Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lm8323.c
Go to the documentation of this file.
1 /*
2  * drivers/i2c/chips/lm8323.c
3  *
4  * Copyright (C) 2007-2009 Nokia Corporation
5  *
6  * Written by Daniel Stone <[email protected]>
7  * Timo O. Karjalainen <[email protected]>
8  *
9  * Updated by Felipe Balbi <[email protected]>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation (version 2 of the License only).
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
33 #include <linux/pm.h>
34 #include <linux/i2c/lm8323.h>
35 #include <linux/slab.h>
36 
37 /* Commands to send to the chip. */
38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
60 
61 /* Interrupt status. */
62 #define INT_KEYPAD 0x01 /* Key event. */
63 #define INT_ROTATOR 0x02 /* Rotator event. */
64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
65 #define INT_NOINIT 0x10 /* Lost configuration. */
66 #define INT_PWM1 0x20 /* PWM1 stopped. */
67 #define INT_PWM2 0x40 /* PWM2 stopped. */
68 #define INT_PWM3 0x80 /* PWM3 stopped. */
69 
70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
71 #define ERR_BADPAR 0x01 /* Bad parameter. */
72 #define ERR_CMDUNK 0x02 /* Unknown command. */
73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
75 
76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
82 #define CFG_ROTEN 0x40 /* Enable rotator. */
83 
84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
85 #define CLK_RCPWM_INTERNAL 0x00
86 #define CLK_RCPWM_EXTERNAL 0x03
87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
89 
90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
95 
96 /* Key event fifo length */
97 #define LM8323_FIFO_LEN 15
98 
99 /* Commands for PWM engine; feed in with PWM_WRITE. */
100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
101 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
102 /* Go to start of script. */
103 #define PWM_GOTOSTART 0x0000
104 /*
105  * Stop engine (generates interrupt). If reset is 1, clear the program
106  * counter, else leave it.
107  */
108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
109 /*
110  * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
111  * Take t clock scales (up to 63) per step, for n steps (up to 126).
112  * If u is set, ramp up, else ramp down.
113  */
114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
115  ((n) & 0x7f) | ((u) ? 0 : 0x80))
116 /*
117  * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
118  * If cnt is zero, execute until PWM_END is encountered.
119  */
120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
121  ((pos) & 0x3f))
122 /*
123  * Wait for trigger. Argument is a mask of channels, shifted by the channel
124  * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
125  * from 1, not 0.
126  */
127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
130 
131 struct lm8323_pwm {
132  int id;
136  bool enabled;
137  bool running;
138  /* pwm lock */
139  struct mutex lock;
142  struct lm8323_chip *chip;
143 };
144 
145 struct lm8323_chip {
146  /* device lock */
147  struct mutex lock;
149  struct input_dev *idev;
152  unsigned keys_down;
153  char phys[32];
154  unsigned short keymap[LM8323_KEYMAP_SIZE];
155  int size_x;
156  int size_y;
160 };
161 
162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
164 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
165 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
166 
167 #define LM8323_MAX_DATA 8
168 
169 /*
170  * To write, we just access the chip's address in write mode, and dump the
171  * command and data out on the bus. The command byte and data are taken as
172  * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
173  */
174 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
175 {
176  int ret, i;
177  va_list ap;
179 
180  va_start(ap, len);
181 
182  if (unlikely(len > LM8323_MAX_DATA)) {
183  dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
184  va_end(ap);
185  return 0;
186  }
187 
188  for (i = 0; i < len; i++)
189  data[i] = va_arg(ap, int);
190 
191  va_end(ap);
192 
193  /*
194  * If the host is asleep while we send the data, we can get a NACK
195  * back while it wakes up, so try again, once.
196  */
197  ret = i2c_master_send(lm->client, data, len);
198  if (unlikely(ret == -EREMOTEIO))
199  ret = i2c_master_send(lm->client, data, len);
200  if (unlikely(ret != len))
201  dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
202  len, ret);
203 
204  return ret;
205 }
206 
207 /*
208  * To read, we first send the command byte to the chip and end the transaction,
209  * then access the chip in read mode, at which point it will send the data.
210  */
211 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
212 {
213  int ret;
214 
215  /*
216  * If the host is asleep while we send the byte, we can get a NACK
217  * back while it wakes up, so try again, once.
218  */
219  ret = i2c_master_send(lm->client, &cmd, 1);
220  if (unlikely(ret == -EREMOTEIO))
221  ret = i2c_master_send(lm->client, &cmd, 1);
222  if (unlikely(ret != 1)) {
223  dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
224  cmd);
225  return 0;
226  }
227 
228  ret = i2c_master_recv(lm->client, buf, len);
229  if (unlikely(ret != len))
230  dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
231  len, ret);
232 
233  return ret;
234 }
235 
236 /*
237  * Set the chip active time (idle time before it enters halt).
238  */
239 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
240 {
241  lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
242 }
243 
244 /*
245  * The signals are AT-style: the low 7 bits are the keycode, and the top
246  * bit indicates the state (1 for down, 0 for up).
247  */
248 static inline u8 lm8323_whichkey(u8 event)
249 {
250  return event & 0x7f;
251 }
252 
253 static inline int lm8323_ispress(u8 event)
254 {
255  return (event & 0x80) ? 1 : 0;
256 }
257 
258 static void process_keys(struct lm8323_chip *lm)
259 {
260  u8 event;
261  u8 key_fifo[LM8323_FIFO_LEN + 1];
262  int old_keys_down = lm->keys_down;
263  int ret;
264  int i = 0;
265 
266  /*
267  * Read all key events from the FIFO at once. Next READ_FIFO clears the
268  * FIFO even if we didn't read all events previously.
269  */
270  ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
271 
272  if (ret < 0) {
273  dev_err(&lm->client->dev, "Failed reading fifo \n");
274  return;
275  }
276  key_fifo[ret] = 0;
277 
278  while ((event = key_fifo[i++])) {
279  u8 key = lm8323_whichkey(event);
280  int isdown = lm8323_ispress(event);
281  unsigned short keycode = lm->keymap[key];
282 
283  dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
284  key, isdown ? "down" : "up");
285 
286  if (lm->kp_enabled) {
287  input_event(lm->idev, EV_MSC, MSC_SCAN, key);
288  input_report_key(lm->idev, keycode, isdown);
289  input_sync(lm->idev);
290  }
291 
292  if (isdown)
293  lm->keys_down++;
294  else
295  lm->keys_down--;
296  }
297 
298  /*
299  * Errata: We need to ensure that the chip never enters halt mode
300  * during a keypress, so set active time to 0. When it's released,
301  * we can enter halt again, so set the active time back to normal.
302  */
303  if (!old_keys_down && lm->keys_down)
304  lm8323_set_active_time(lm, 0);
305  if (old_keys_down && !lm->keys_down)
306  lm8323_set_active_time(lm, lm->active_time);
307 }
308 
309 static void lm8323_process_error(struct lm8323_chip *lm)
310 {
311  u8 error;
312 
313  if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
314  if (error & ERR_FIFOOVER)
315  dev_vdbg(&lm->client->dev, "fifo overflow!\n");
316  if (error & ERR_KEYOVR)
317  dev_vdbg(&lm->client->dev,
318  "more than two keys pressed\n");
319  if (error & ERR_CMDUNK)
320  dev_vdbg(&lm->client->dev,
321  "unknown command submitted\n");
322  if (error & ERR_BADPAR)
323  dev_vdbg(&lm->client->dev, "bad command parameter\n");
324  }
325 }
326 
327 static void lm8323_reset(struct lm8323_chip *lm)
328 {
329  /* The docs say we must pass 0xAA as the data byte. */
330  lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
331 }
332 
333 static int lm8323_configure(struct lm8323_chip *lm)
334 {
335  int keysize = (lm->size_x << 4) | lm->size_y;
337  int debounce = lm->debounce_time >> 2;
338  int active = lm->active_time >> 2;
339 
340  /*
341  * Active time must be greater than the debounce time: if it's
342  * a close-run thing, give ourselves a 12ms buffer.
343  */
344  if (debounce >= active)
345  active = debounce + 3;
346 
347  lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
348  lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
349  lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
350  lm8323_set_active_time(lm, lm->active_time);
351  lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
352  lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
353  lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
354 
355  /*
356  * Not much we can do about errors at this point, so just hope
357  * for the best.
358  */
359 
360  return 0;
361 }
362 
363 static void pwm_done(struct lm8323_pwm *pwm)
364 {
365  mutex_lock(&pwm->lock);
366  pwm->running = false;
367  if (pwm->desired_brightness != pwm->brightness)
368  schedule_work(&pwm->work);
369  mutex_unlock(&pwm->lock);
370 }
371 
372 /*
373  * Bottom half: handle the interrupt by posting key events, or dealing with
374  * errors appropriately.
375  */
376 static irqreturn_t lm8323_irq(int irq, void *_lm)
377 {
378  struct lm8323_chip *lm = _lm;
379  u8 ints;
380  int i;
381 
382  mutex_lock(&lm->lock);
383 
384  while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
385  if (likely(ints & INT_KEYPAD))
386  process_keys(lm);
387  if (ints & INT_ROTATOR) {
388  /* We don't currently support the rotator. */
389  dev_vdbg(&lm->client->dev, "rotator fired\n");
390  }
391  if (ints & INT_ERROR) {
392  dev_vdbg(&lm->client->dev, "error!\n");
393  lm8323_process_error(lm);
394  }
395  if (ints & INT_NOINIT) {
396  dev_err(&lm->client->dev, "chip lost config; "
397  "reinitialising\n");
398  lm8323_configure(lm);
399  }
400  for (i = 0; i < LM8323_NUM_PWMS; i++) {
401  if (ints & (1 << (INT_PWM1 + i))) {
402  dev_vdbg(&lm->client->dev,
403  "pwm%d engine completed\n", i);
404  pwm_done(&lm->pwm[i]);
405  }
406  }
407  }
408 
409  mutex_unlock(&lm->lock);
410 
411  return IRQ_HANDLED;
412 }
413 
414 /*
415  * Read the chip ID.
416  */
417 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
418 {
419  int bytes;
420 
421  bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
422  if (unlikely(bytes != 2))
423  return -EIO;
424 
425  return 0;
426 }
427 
428 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
429 {
430  lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
431  (cmd & 0xff00) >> 8, cmd & 0x00ff);
432 }
433 
434 /*
435  * Write a script into a given PWM engine, concluding with PWM_END.
436  * If 'kill' is nonzero, the engine will be shut down at the end
437  * of the script, producing a zero output. Otherwise the engine
438  * will be kept running at the final PWM level indefinitely.
439  */
440 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
441  int len, const u16 *cmds)
442 {
443  int i;
444 
445  for (i = 0; i < len; i++)
446  lm8323_write_pwm_one(pwm, i, cmds[i]);
447 
448  lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
449  lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
450  pwm->running = true;
451 }
452 
453 static void lm8323_pwm_work(struct work_struct *work)
454 {
455  struct lm8323_pwm *pwm = work_to_pwm(work);
456  int div512, perstep, steps, hz, up, kill;
457  u16 pwm_cmds[3];
458  int num_cmds = 0;
459 
460  mutex_lock(&pwm->lock);
461 
462  /*
463  * Do nothing if we're already at the requested level,
464  * or previous setting is not yet complete. In the latter
465  * case we will be called again when the previous PWM script
466  * finishes.
467  */
468  if (pwm->running || pwm->desired_brightness == pwm->brightness)
469  goto out;
470 
471  kill = (pwm->desired_brightness == 0);
472  up = (pwm->desired_brightness > pwm->brightness);
473  steps = abs(pwm->desired_brightness - pwm->brightness);
474 
475  /*
476  * Convert time (in ms) into a divisor (512 or 16 on a refclk of
477  * 32768Hz), and number of ticks per step.
478  */
479  if ((pwm->fade_time / steps) > (32768 / 512)) {
480  div512 = 1;
481  hz = 32768 / 512;
482  } else {
483  div512 = 0;
484  hz = 32768 / 16;
485  }
486 
487  perstep = (hz * pwm->fade_time) / (steps * 1000);
488 
489  if (perstep == 0)
490  perstep = 1;
491  else if (perstep > 63)
492  perstep = 63;
493 
494  while (steps) {
495  int s;
496 
497  s = min(126, steps);
498  pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
499  steps -= s;
500  }
501 
502  lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
503  pwm->brightness = pwm->desired_brightness;
504 
505  out:
506  mutex_unlock(&pwm->lock);
507 }
508 
509 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
511 {
512  struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
513  struct lm8323_chip *lm = pwm->chip;
514 
515  mutex_lock(&pwm->lock);
517  mutex_unlock(&pwm->lock);
518 
519  if (in_interrupt()) {
520  schedule_work(&pwm->work);
521  } else {
522  /*
523  * Schedule PWM work as usual unless we are going into suspend
524  */
525  mutex_lock(&lm->lock);
526  if (likely(!lm->pm_suspend))
527  schedule_work(&pwm->work);
528  else
529  lm8323_pwm_work(&pwm->work);
530  mutex_unlock(&lm->lock);
531  }
532 }
533 
534 static ssize_t lm8323_pwm_show_time(struct device *dev,
535  struct device_attribute *attr, char *buf)
536 {
537  struct led_classdev *led_cdev = dev_get_drvdata(dev);
538  struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
539 
540  return sprintf(buf, "%d\n", pwm->fade_time);
541 }
542 
543 static ssize_t lm8323_pwm_store_time(struct device *dev,
544  struct device_attribute *attr, const char *buf, size_t len)
545 {
546  struct led_classdev *led_cdev = dev_get_drvdata(dev);
547  struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
548  int ret, time;
549 
550  ret = kstrtoint(buf, 10, &time);
551  /* Numbers only, please. */
552  if (ret)
553  return ret;
554 
555  pwm->fade_time = time;
556 
557  return strlen(buf);
558 }
559 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
560 
561 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
562  const char *name)
563 {
564  struct lm8323_pwm *pwm;
565 
566  BUG_ON(id > 3);
567 
568  pwm = &lm->pwm[id - 1];
569 
570  pwm->id = id;
571  pwm->fade_time = 0;
572  pwm->brightness = 0;
573  pwm->desired_brightness = 0;
574  pwm->running = false;
575  pwm->enabled = false;
576  INIT_WORK(&pwm->work, lm8323_pwm_work);
577  mutex_init(&pwm->lock);
578  pwm->chip = lm;
579 
580  if (name) {
581  pwm->cdev.name = name;
582  pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
583  if (led_classdev_register(dev, &pwm->cdev) < 0) {
584  dev_err(dev, "couldn't register PWM %d\n", id);
585  return -1;
586  }
587  if (device_create_file(pwm->cdev.dev,
588  &dev_attr_time) < 0) {
589  dev_err(dev, "couldn't register time attribute\n");
591  return -1;
592  }
593  pwm->enabled = true;
594  }
595 
596  return 0;
597 }
598 
599 static struct i2c_driver lm8323_i2c_driver;
600 
601 static ssize_t lm8323_show_disable(struct device *dev,
602  struct device_attribute *attr, char *buf)
603 {
604  struct lm8323_chip *lm = dev_get_drvdata(dev);
605 
606  return sprintf(buf, "%u\n", !lm->kp_enabled);
607 }
608 
609 static ssize_t lm8323_set_disable(struct device *dev,
610  struct device_attribute *attr,
611  const char *buf, size_t count)
612 {
613  struct lm8323_chip *lm = dev_get_drvdata(dev);
614  int ret;
615  unsigned int i;
616 
617  ret = kstrtouint(buf, 10, &i);
618 
619  mutex_lock(&lm->lock);
620  lm->kp_enabled = !i;
621  mutex_unlock(&lm->lock);
622 
623  return count;
624 }
625 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
626 
627 static int __devinit lm8323_probe(struct i2c_client *client,
628  const struct i2c_device_id *id)
629 {
630  struct lm8323_platform_data *pdata = client->dev.platform_data;
631  struct input_dev *idev;
632  struct lm8323_chip *lm;
633  int pwm;
634  int i, err;
635  unsigned long tmo;
636  u8 data[2];
637 
638  if (!pdata || !pdata->size_x || !pdata->size_y) {
639  dev_err(&client->dev, "missing platform_data\n");
640  return -EINVAL;
641  }
642 
643  if (pdata->size_x > 8) {
644  dev_err(&client->dev, "invalid x size %d specified\n",
645  pdata->size_x);
646  return -EINVAL;
647  }
648 
649  if (pdata->size_y > 12) {
650  dev_err(&client->dev, "invalid y size %d specified\n",
651  pdata->size_y);
652  return -EINVAL;
653  }
654 
655  lm = kzalloc(sizeof *lm, GFP_KERNEL);
656  idev = input_allocate_device();
657  if (!lm || !idev) {
658  err = -ENOMEM;
659  goto fail1;
660  }
661 
662  lm->client = client;
663  lm->idev = idev;
664  mutex_init(&lm->lock);
665 
666  lm->size_x = pdata->size_x;
667  lm->size_y = pdata->size_y;
668  dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
669  lm->size_x, lm->size_y);
670 
671  lm->debounce_time = pdata->debounce_time;
672  lm->active_time = pdata->active_time;
673 
674  lm8323_reset(lm);
675 
676  /* Nothing's set up to service the IRQ yet, so just spin for max.
677  * 100ms until we can configure. */
678  tmo = jiffies + msecs_to_jiffies(100);
679  while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
680  if (data[0] & INT_NOINIT)
681  break;
682 
683  if (time_after(jiffies, tmo)) {
684  dev_err(&client->dev,
685  "timeout waiting for initialisation\n");
686  break;
687  }
688 
689  msleep(1);
690  }
691 
692  lm8323_configure(lm);
693 
694  /* If a true probe check the device */
695  if (lm8323_read_id(lm, data) != 0) {
696  dev_err(&client->dev, "device not found\n");
697  err = -ENODEV;
698  goto fail1;
699  }
700 
701  for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
702  err = init_pwm(lm, pwm + 1, &client->dev,
703  pdata->pwm_names[pwm]);
704  if (err < 0)
705  goto fail2;
706  }
707 
708  lm->kp_enabled = true;
709  err = device_create_file(&client->dev, &dev_attr_disable_kp);
710  if (err < 0)
711  goto fail2;
712 
713  idev->name = pdata->name ? : "LM8323 keypad";
714  snprintf(lm->phys, sizeof(lm->phys),
715  "%s/input-kp", dev_name(&client->dev));
716  idev->phys = lm->phys;
717 
718  idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
719  __set_bit(MSC_SCAN, idev->mscbit);
720  for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
721  __set_bit(pdata->keymap[i], idev->keybit);
722  lm->keymap[i] = pdata->keymap[i];
723  }
724  __clear_bit(KEY_RESERVED, idev->keybit);
725 
726  if (pdata->repeat)
727  __set_bit(EV_REP, idev->evbit);
728 
729  err = input_register_device(idev);
730  if (err) {
731  dev_dbg(&client->dev, "error registering input device\n");
732  goto fail3;
733  }
734 
735  err = request_threaded_irq(client->irq, NULL, lm8323_irq,
736  IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
737  if (err) {
738  dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
739  goto fail4;
740  }
741 
742  i2c_set_clientdata(client, lm);
743 
744  device_init_wakeup(&client->dev, 1);
745  enable_irq_wake(client->irq);
746 
747  return 0;
748 
749 fail4:
750  input_unregister_device(idev);
751  idev = NULL;
752 fail3:
753  device_remove_file(&client->dev, &dev_attr_disable_kp);
754 fail2:
755  while (--pwm >= 0)
756  if (lm->pwm[pwm].enabled) {
757  device_remove_file(lm->pwm[pwm].cdev.dev,
758  &dev_attr_time);
759  led_classdev_unregister(&lm->pwm[pwm].cdev);
760  }
761 fail1:
762  input_free_device(idev);
763  kfree(lm);
764  return err;
765 }
766 
767 static int __devexit lm8323_remove(struct i2c_client *client)
768 {
769  struct lm8323_chip *lm = i2c_get_clientdata(client);
770  int i;
771 
772  disable_irq_wake(client->irq);
773  free_irq(client->irq, lm);
774 
775  input_unregister_device(lm->idev);
776 
777  device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
778 
779  for (i = 0; i < 3; i++)
780  if (lm->pwm[i].enabled) {
781  device_remove_file(lm->pwm[i].cdev.dev, &dev_attr_time);
782  led_classdev_unregister(&lm->pwm[i].cdev);
783  }
784 
785  kfree(lm);
786 
787  return 0;
788 }
789 
790 #ifdef CONFIG_PM_SLEEP
791 /*
792  * We don't need to explicitly suspend the chip, as it already switches off
793  * when there's no activity.
794  */
795 static int lm8323_suspend(struct device *dev)
796 {
797  struct i2c_client *client = to_i2c_client(dev);
798  struct lm8323_chip *lm = i2c_get_clientdata(client);
799  int i;
800 
801  irq_set_irq_wake(client->irq, 0);
802  disable_irq(client->irq);
803 
804  mutex_lock(&lm->lock);
805  lm->pm_suspend = true;
806  mutex_unlock(&lm->lock);
807 
808  for (i = 0; i < 3; i++)
809  if (lm->pwm[i].enabled)
810  led_classdev_suspend(&lm->pwm[i].cdev);
811 
812  return 0;
813 }
814 
815 static int lm8323_resume(struct device *dev)
816 {
817  struct i2c_client *client = to_i2c_client(dev);
818  struct lm8323_chip *lm = i2c_get_clientdata(client);
819  int i;
820 
821  mutex_lock(&lm->lock);
822  lm->pm_suspend = false;
823  mutex_unlock(&lm->lock);
824 
825  for (i = 0; i < 3; i++)
826  if (lm->pwm[i].enabled)
827  led_classdev_resume(&lm->pwm[i].cdev);
828 
829  enable_irq(client->irq);
830  irq_set_irq_wake(client->irq, 1);
831 
832  return 0;
833 }
834 #endif
835 
836 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
837 
838 static const struct i2c_device_id lm8323_id[] = {
839  { "lm8323", 0 },
840  { }
841 };
842 
843 static struct i2c_driver lm8323_i2c_driver = {
844  .driver = {
845  .name = "lm8323",
846  .pm = &lm8323_pm_ops,
847  },
848  .probe = lm8323_probe,
849  .remove = __devexit_p(lm8323_remove),
850  .id_table = lm8323_id,
851 };
852 MODULE_DEVICE_TABLE(i2c, lm8323_id);
853 
854 module_i2c_driver(lm8323_i2c_driver);
855 
856 MODULE_AUTHOR("Timo O. Karjalainen <[email protected]>");
857 MODULE_AUTHOR("Daniel Stone");
858 MODULE_AUTHOR("Felipe Balbi <[email protected]>");
859 MODULE_DESCRIPTION("LM8323 keypad driver");
860 MODULE_LICENSE("GPL");
861