Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
btree.c
Go to the documentation of this file.
1 /*
2  * lib/btree.c - Simple In-memory B+Tree
3  *
4  * As should be obvious for Linux kernel code, license is GPLv2
5  *
6  * Copyright (c) 2007-2008 Joern Engel <[email protected]>
7  * Bits and pieces stolen from Peter Zijlstra's code, which is
8  * Copyright 2007, Red Hat Inc. Peter Zijlstra <[email protected]>
9  * GPLv2
10  *
11  * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
12  *
13  * A relatively simple B+Tree implementation. I have written it as a learning
14  * exercise to understand how B+Trees work. Turned out to be useful as well.
15  *
16  * B+Trees can be used similar to Linux radix trees (which don't have anything
17  * in common with textbook radix trees, beware). Prerequisite for them working
18  * well is that access to a random tree node is much faster than a large number
19  * of operations within each node.
20  *
21  * Disks have fulfilled the prerequisite for a long time. More recently DRAM
22  * has gained similar properties, as memory access times, when measured in cpu
23  * cycles, have increased. Cacheline sizes have increased as well, which also
24  * helps B+Trees.
25  *
26  * Compared to radix trees, B+Trees are more efficient when dealing with a
27  * sparsely populated address space. Between 25% and 50% of the memory is
28  * occupied with valid pointers. When densely populated, radix trees contain
29  * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
30  * pointers.
31  *
32  * This particular implementation stores pointers identified by a long value.
33  * Storing NULL pointers is illegal, lookup will return NULL when no entry
34  * was found.
35  *
36  * A tricks was used that is not commonly found in textbooks. The lowest
37  * values are to the right, not to the left. All used slots within a node
38  * are on the left, all unused slots contain NUL values. Most operations
39  * simply loop once over all slots and terminate on the first NUL.
40  */
41 
42 #include <linux/btree.h>
43 #include <linux/cache.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/module.h>
47 
48 #define MAX(a, b) ((a) > (b) ? (a) : (b))
49 #define NODESIZE MAX(L1_CACHE_BYTES, 128)
50 
51 struct btree_geo {
52  int keylen;
53  int no_pairs;
54  int no_longs;
55 };
56 
58  .keylen = 1,
59  .no_pairs = NODESIZE / sizeof(long) / 2,
60  .no_longs = NODESIZE / sizeof(long) / 2,
61 };
62 EXPORT_SYMBOL_GPL(btree_geo32);
63 
64 #define LONG_PER_U64 (64 / BITS_PER_LONG)
66  .keylen = LONG_PER_U64,
67  .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
68  .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
69 };
70 EXPORT_SYMBOL_GPL(btree_geo64);
71 
73  .keylen = 2 * LONG_PER_U64,
74  .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
75  .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
76 };
77 EXPORT_SYMBOL_GPL(btree_geo128);
78 
79 static struct kmem_cache *btree_cachep;
80 
81 void *btree_alloc(gfp_t gfp_mask, void *pool_data)
82 {
83  return kmem_cache_alloc(btree_cachep, gfp_mask);
84 }
86 
87 void btree_free(void *element, void *pool_data)
88 {
89  kmem_cache_free(btree_cachep, element);
90 }
92 
93 static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
94 {
95  unsigned long *node;
96 
97  node = mempool_alloc(head->mempool, gfp);
98  if (likely(node))
99  memset(node, 0, NODESIZE);
100  return node;
101 }
102 
103 static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
104 {
105  size_t i;
106 
107  for (i = 0; i < n; i++) {
108  if (l1[i] < l2[i])
109  return -1;
110  if (l1[i] > l2[i])
111  return 1;
112  }
113  return 0;
114 }
115 
116 static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
117  size_t n)
118 {
119  size_t i;
120 
121  for (i = 0; i < n; i++)
122  dest[i] = src[i];
123  return dest;
124 }
125 
126 static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
127 {
128  size_t i;
129 
130  for (i = 0; i < n; i++)
131  s[i] = c;
132  return s;
133 }
134 
135 static void dec_key(struct btree_geo *geo, unsigned long *key)
136 {
137  unsigned long val;
138  int i;
139 
140  for (i = geo->keylen - 1; i >= 0; i--) {
141  val = key[i];
142  key[i] = val - 1;
143  if (val)
144  break;
145  }
146 }
147 
148 static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
149 {
150  return &node[n * geo->keylen];
151 }
152 
153 static void *bval(struct btree_geo *geo, unsigned long *node, int n)
154 {
155  return (void *)node[geo->no_longs + n];
156 }
157 
158 static void setkey(struct btree_geo *geo, unsigned long *node, int n,
159  unsigned long *key)
160 {
161  longcpy(bkey(geo, node, n), key, geo->keylen);
162 }
163 
164 static void setval(struct btree_geo *geo, unsigned long *node, int n,
165  void *val)
166 {
167  node[geo->no_longs + n] = (unsigned long) val;
168 }
169 
170 static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
171 {
172  longset(bkey(geo, node, n), 0, geo->keylen);
173  node[geo->no_longs + n] = 0;
174 }
175 
176 static inline void __btree_init(struct btree_head *head)
177 {
178  head->node = NULL;
179  head->height = 0;
180 }
181 
182 void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
183 {
184  __btree_init(head);
185  head->mempool = mempool;
186 }
188 
189 int btree_init(struct btree_head *head)
190 {
191  __btree_init(head);
193  if (!head->mempool)
194  return -ENOMEM;
195  return 0;
196 }
198 
199 void btree_destroy(struct btree_head *head)
200 {
201  mempool_destroy(head->mempool);
202  head->mempool = NULL;
203 }
205 
206 void *btree_last(struct btree_head *head, struct btree_geo *geo,
207  unsigned long *key)
208 {
209  int height = head->height;
210  unsigned long *node = head->node;
211 
212  if (height == 0)
213  return NULL;
214 
215  for ( ; height > 1; height--)
216  node = bval(geo, node, 0);
217 
218  longcpy(key, bkey(geo, node, 0), geo->keylen);
219  return bval(geo, node, 0);
220 }
222 
223 static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
224  unsigned long *key)
225 {
226  return longcmp(bkey(geo, node, pos), key, geo->keylen);
227 }
228 
229 static int keyzero(struct btree_geo *geo, unsigned long *key)
230 {
231  int i;
232 
233  for (i = 0; i < geo->keylen; i++)
234  if (key[i])
235  return 0;
236 
237  return 1;
238 }
239 
240 void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
241  unsigned long *key)
242 {
243  int i, height = head->height;
244  unsigned long *node = head->node;
245 
246  if (height == 0)
247  return NULL;
248 
249  for ( ; height > 1; height--) {
250  for (i = 0; i < geo->no_pairs; i++)
251  if (keycmp(geo, node, i, key) <= 0)
252  break;
253  if (i == geo->no_pairs)
254  return NULL;
255  node = bval(geo, node, i);
256  if (!node)
257  return NULL;
258  }
259 
260  if (!node)
261  return NULL;
262 
263  for (i = 0; i < geo->no_pairs; i++)
264  if (keycmp(geo, node, i, key) == 0)
265  return bval(geo, node, i);
266  return NULL;
267 }
269 
270 int btree_update(struct btree_head *head, struct btree_geo *geo,
271  unsigned long *key, void *val)
272 {
273  int i, height = head->height;
274  unsigned long *node = head->node;
275 
276  if (height == 0)
277  return -ENOENT;
278 
279  for ( ; height > 1; height--) {
280  for (i = 0; i < geo->no_pairs; i++)
281  if (keycmp(geo, node, i, key) <= 0)
282  break;
283  if (i == geo->no_pairs)
284  return -ENOENT;
285  node = bval(geo, node, i);
286  if (!node)
287  return -ENOENT;
288  }
289 
290  if (!node)
291  return -ENOENT;
292 
293  for (i = 0; i < geo->no_pairs; i++)
294  if (keycmp(geo, node, i, key) == 0) {
295  setval(geo, node, i, val);
296  return 0;
297  }
298  return -ENOENT;
299 }
301 
302 /*
303  * Usually this function is quite similar to normal lookup. But the key of
304  * a parent node may be smaller than the smallest key of all its siblings.
305  * In such a case we cannot just return NULL, as we have only proven that no
306  * key smaller than __key, but larger than this parent key exists.
307  * So we set __key to the parent key and retry. We have to use the smallest
308  * such parent key, which is the last parent key we encountered.
309  */
310 void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
311  unsigned long *__key)
312 {
313  int i, height;
314  unsigned long *node, *oldnode;
315  unsigned long *retry_key = NULL, key[geo->keylen];
316 
317  if (keyzero(geo, __key))
318  return NULL;
319 
320  if (head->height == 0)
321  return NULL;
322  longcpy(key, __key, geo->keylen);
323 retry:
324  dec_key(geo, key);
325 
326  node = head->node;
327  for (height = head->height ; height > 1; height--) {
328  for (i = 0; i < geo->no_pairs; i++)
329  if (keycmp(geo, node, i, key) <= 0)
330  break;
331  if (i == geo->no_pairs)
332  goto miss;
333  oldnode = node;
334  node = bval(geo, node, i);
335  if (!node)
336  goto miss;
337  retry_key = bkey(geo, oldnode, i);
338  }
339 
340  if (!node)
341  goto miss;
342 
343  for (i = 0; i < geo->no_pairs; i++) {
344  if (keycmp(geo, node, i, key) <= 0) {
345  if (bval(geo, node, i)) {
346  longcpy(__key, bkey(geo, node, i), geo->keylen);
347  return bval(geo, node, i);
348  } else
349  goto miss;
350  }
351  }
352 miss:
353  if (retry_key) {
354  longcpy(key, retry_key, geo->keylen);
355  retry_key = NULL;
356  goto retry;
357  }
358  return NULL;
359 }
361 
362 static int getpos(struct btree_geo *geo, unsigned long *node,
363  unsigned long *key)
364 {
365  int i;
366 
367  for (i = 0; i < geo->no_pairs; i++) {
368  if (keycmp(geo, node, i, key) <= 0)
369  break;
370  }
371  return i;
372 }
373 
374 static int getfill(struct btree_geo *geo, unsigned long *node, int start)
375 {
376  int i;
377 
378  for (i = start; i < geo->no_pairs; i++)
379  if (!bval(geo, node, i))
380  break;
381  return i;
382 }
383 
384 /*
385  * locate the correct leaf node in the btree
386  */
387 static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
388  unsigned long *key, int level)
389 {
390  unsigned long *node = head->node;
391  int i, height;
392 
393  for (height = head->height; height > level; height--) {
394  for (i = 0; i < geo->no_pairs; i++)
395  if (keycmp(geo, node, i, key) <= 0)
396  break;
397 
398  if ((i == geo->no_pairs) || !bval(geo, node, i)) {
399  /* right-most key is too large, update it */
400  /* FIXME: If the right-most key on higher levels is
401  * always zero, this wouldn't be necessary. */
402  i--;
403  setkey(geo, node, i, key);
404  }
405  BUG_ON(i < 0);
406  node = bval(geo, node, i);
407  }
408  BUG_ON(!node);
409  return node;
410 }
411 
412 static int btree_grow(struct btree_head *head, struct btree_geo *geo,
413  gfp_t gfp)
414 {
415  unsigned long *node;
416  int fill;
417 
418  node = btree_node_alloc(head, gfp);
419  if (!node)
420  return -ENOMEM;
421  if (head->node) {
422  fill = getfill(geo, head->node, 0);
423  setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
424  setval(geo, node, 0, head->node);
425  }
426  head->node = node;
427  head->height++;
428  return 0;
429 }
430 
431 static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
432 {
433  unsigned long *node;
434  int fill;
435 
436  if (head->height <= 1)
437  return;
438 
439  node = head->node;
440  fill = getfill(geo, node, 0);
441  BUG_ON(fill > 1);
442  head->node = bval(geo, node, 0);
443  head->height--;
444  mempool_free(node, head->mempool);
445 }
446 
447 static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
448  unsigned long *key, void *val, int level,
449  gfp_t gfp)
450 {
451  unsigned long *node;
452  int i, pos, fill, err;
453 
454  BUG_ON(!val);
455  if (head->height < level) {
456  err = btree_grow(head, geo, gfp);
457  if (err)
458  return err;
459  }
460 
461 retry:
462  node = find_level(head, geo, key, level);
463  pos = getpos(geo, node, key);
464  fill = getfill(geo, node, pos);
465  /* two identical keys are not allowed */
466  BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
467 
468  if (fill == geo->no_pairs) {
469  /* need to split node */
470  unsigned long *new;
471 
472  new = btree_node_alloc(head, gfp);
473  if (!new)
474  return -ENOMEM;
475  err = btree_insert_level(head, geo,
476  bkey(geo, node, fill / 2 - 1),
477  new, level + 1, gfp);
478  if (err) {
479  mempool_free(new, head->mempool);
480  return err;
481  }
482  for (i = 0; i < fill / 2; i++) {
483  setkey(geo, new, i, bkey(geo, node, i));
484  setval(geo, new, i, bval(geo, node, i));
485  setkey(geo, node, i, bkey(geo, node, i + fill / 2));
486  setval(geo, node, i, bval(geo, node, i + fill / 2));
487  clearpair(geo, node, i + fill / 2);
488  }
489  if (fill & 1) {
490  setkey(geo, node, i, bkey(geo, node, fill - 1));
491  setval(geo, node, i, bval(geo, node, fill - 1));
492  clearpair(geo, node, fill - 1);
493  }
494  goto retry;
495  }
496  BUG_ON(fill >= geo->no_pairs);
497 
498  /* shift and insert */
499  for (i = fill; i > pos; i--) {
500  setkey(geo, node, i, bkey(geo, node, i - 1));
501  setval(geo, node, i, bval(geo, node, i - 1));
502  }
503  setkey(geo, node, pos, key);
504  setval(geo, node, pos, val);
505 
506  return 0;
507 }
508 
509 int btree_insert(struct btree_head *head, struct btree_geo *geo,
510  unsigned long *key, void *val, gfp_t gfp)
511 {
512  BUG_ON(!val);
513  return btree_insert_level(head, geo, key, val, 1, gfp);
514 }
516 
517 static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
518  unsigned long *key, int level);
519 static void merge(struct btree_head *head, struct btree_geo *geo, int level,
520  unsigned long *left, int lfill,
521  unsigned long *right, int rfill,
522  unsigned long *parent, int lpos)
523 {
524  int i;
525 
526  for (i = 0; i < rfill; i++) {
527  /* Move all keys to the left */
528  setkey(geo, left, lfill + i, bkey(geo, right, i));
529  setval(geo, left, lfill + i, bval(geo, right, i));
530  }
531  /* Exchange left and right child in parent */
532  setval(geo, parent, lpos, right);
533  setval(geo, parent, lpos + 1, left);
534  /* Remove left (formerly right) child from parent */
535  btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
536  mempool_free(right, head->mempool);
537 }
538 
539 static void rebalance(struct btree_head *head, struct btree_geo *geo,
540  unsigned long *key, int level, unsigned long *child, int fill)
541 {
542  unsigned long *parent, *left = NULL, *right = NULL;
543  int i, no_left, no_right;
544 
545  if (fill == 0) {
546  /* Because we don't steal entries from a neighbour, this case
547  * can happen. Parent node contains a single child, this
548  * node, so merging with a sibling never happens.
549  */
550  btree_remove_level(head, geo, key, level + 1);
551  mempool_free(child, head->mempool);
552  return;
553  }
554 
555  parent = find_level(head, geo, key, level + 1);
556  i = getpos(geo, parent, key);
557  BUG_ON(bval(geo, parent, i) != child);
558 
559  if (i > 0) {
560  left = bval(geo, parent, i - 1);
561  no_left = getfill(geo, left, 0);
562  if (fill + no_left <= geo->no_pairs) {
563  merge(head, geo, level,
564  left, no_left,
565  child, fill,
566  parent, i - 1);
567  return;
568  }
569  }
570  if (i + 1 < getfill(geo, parent, i)) {
571  right = bval(geo, parent, i + 1);
572  no_right = getfill(geo, right, 0);
573  if (fill + no_right <= geo->no_pairs) {
574  merge(head, geo, level,
575  child, fill,
576  right, no_right,
577  parent, i);
578  return;
579  }
580  }
581  /*
582  * We could also try to steal one entry from the left or right
583  * neighbor. By not doing so we changed the invariant from
584  * "all nodes are at least half full" to "no two neighboring
585  * nodes can be merged". Which means that the average fill of
586  * all nodes is still half or better.
587  */
588 }
589 
590 static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
591  unsigned long *key, int level)
592 {
593  unsigned long *node;
594  int i, pos, fill;
595  void *ret;
596 
597  if (level > head->height) {
598  /* we recursed all the way up */
599  head->height = 0;
600  head->node = NULL;
601  return NULL;
602  }
603 
604  node = find_level(head, geo, key, level);
605  pos = getpos(geo, node, key);
606  fill = getfill(geo, node, pos);
607  if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
608  return NULL;
609  ret = bval(geo, node, pos);
610 
611  /* remove and shift */
612  for (i = pos; i < fill - 1; i++) {
613  setkey(geo, node, i, bkey(geo, node, i + 1));
614  setval(geo, node, i, bval(geo, node, i + 1));
615  }
616  clearpair(geo, node, fill - 1);
617 
618  if (fill - 1 < geo->no_pairs / 2) {
619  if (level < head->height)
620  rebalance(head, geo, key, level, node, fill - 1);
621  else if (fill - 1 == 1)
622  btree_shrink(head, geo);
623  }
624 
625  return ret;
626 }
627 
628 void *btree_remove(struct btree_head *head, struct btree_geo *geo,
629  unsigned long *key)
630 {
631  if (head->height == 0)
632  return NULL;
633 
634  return btree_remove_level(head, geo, key, 1);
635 }
637 
638 int btree_merge(struct btree_head *target, struct btree_head *victim,
639  struct btree_geo *geo, gfp_t gfp)
640 {
641  unsigned long key[geo->keylen];
642  unsigned long dup[geo->keylen];
643  void *val;
644  int err;
645 
646  BUG_ON(target == victim);
647 
648  if (!(target->node)) {
649  /* target is empty, just copy fields over */
650  target->node = victim->node;
651  target->height = victim->height;
652  __btree_init(victim);
653  return 0;
654  }
655 
656  /* TODO: This needs some optimizations. Currently we do three tree
657  * walks to remove a single object from the victim.
658  */
659  for (;;) {
660  if (!btree_last(victim, geo, key))
661  break;
662  val = btree_lookup(victim, geo, key);
663  err = btree_insert(target, geo, key, val, gfp);
664  if (err)
665  return err;
666  /* We must make a copy of the key, as the original will get
667  * mangled inside btree_remove. */
668  longcpy(dup, key, geo->keylen);
669  btree_remove(victim, geo, dup);
670  }
671  return 0;
672 }
674 
675 static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
676  unsigned long *node, unsigned long opaque,
677  void (*func)(void *elem, unsigned long opaque,
678  unsigned long *key, size_t index,
679  void *func2),
680  void *func2, int reap, int height, size_t count)
681 {
682  int i;
683  unsigned long *child;
684 
685  for (i = 0; i < geo->no_pairs; i++) {
686  child = bval(geo, node, i);
687  if (!child)
688  break;
689  if (height > 1)
690  count = __btree_for_each(head, geo, child, opaque,
691  func, func2, reap, height - 1, count);
692  else
693  func(child, opaque, bkey(geo, node, i), count++,
694  func2);
695  }
696  if (reap)
697  mempool_free(node, head->mempool);
698  return count;
699 }
700 
701 static void empty(void *elem, unsigned long opaque, unsigned long *key,
702  size_t index, void *func2)
703 {
704 }
705 
706 void visitorl(void *elem, unsigned long opaque, unsigned long *key,
707  size_t index, void *__func)
708 {
709  visitorl_t func = __func;
710 
711  func(elem, opaque, *key, index);
712 }
714 
715 void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
716  size_t index, void *__func)
717 {
718  visitor32_t func = __func;
719  u32 *key = (void *)__key;
720 
721  func(elem, opaque, *key, index);
722 }
724 
725 void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
726  size_t index, void *__func)
727 {
728  visitor64_t func = __func;
729  u64 *key = (void *)__key;
730 
731  func(elem, opaque, *key, index);
732 }
734 
735 void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
736  size_t index, void *__func)
737 {
738  visitor128_t func = __func;
739  u64 *key = (void *)__key;
740 
741  func(elem, opaque, key[0], key[1], index);
742 }
744 
745 size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
746  unsigned long opaque,
747  void (*func)(void *elem, unsigned long opaque,
748  unsigned long *key,
749  size_t index, void *func2),
750  void *func2)
751 {
752  size_t count = 0;
753 
754  if (!func2)
755  func = empty;
756  if (head->node)
757  count = __btree_for_each(head, geo, head->node, opaque, func,
758  func2, 0, head->height, 0);
759  return count;
760 }
762 
763 size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
764  unsigned long opaque,
765  void (*func)(void *elem, unsigned long opaque,
766  unsigned long *key,
767  size_t index, void *func2),
768  void *func2)
769 {
770  size_t count = 0;
771 
772  if (!func2)
773  func = empty;
774  if (head->node)
775  count = __btree_for_each(head, geo, head->node, opaque, func,
776  func2, 1, head->height, 0);
777  __btree_init(head);
778  return count;
779 }
781 
782 static int __init btree_module_init(void)
783 {
784  btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
786  return 0;
787 }
788 
789 static void __exit btree_module_exit(void)
790 {
791  kmem_cache_destroy(btree_cachep);
792 }
793 
794 /* If core code starts using btree, initialization should happen even earlier */
795 module_init(btree_module_init);
796 module_exit(btree_module_exit);
797 
798 MODULE_AUTHOR("Joern Engel <[email protected]>");
799 MODULE_AUTHOR("Johannes Berg <[email protected]>");
800 MODULE_LICENSE("GPL");