69  int arch = cpu_architecture();
70  BUG_ON(arch == CPU_ARCH_UNKNOWN);
72 }
73 
74 #endif /* !test_alu_write_pc_interworking */
75 
76 
78 {
82 }
83 
84 
85 static unsigned long __kprobes __check_eq(unsigned long cpsr)
86 {
87  return cpsr & PSR_Z_BIT;
88 }
89 
90 static unsigned long __kprobes __check_ne(unsigned long cpsr)
91 {
92  return (~cpsr) & PSR_Z_BIT;
93 }
94 
95 static unsigned long __kprobes __check_cs(unsigned long cpsr)
96 {
97  return cpsr & PSR_C_BIT;
98 }
99 
100 static unsigned long __kprobes __check_cc(unsigned long cpsr)
101 {
102  return (~cpsr) & PSR_C_BIT;
103 }
104 
105 static unsigned long __kprobes __check_mi(unsigned long cpsr)
106 {
107  return cpsr & PSR_N_BIT;
108 }
109 
110 static unsigned long __kprobes __check_pl(unsigned long cpsr)
111 {
112  return (~cpsr) & PSR_N_BIT;
113 }
114 
115 static unsigned long __kprobes __check_vs(unsigned long cpsr)
116 {
117  return cpsr & PSR_V_BIT;
118 }
119 
120 static unsigned long __kprobes __check_vc(unsigned long cpsr)
121 {
122  return (~cpsr) & PSR_V_BIT;
123 }
124 
125 static unsigned long __kprobes __check_hi(unsigned long cpsr)
126 {
127  cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
128  return cpsr & PSR_C_BIT;
129 }
130 
131 static unsigned long __kprobes __check_ls(unsigned long cpsr)
132 {
133  cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
134  return (~cpsr) & PSR_C_BIT;
135 }
136 
137 static unsigned long __kprobes __check_ge(unsigned long cpsr)
138 {
139  cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
140  return (~cpsr) & PSR_N_BIT;
141 }
142 
143 static unsigned long __kprobes __check_lt(unsigned long cpsr)
144 {
145  cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
146  return cpsr & PSR_N_BIT;
147 }
148 
149 static unsigned long __kprobes __check_gt(unsigned long cpsr)
150 {
151  unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
152  temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
153  return (~temp) & PSR_N_BIT;
154 }
155 
156 static unsigned long __kprobes __check_le(unsigned long cpsr)
157 {
158  unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
159  temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
160  return temp & PSR_N_BIT;
161 }
162 
163 static unsigned long __kprobes __check_al(unsigned long cpsr)
164 {
165  return true;
166 }
167 
169  &__check_eq, &__check_ne, &__check_cs, &__check_cc,
170  &__check_mi, &__check_pl, &__check_vs, &__check_vc,
171  &__check_hi, &__check_ls, &__check_ge, &__check_lt,
172  &__check_gt, &__check_le, &__check_al, &__check_al
173 };
174 
175 
177 {
178 }
179 
181 {
182  p->ainsn.insn_fn();
183 }
184 
185 static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
186 {
188  int rn = (insn >> 16) & 0xf;
189  int lbit = insn & (1 << 20);
190  int wbit = insn & (1 << 21);
191  int ubit = insn & (1 << 23);
192  int pbit = insn & (1 << 24);
193  long *addr = (long *)regs->uregs[rn];
194  int reg_bit_vector;
195  int reg_count;
196 
197  reg_count = 0;
198  reg_bit_vector = insn & 0xffff;
199  while (reg_bit_vector) {
200  reg_bit_vector &= (reg_bit_vector - 1);
201  ++reg_count;
202  }
203 
204  if (!ubit)
205  addr -= reg_count;
206  addr += (!pbit == !ubit);
207 
208  reg_bit_vector = insn & 0xffff;
209  while (reg_bit_vector) {
210  int reg = __ffs(reg_bit_vector);
211  reg_bit_vector &= (reg_bit_vector - 1);
212  if (lbit)
213  regs->uregs[reg] = *addr++;
214  else
215  *addr++ = regs->uregs[reg];
216  }
217 
218  if (wbit) {
219  if (!ubit)
220  addr -= reg_count;
221  addr -= (!pbit == !ubit);
222  regs->uregs[rn] = (long)addr;
223  }
224 }
225 
226 static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
227 {
228  regs->ARM_pc = (long)p->addr + str_pc_offset;
229  simulate_ldm1stm1(p, regs);
230  regs->ARM_pc = (long)p->addr + 4;
231 }
232 
233 static void __kprobes simulate_ldm1_pc(struct kprobe *p, struct pt_regs *regs)
234 {
235  simulate_ldm1stm1(p, regs);
236  load_write_pc(regs->ARM_pc, regs);
237 }
238 
239 static void __kprobes
240 emulate_generic_r0_12_noflags(struct kprobe *p, struct pt_regs *regs)
241 {
242  register void *rregs asm("r1") = regs;
243  register void *rfn asm("lr") = p->ainsn.insn_fn;
244 
245  __asm__ __volatile__ (
246  "stmdb sp!, {%[regs], r11} \n\t"
247  "ldmia %[regs], {r0-r12} \n\t"
248 #if __LINUX_ARM_ARCH__ >= 6
249  "blx %[fn] \n\t"
250 #else
251  "str %[fn], [sp, #-4]! \n\t"
252  "adr lr, 1f \n\t"
253  "ldr pc, [sp], #4 \n\t"
254  "1: \n\t"
255 #endif
256  "ldr lr, [sp], #4 \n\t" /* lr = regs */
257  "stmia lr, {r0-r12} \n\t"
258  "ldr r11, [sp], #4 \n\t"
259  : [regs] "=r" (rregs), [fn] "=r" (rfn)
260  : "0" (rregs), "1" (rfn)
261  : "r0", "r2", "r3", "r4", "r5", "r6", "r7",
262  "r8", "r9", "r10", "r12", "memory", "cc"
263  );
264 }
265 
266 static void __kprobes
267 emulate_generic_r2_14_noflags(struct kprobe *p, struct pt_regs *regs)
268 {
269  emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2));
270 }
271 
272 static void __kprobes
273 emulate_ldm_r3_15(struct kprobe *p, struct pt_regs *regs)
274 {
275  emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3));
276  load_write_pc(regs->ARM_pc, regs);
277 }
278 
281 {
283  unsigned reglist = insn & 0xffff;
284  int is_ldm = insn & 0x100000;
285  int rn = (insn >> 16) & 0xf;
286 
287  if (rn <= 12 && (reglist & 0xe000) == 0) {
288  /* Instruction only uses registers in the range R0..R12 */
289  handler = emulate_generic_r0_12_noflags;
290 
291  } else if (rn >= 2 && (reglist & 0x8003) == 0) {
292  /* Instruction only uses registers in the range R2..R14 */
293  rn -= 2;
294  reglist >>= 2;
295  handler = emulate_generic_r2_14_noflags;
296 
297  } else if (rn >= 3 && (reglist & 0x0007) == 0) {
298  /* Instruction only uses registers in the range R3..R15 */
299  if (is_ldm && (reglist & 0x8000)) {
300  rn -= 3;
301  reglist >>= 3;
302  handler = emulate_ldm_r3_15;
303  }
304  }
305 
306  if (handler) {
307  /* We can emulate the instruction in (possibly) modified form */
308  asi->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist;
309  asi->insn_handler = handler;
310  return INSN_GOOD;
311  }
312 
313  /* Fallback to slower simulation... */
314  if (reglist & 0x8000)
315  handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc;
316  else
317  handler = simulate_ldm1stm1;
318  asi->insn_handler = handler;
319  return INSN_GOOD_NO_SLOT;
320 }
321 
322 
323 /*
324  * Prepare an instruction slot to receive an instruction for emulating.
325  * This is done by placing a subroutine return after the location where the
326  * instruction will be placed. We also modify ARM instructions to be
327  * unconditional as the condition code will already be checked before any
328  * emulation handler is called.
329  */
331 prepare_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
332  bool thumb)
333 {
334 #ifdef CONFIG_THUMB2_KERNEL
335  if (thumb) {
336  u16 *thumb_insn = (u16 *)asi->insn;
337  thumb_insn[1] = 0x4770; /* Thumb bx lr */
338  thumb_insn[2] = 0x4770; /* Thumb bx lr */
339  return insn;
340  }
341  asi->insn[1] = 0xe12fff1e; /* ARM bx lr */
342 #else
343  asi->insn[1] = 0xe1a0f00e; /* mov pc, lr */
344 #endif
345  /* Make an ARM instruction unconditional */
346  if (insn < 0xe0000000)
347  insn = (insn | 0xe0000000) & ~0x10000000;
348  return insn;
349 }
350 
351 /*
352  * Write a (probably modified) instruction into the slot previously prepared by
353  * prepare_emulated_insn
354  */
355 static void __kprobes
356 set_emulated_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
357  bool thumb)
358 {
359 #ifdef CONFIG_THUMB2_KERNEL
360  if (thumb) {
361  u16 *ip = (u16 *)asi->insn;
362  if (is_wide_instruction(insn))
363  *ip++ = insn >> 16;
364  *ip++ = insn;
365  return;
366  }
367 #endif
368  asi->insn[0] = insn;
369 }
370 
371 /*
372  * When we modify the register numbers encoded in an instruction to be emulated,
373  * the new values come from this define. For ARM and 32-bit Thumb instructions
374  * this gives...
375  *
376  * bit position 16 12 8 4 0
377  * ---------------+---+---+---+---+---+
378  * register r2 r0 r1 -- r3
379  */
380 #define INSN_NEW_BITS 0x00020103
381 
382 /* Each nibble has same value as that at INSN_NEW_BITS bit 16 */
383 #define INSN_SAMEAS16_BITS 0x22222222
384 
385 /*
386  * Validate and modify each of the registers encoded in an instruction.
387  *
388  * Each nibble in regs contains a value from enum decode_reg_type. For each
389  * non-zero value, the corresponding nibble in pinsn is validated and modified
390  * according to the type.
391  */
392 static bool __kprobes decode_regs(kprobe_opcode_t* pinsn, u32 regs)
393 {
394  kprobe_opcode_t insn = *pinsn;
395  kprobe_opcode_t mask = 0xf; /* Start at least significant nibble */
396 
397  for (; regs != 0; regs >>= 4, mask <<= 4) {
398 
399  kprobe_opcode_t new_bits = INSN_NEW_BITS;
400 
401  switch (regs & 0xf) {
402 
403  case REG_TYPE_NONE:
404  /* Nibble not a register, skip to next */
405  continue;
406 
407  case REG_TYPE_ANY:
408  /* Any register is allowed */
409  break;
410 
411  case REG_TYPE_SAMEAS16:
412  /* Replace register with same as at bit position 16 */
413  new_bits = INSN_SAMEAS16_BITS;
414  break;
415 
416  case REG_TYPE_SP:
417  /* Only allow SP (R13) */
418  if ((insn ^ 0xdddddddd) & mask)
419  goto reject;
420  break;
421 
422  case REG_TYPE_PC:
423  /* Only allow PC (R15) */
424  if ((insn ^ 0xffffffff) & mask)
425  goto reject;
426  break;
427 
428  case REG_TYPE_NOSP:
429  /* Reject SP (R13) */
430  if (((insn ^ 0xdddddddd) & mask) == 0)
431  goto reject;
432  break;
433 
434  case REG_TYPE_NOSPPC:
435  case REG_TYPE_NOSPPCX:
436  /* Reject SP and PC (R13 and R15) */
437  if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0)
438  goto reject;
439  break;
440 
441  case REG_TYPE_NOPCWB:
442  if (!is_writeback(insn))
443  break; /* No writeback, so any register is OK */
444  /* fall through... */
445  case REG_TYPE_NOPC:
446  case REG_TYPE_NOPCX:
447  /* Reject PC (R15) */
448  if (((insn ^ 0xffffffff) & mask) == 0)
449  goto reject;
450  break;
451  }
452 
453  /* Replace value of nibble with new register number... */
454  insn &= ~mask;
455  insn |= new_bits & mask;
456  }
457 
458  *pinsn = insn;
459  return true;
460 
461 reject:
462  return false;
463 }
464 
465 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
466  [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
467  [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
468  [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
469  [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
470  [DECODE_TYPE_OR] = sizeof(struct decode_or),
471  [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
472 };
473 
474 /*
475  * kprobe_decode_insn operates on data tables in order to decode an ARM
476  * architecture instruction onto which a kprobe has been placed.
477  *
478  * These instruction decoding tables are a concatenation of entries each
479  * of which consist of one of the following structs:
480  *
481  * decode_table
482  * decode_custom
483  * decode_simulate
484  * decode_emulate
485  * decode_or
486  * decode_reject
487  *
488  * Each of these starts with a struct decode_header which has the following
489  * fields:
490  *
491  * type_regs
492  * mask
493  * value
494  *
495  * The least significant DECODE_TYPE_BITS of type_regs contains a value
496  * from enum decode_type, this indicates which of the decode_* structs
497  * the entry contains. The value DECODE_TYPE_END indicates the end of the
498  * table.
499  *
500  * When the table is parsed, each entry is checked in turn to see if it
501  * matches the instruction to be decoded using the test:
502  *
503  * (insn & mask) == value
504  *
505  * If no match is found before the end of the table is reached then decoding
506  * fails with INSN_REJECTED.
507  *
508  * When a match is found, decode_regs() is called to validate and modify each
509  * of the registers encoded in the instruction; the data it uses to do this
510  * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding
511  * to fail with INSN_REJECTED.
512  *
513  * Once the instruction has passed the above tests, further processing
514  * depends on the type of the table entry's decode struct.
515  *
516  */
517 int __kprobes
519  const union decode_item *table, bool thumb)
520 {
521  const struct decode_header *h = (struct decode_header *)table;
522  const struct decode_header *next;
523  bool matched = false;
524 
525  insn = prepare_emulated_insn(insn, asi, thumb);
526 
527  for (;; h = next) {
529  u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS;
530 
531  if (type == DECODE_TYPE_END)
532  return INSN_REJECTED;
533 
534  next = (struct decode_header *)
535  ((uintptr_t)h + decode_struct_sizes[type]);
536 
537  if (!matched && (insn & h->mask.bits) != h->value.bits)
538  continue;
539 
540  if (!decode_regs(&insn, regs))
541  return INSN_REJECTED;
542 
543  switch (type) {
544 
545  case DECODE_TYPE_TABLE: {
546  struct decode_table *d = (struct decode_table *)h;
547  next = (struct decode_header *)d->table.table;
548  break;
549  }
550 
551  case DECODE_TYPE_CUSTOM: {
552  struct decode_custom *d = (struct decode_custom *)h;
553  return (*d->decoder.decoder)(insn, asi);
554  }
555 
556  case DECODE_TYPE_SIMULATE: {
557  struct decode_simulate *d = (struct decode_simulate *)h;
558  asi->insn_handler = d->handler.handler;
559  return INSN_GOOD_NO_SLOT;
560  }
561 
562  case DECODE_TYPE_EMULATE: {
563  struct decode_emulate *d = (struct decode_emulate *)h;
564  asi->insn_handler = d->handler.handler;
565  set_emulated_insn(insn, asi, thumb);
566  return INSN_GOOD;
567  }
568 
569  case DECODE_TYPE_OR:
570  matched = true;
571  break;
572 
573  case DECODE_TYPE_REJECT:
574  default:
575  return INSN_REJECTED;
576  }
577  }
578  }